L-TAM Module 1 Section 9 Exercises

1. Given a double decrement table with $q_x^{(1)} = .04$ and $p_x^{(\tau)} = .94$, determine $q_x^{(2)}$.

2. For a double decrement table, given $p_x^{\prime(1)}=0.95$ and $q_x^{\prime(2)}=0.1$, determine $q_x^{(\tau)}$.

3. For a double decrement table, given $p_x'^{(1)} = 0.9$, $q_x^{(1)} = 0.09$, and $p_x^{(\tau)} = 0.72$, determine

(a)
$$q_x^{(2)}$$

(a)
$$q_x^{(2)}$$

(b) $q_x'^{(2)}$

4. You are given the double decrement table:

X	$l_x^{(au)}$	$q_{\chi}^{(1)}$	$q_x^{(2)}$	$q_x^{\prime(1)}$	$q_x^{\prime(2)}$
30	1000	0.09			0.20
31	712		0.20	0.15	0.20
32		0.15		0.16	
33	305.0208				ļ

Determine

(a)
$$_{2}q_{31}^{(2)}$$

(b) $_{1|2}q_{30}^{(1)}$

(b)
$$_{1|2}q_{30}^{(1)}$$

5. For a triple decrement table, given $\mu_x^{(1)}(t) = .1$, $\mu_x^{(2)}(t) = .2$, and $\mu_x^{(3)}(t) = .3$. determine

(a)
$$_{5}q_{x}^{(\tau)}$$

(a)
$$_{5}q_{x}^{(\tau)}$$
 (b) $_{5|10}q_{x}^{(2)}$

6. For a triple decrement table, given $\mu_x^{(1)}(t) = .01$, $\mu_x^{(2)}(t) = .02$, and $\mu_x^{(3)}(t) = .03$. determine

(a)
$$_{10}q_{x}^{(\tau)}$$

(b) $_{10}q_{x}^{(2)}$

(b)
$$_{10}q_x^{(2)}$$

(c)
$$_{10|10}q_x^{(\tau)}$$

(d)
$$_{10|10}q_x^{(1)}$$

(e) the expected time until departure, $\stackrel{o}{e}_{\chi}^{(au)}$

- 7. For a double decrement table given: $\mu_x^{(1)}(t) = .01 + .01t$, $\mu_x^{(2)}(t) = .02 + .02t$, and $\mu_{v}^{(3)}(t) = .03 + .03t$, determine
 - (a) ${}_{5}q_{x}^{(\tau)}$ (b) ${}_{5}q_{x}^{(3)}$

 - (c) the conditional probability that departure was by decrement 2, given that departure occurred at age x+5
 - (d) the conditional probability that departure was by decrement 1, given that departure occurred before age x+5
- 8. You are given the double decrement table:

X	$l_x^{(au)}$	$d_x^{(1)}$	$d_x^{(2)}$
50		75	
51	900		
52			25
53			

You are also given:

- (i) $q_{50}^{(\tau)} = .1$ (ii) $_2p_{50}^{(\tau)} = .825$
- (iii) there are twice as many departures from decrement 1 at age 51 as there are from decrement 2 at age 51

(iv)
$$_{2|}q_{50}^{(1)} = .025$$

Determine

- (a) $q_{50}^{(2)}$ (b) $_{2}q_{51}^{(\tau)}$ (c) $_{1|}q_{51}^{(1)}$ (d) $_{1|2}q_{50}^{(2)}$
- 9. Given $l_x^{(au)}=1000$ and a triple decrement table with $\mu_x^{(j)}=0.1+0.2(j-1)$ for j = 1, 2, and 3, determine the expected number of departures between ages x and x+1 by decrement 2.

10. Given a double decrement model with $\mu_x^{(1)}=0.02$ and $\mu_x^{(2)}=0.03$, determine
(a) $_{2}p_{x}^{(\tau)}$ (b) $_{2}q_{x}^{(1)}$ (c) $_{2}q_{x}^{(2)}$ (d) $_{2}q_{x}^{\prime(1)}$ (e) $_{2}q_{x}^{\prime(2)}$
11. Given a double decrement table where decrement 1 is DML(80) in the associated single decrement table and decrement 2 has $\mu_{\chi}^{(2)}=0.1$, determine
(a) $_{10}q_{50}^{(1)}$ (b) $\mu_{50}^{(\tau)}(10)$
12. Given a double decrement table where decrement 1 is DML(100) in the associated single decrement table and decrement 2 has $\mu_{\chi}^{(2)}=0.05$, determine
(a) $_{10}q_{30}^{(1)}$ (b) $_{10}q_{30}^{(2)}$
13. Given a double decrement model with $p_x^{\prime(1)}=0.9$ and $p_x^{\prime(2)}=0.8$, determine $q_x^{(1)}$ and $q_x^{(2)}$ using
(a) MUDD (b) SUDD
14. Given a double decrement model with $q_x^{(1)}=0.1$ and $q_x^{(2)}=0.2$, determine $q_x^{\prime(1)}$ and $q_x^{\prime(2)}$ using
(a) MUDD (b) SUDD
15. For a double decrement table where each decrement is UDD in the double decrement table, given $q_x^{\prime(1)}=0.1$ and $q_x^{\prime(2)}=0.2$, determine (a) $_{0.3}q_x^{(2)}$ (b) $_{0.5 0.3}q_x^{(2)}$ (c) $_{0.3}q_{x+0.5}^{(2)}$

- 16. Given a double decrement model with $p_{40}^{\prime(1)}=p_{41}^{\prime(1)}=0.9$ and $p_{40}^{\prime(2)} = p_{41}^{\prime(2)} = 0.8$, determine _{1.5} $q_{40}^{(1)}$ using the SUDD assumption.
- 17. Given a double decrement table where decrement 1 is BOY and decrement 2 is UDD in the associated single decrement table, and given $q_x^{(1)} = 0.1$ and $q_x^{(2)} =$ 0.2, determine
 - (a) $q_x^{\prime(1)}$ (b) $q_x^{\prime(2)}$
- 18. For a triple decrement table where decrement 1 and decrement 2 are each UDD in their associated single decrement tables, and decrement 3 is EOY, given $q_x^{\prime(j)} = 0.2j$ for j = 1, 2, and 3, determine
 - (a) $q_x^{(1)}$ (b) $q_x^{(2)}$ (c) $q_x^{(3)}$
- 19. For a double decrement table where decrement 1 is MOY and decrement 2 is UDD in the associated single decrement table, given $q_x^{\prime(1)}=0.1$ and $q_x^{\prime(2)}=0.3$ determine
 - (a) $q_x^{(1)}$ (b) $q_x^{(2)}$
- 20. For a double decrement table where decrement 1 is SUDD and 25% of decrement 2 occurs at time 0.3 with the rest occurring at time 0.7, given $q_x^{\prime(1)}=$ 0.2 and $q_x^{\prime(2)} = 0.4$ determine
 - (a) $q_x^{(1)}$ (b) $q_x^{(2)}$