(New) Module 2 Section 5 Exercises:

1. Given $\bar{A}_x = 0.5$, $\bar{A}_{x+n} = 0.6$, and $_n E_x = 0.55$, determine $\bar{A}_{x:\overline{n}1}$.

For Numbers 2 through 4, determine the APV of the insurance product using the following assumptions:

- (a) DML(100) and $\delta = .05$ actuarial assumptions
- (b) CF with $\mu = .03$ and $\delta = .05$ actuarial assumptions

(Note that ages matter for part (a), but not for part (b).)

- 2. a whole life insurance of 5000, issued to (60), payable at the moment of death
- 3. a continuous 20-year deferred whole life insurance of 1000 issue to a 60 year old
- 4. a 20-year endowment insurance of 3000 issued to (60), with death benefit paid at the moment of death
- 5. Determine an expression using single life and joint life statuses for the actuarial present value of a continuous insurance, based on independent lives (x) and (y), with death benefit as follows:
 - if (x) dies first, 5 is paid when (x) dies and 20 is paid when (y) dies
 - if (y) dies first, 10 is paid when (x) dies and 15 is paid when (y) dies
- 6. A 10-year term insurance of 100,000 issued to (x), with benefit payable at the moment of death, has a double indemnity clause stating that an additional 50,000 will be paid if death occurs by accidental means. Given $\mu_x^{(\text{accident})} = .005$, $\mu_x^{(\text{non-accident})} = .02$ and $\delta = .05$, determine the APV of the insurance.

For Numbers 7 and 8, determine the APV of the insurance product described, using

- (a) ILT actuarial assumptions and the UDD assumption between integer ages
- (b) ILT actuarial assumptions and the claims acceleration approach
- 7. A whole life insurance issued to (40) with a benefit of 1000 payable at the moment of death
- 8. A 20-year endowment insurance issued to (40) with a benefit of 1000 payable at the moment of death