L-TAM Module 1 Section 10 Exercises

- 1. Given a 3-state model with $\mu_x^{01}=.05$, $\mu_x^{02}=.10$, $\mu_x^{12}=.20$, and all other forces of transition equal to zero, determine
 - (a) $_{5}p_{x}^{00}$
 - (b) $_{5}p_{x}^{01}$
 - (c) $_{5}p_{x}^{02}$
- 2. Given a 2-state model with $\mu_{x+t}^{01}=.02t$ and $\mu_{x+t}^{10}=0$, determine
 - (a) $_{10}p_x^{00}$
 - (b) $_{10}p_x^{01}$
- 3. Given a 3-state model with $\mu_{x+t}^{01}=.01+.02t$ and $\mu_{x+t}^{02}=.02+.04t$, determine
 - (a) $_{10}p_x^{00}$
 - (b) $_{n}p_{x}^{10}$
 - (c) $_{k}p_{x}^{11}$
 - (d) $_{10}p_x^{02}$
- 4. Given a 4-state model with $\mu_x^{01}=\mu_x^{03}=\mu_x^{23}=.1$, $\mu_x^{10}=\mu_x^{12}=\mu_x^{13}=.2$, and all other forces of transition equal to zero, determine
 - (a) $_{0}p_{x}^{01}$
 - (b) $_{5}p_{x}^{\overline{11}}$
 - (c) $_{10}p_x^{22}$
 - (d) $_t\dot{p}_x^{23}$
 - (e) $_{t}\dot{p}_{x}^{10}$

5. Given independent lives (x) and (y), where (x) is the husband and (y) is the wife, define the following states of the joint-life, last-survivor process:

State 0: Both Husband and Wife are Alive

State 1: Husband is Dead and Wife is Alive

State 2: Husband is Alive and Wife is Dead

State 3: Both Husband and Wife are Dead

Suppose $\mu_{xy}^{01} = .01 = \mu_x^{23}$, $\mu_{xy}^{02} = .02 = \mu_y^{13}$, and all other forces of transition equal 0.

Determine the probability that at the end of 5 years the husband is dead and the wife is alive.

- 6. Given a three state model with $\mu_x^{01} = .02$, $\mu_x^{10} = .01$, $\mu_x^{02} = .03 = \mu_x^{20}$, $\mu_x^{12} = .04$, and $\mu_x^{21} = 0$, you are given $_{0.5}p_x^{00} = .975$, $_{0.5}p_x^{01} = .010$, and $_{0.5}p_x^{02} = .015$
 - (a) determine the value of $_{0.5}\dot{p}_x^{0.0}$ according to Kolmogorov differential equations.
 - (b) use Euler's method with step size 0.1 to approximate $_{0.6}p_x^{00}$
- 7. The non-zero transition rates for a 4-state model are:

$$\mu_x^{01} = .04$$
 $\mu_x^{02} = .02$ $\mu_x^{21} = .01$

$$\mu_{\chi}^{02} = .02$$

$$\mu_x^{21} = .01$$

$$\mu_x^{23} = .03$$

$$\mu_x^{23} = .03$$
 $\mu_x^{13} = .001e^{0.1x} = \mu_x^{31}$

- (a) Determine $_{10}p_{30}^{12}$
- (b) Determine ${}_{10}p_{30}^{00}$ More generally, determine ${}_{n}p_{30}^{00}$ for any $n \ge 0$.
- (c) Determine $_{10}p_{30}^{02}$ More generally, determine $_np_{30}^{02}$ for any $n \ge 0$.

For parts (d), (e), and (f), you are also given $_{10}p_{30}^{01}\approx 0.2587$ and $_{10}p_{30}^{03}\approx 0.0710$.

- (d) Determine $_{10}\dot{p}_{30}^{01}$ and $_{10}\dot{p}_{30}^{03}$
- (e) Use an iteration of Euler's Forward Equation with step size equal to 0.2 to approximate $_{10.2}p_{30}^{01}$ and $_{10.2}p_{30}^{03}$
- (f) Perform another iteration of Euler's Forward Equation with step size equal to 0.2 to approximate $_{10.4}p_{30}^{01}$ and $_{10.4}p_{30}^{03}$