Show all work for full credit, and use correct notation. Simplify answers completely.

A long-term care provider offers three care levels; Level 0 Care, Level 1 Care, and Level 2 Care. From Level 0 Care, a patient can only transfer to Level 1 Care. From Level 1 Care, a patient can transfer to either Level 0 Care or Level 2 Care. A patient in Level 2 Care will remain in Level 2 Care until death. Of course a patient can die while in any of the care levels. Define a 4-state model in which state (i) corresponds to a patient being in Level i Care, for i = 0, 1, and 2, and state (3) being the state that a person is dead.

1. Draw the schematic diagram for the model and state the values of $_0p_{80}^{10}$ and $_0p_{80}^{11}$.

$$(0) \leftrightarrow (1) \qquad (0) \leftrightarrow (1) \qquad (0) \leftrightarrow (1) \rightarrow (3)$$

$$(3) \leftrightarrow (3) \qquad (0) \leftrightarrow (1) \rightarrow (3)$$

$$(3) \leftrightarrow (3) \qquad (0) \leftrightarrow (1) \rightarrow (3)$$

$$(3) \leftrightarrow (3) \qquad (0) \leftrightarrow (1) \rightarrow (3)$$

$$(4) \leftrightarrow (1) \rightarrow (3)$$

$$(5) \leftrightarrow (1) \rightarrow (3)$$

$$(6) \leftrightarrow (1) \rightarrow (3)$$

$$(7) \leftrightarrow (1) \rightarrow (3)$$

$$(8) \leftrightarrow (1) \rightarrow (3)$$

$$(9) \leftrightarrow (1) \rightarrow (3)$$

$$(1) \leftrightarrow (1) \rightarrow (3)$$

$$(2) \leftrightarrow (1) \rightarrow (3)$$

$$(3) \leftrightarrow (3)$$

$$(4) \leftrightarrow (1) \rightarrow (3)$$

$$(5) \leftrightarrow (1) \rightarrow (3)$$

$$(6) \leftrightarrow (1) \rightarrow (3)$$

$$(7) \leftrightarrow (1) \rightarrow (3)$$

$$(8) \leftrightarrow (1) \rightarrow (3)$$

$$(9) \leftrightarrow (1) \rightarrow (3)$$

$$(9) \leftrightarrow (1) \rightarrow (3)$$

$$(1) \leftrightarrow (1) \rightarrow (3)$$

$$(2) \leftrightarrow (1) \rightarrow (3)$$

$$(3) \leftrightarrow (3)$$

$$(4) \leftrightarrow (1) \rightarrow (3)$$

$$(5) \leftrightarrow (1) \rightarrow (3)$$

$$(7) \leftrightarrow (1) \rightarrow (3)$$

$$(8) \leftrightarrow (1) \rightarrow (3)$$

$$(9) \leftrightarrow (1) \rightarrow (3)$$

$$(1) \leftrightarrow (1) \rightarrow (3)$$

$$(2) \leftrightarrow (1) \rightarrow (3)$$

$$(3) \leftrightarrow (3)$$

$$(4) \leftrightarrow (3)$$

$$(5) \leftrightarrow (3)$$

$$(6) \leftrightarrow (1)$$

$$(7) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(9) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(2) \leftrightarrow (1)$$

$$(3) \leftrightarrow (1)$$

$$(4) \leftrightarrow (1)$$

$$(5) \leftrightarrow (1)$$

$$(7) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(9) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(2) \leftrightarrow (1)$$

$$(3) \leftrightarrow (1)$$

$$(4) \leftrightarrow (1)$$

$$(5) \leftrightarrow (1)$$

$$(7) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(9) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(2) \leftrightarrow (1)$$

$$(3) \leftrightarrow (1)$$

$$(4) \leftrightarrow (1)$$

$$(4) \leftrightarrow (1)$$

$$(5) \leftrightarrow (1)$$

$$(7) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(9) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(1) \leftrightarrow (1)$$

$$(2) \leftrightarrow (1)$$

$$(3) \leftrightarrow (1)$$

$$(4) \leftrightarrow (1)$$

$$(4) \leftrightarrow (1)$$

$$(5) \leftrightarrow (1)$$

$$(7) \leftrightarrow (1)$$

$$(8) \leftrightarrow (1)$$

$$(8)$$

For Numbers 2-5 use the following transition intensities and probabilities:

t	$_{t}p_{80}^{11}$	μ_{80+t}^{01}	μ_{80+t}^{03}	μ_{80+t}^{10}	μ_{80+t}^{12}	μ_{80+t}^{13}	μ_{80+t}^{23}
0	1.00000	0.10000	0.02981	0.08000	0.15000	0.05962	0.11924
1/3	0.90346	0.10000	0.03082	0.08000	0.15000	0.06164	0.12328
2/3	0.81652	0.10000	0.03186	0.08000	0.15000	0.06373	0.12746
1		0.10000	0.03294	0.08000	0.15000	0.06589	0.13178

2. Write down the Kolmogorov Differential Equation (KDE) for $_t\dot{p}_{80}^{10}$ and use it, along with the table values and the results from Problem 1, to show that $_0\dot{p}_{80}^{10}=0.08$.

$$t \stackrel{?}{P_{80}} = [rate \ in] - (rate \ out)$$

$$t \stackrel{?}{P_{80}} = t \stackrel{?}{P_{80}} \cdot \mu_{80+t}^{10} - t \stackrel{?}{P_{80}} (\mu_{80+t}^{01} + \mu_{80+t}^{03})$$

$$\Rightarrow o \stackrel{?}{P_{80}} = o \stackrel{?}{P_{80}} \cdot \mu_{80}^{10} - o \stackrel{?}{P_{80}} (\mu_{80}^{01} + \mu_{80}^{03})$$

$$= 1 (.08) - 0 (----) = .08$$

3. Using Euler's Method with a step-size of h=1/3 and the results from the previous problems, show that $\frac{1}{3}p_{80}^{10}=0.02667$. EM(h=1/3) $\gamma(t+1/3)=\gamma(t)+\frac{1}{3}\cdot\dot{\gamma}(t)$

$$v_3 P_{80}^{10} = _{0} P_{80}^{10} + _{3} _{0} P_{80}^{10} = _{0} + _{3} (.08) = .02667$$

4. Using the KDE in Problem 2, along with the table values and the results from previous problems, show that $_{1/3}\dot{p}_{80}^{10}=0.06879$. Then use a second iteration of Euler's Method with a step-size of h=1/3 to show that $_{2/3}p_{80}^{10}=0.04960$.

$$V_{3}P_{80}^{10} \stackrel{\text{KDE}}{=} V_{3}P_{80}^{11} \cdot \mu_{80+1/3}^{10} - V_{3}P_{80}^{10} (\mu_{80+1/3}^{01} + \mu_{80+1/3}^{03})$$

$$= (.90346)(.08) - .02667(.1 + .03082) = .06879$$

$$P_{80}^{10} = P_{80}^{10} + \frac{1}{3} \left(P_{80}^{10} \right)$$

$$= .02667 + \frac{1}{3} \left(.06879 \right) = .0496$$

5. Using the KDE in Problem 2, along with the table values and the results from previous problems, show that $_{2/3}\dot{p}_{80}^{10}=0.05878$. Then use a third iteration of Euler's Method with a step-size of h=1/3 to determine $_{1}p_{80}^{10}$.

$$P_{80} = \frac{1}{2/3} P_{80}^{10} + \frac{1}{2/3} P_{80}^{10} + \frac{1}{80+2/3} P_{$$

$$P_{80}^{13} = P_{80}^{10} = a_{13}P_{80}^{10} + \frac{1}{3}(a_{13}P_{80}^{10})$$

$$= 0496 + \frac{1}{3}(0.05878) = 06919$$