Each problem is worth 10 points. Show all work for full credit, and use correct notation.

1. Given \(t p_x = (0.95)^t \), determine \(\mu_{x+t} \)

2. Given \(\mu_x = \frac{1}{100-x}, \) \(0 < t < 100 \), determine \(20 p_{10} \)

3. Given \(\int_{50}^{54} \mu_x \, dx = 0.1 \) and \(\int_0^5 t p_{50} \mu_{50+t} \, dt = 0.1 \), determine \(q_{54} \)
4. Given $\mu_x^{ns} = \mu_x^s - .02$ and $p_x^{ns} = .95$, determine p_x^s

5. Given $\mu_x^m = 1.2\mu_x^f$ and $kp_x^f = .75$, determine kp_x^m