MAP 4175 / 5177	Name:	
Quiz 1		Date: September 4, 2019

Show all work for full credit, and use correct notation.

1. Given $_{k|}q_{70} = 0.1(k+1)$ for k = 0 and 1, determine $_2p_{70}$

 $_{2}q_{70} = q_{70} + _{1|}q_{70} = 0.1 + 0.2 = 0.3 \Rightarrow _{2}p_{70} = 0.7$

2. Given $T_{40} = 52.82$, determine the value of the difference $K_{40}^{(4)} - K_{40}^{(12)}$ With $T_{40} = 52.82$, we have $K_{40}^{(4)} = K_{40}^{(12)} = 52.75$.

$$\therefore K_{40}^{(4)} - K_{40}^{(12)} = 0$$

3. Given $\int_{0}^{20} f_{70}(t) dt = 0.95$ and $\int_{30}^{\infty} f_{40}(t) dt = 0.2$, determine $_{30|20}q_{40}$ Note that $\int_{0}^{20} f_{70}(t) dt = {}_{20}q_{70}$ and $\int_{30}^{\infty} f_{40}(t) dt = {}_{30}p_{40}$.

Since ${}_{30|20}q_{40} = {}_{30}p_{40} \cdot {}_{20}q_{70}$, we get

$$_{30|20}q_{40} = 0.95 \cdot 0.2 = 0.19$$

4. Given

x	q_x	
90	0.3	
91	0.4	
92	0.5	
93	0.6	

determine the value of the deferred mortality probability $_{1|2}q_{91}$

 $_{1|2}q_{91} = p_{91} - _{3}p_{91} = p_{91} - p_{91} \cdot p_{92} \cdot p_{93} = 0.6 - (0.6)(0.5)(0.4) = 0.48$

5. Given $q_{80} = 0.1$ and $E[Min(K_{80}, 2)] = 1.62$, determine p_{81}

The probability table for the discrete random variable $Min(K_{80}, 2)$ is

K ₈₀	$Min(K_{80}, 2)$	Pr
0	0	q_{80}
1	1	${}_{1 }q_{80} = p_{80} \cdot q_{81}$
≥ 2	2	$_2p_{80} = p_{80} \cdot p_{81}$

Since $E[Min(K_{80}, 2)] = 1.62$ we have $1.62 = p_{80} \cdot q_{81} + 2 \cdot p_{80} \cdot p_{81}$

Since $q_{80} = 0.1$, then $p_{80} = 0.9$, and so $1.62 = 0.9 \cdot (1 - p_{81}) + 2 \cdot 0.9 \cdot p_{81}$

$$\therefore p_{81} = 0.8$$