MAP 4175 / 5177 Name:_____ Tests 6 and 7 (Due October 18 in class) Date: October 17, 2018

Show all work for full credit, and use correct notation. Simplify answers completely.

Numbers 1 - 3: For a mortality study on 10 dragons, you are given the following times for death:

2 3 3 6 8 12 18 18 18 23

- 1. (5 points) Determine the empirical estimate for S(15).
- 2. (10 points) Approximate the variance of the empirical estimator for S(15).
- 3. (5 points) Determine an 80% linear symmetric confidence interval for S(15) based on the empirical estimator.

Numbers 3 and 4:

For insurance payments to 200 insureds, you are given:

Payment Range	Number of Payments
0 – 5,000	80
5,000 – 25,000	40
25,000 - 100,000	60
Over 100,000	20

- 4. (10 points) Use the ogive to determine the probability that a randomly selected insurance payment is less than 100,000.
- 5. (10 points) Use the ogive to determine the probability that a randomly selected insurance payment is greater than 50,000.

Numbers 6 - 9:

i	y_i	Si	b_i	r_i
1	3	3	6	50
2	5	7	4	-
3	7	5	2	-
4	11	5	3	-
5	16	6	4	-
6	20	2	3	-

You are given the following data: (Dashes indicate missing values that must be deduced.)

- 6. (10 points) Compute the Kaplan-Meier estimates $S_{50}(11)$ and $H_{50}(11)$.
- 7. (10 points) Compute the Nelson-Aalen estimates $\hat{S}(11)$ and $\hat{H}(11)$.
- 8. (5 points each) Approximate the variance of the estimator for S(11) using (a) Greenwood's Formula
 - (b) Klein's Formula
 - (c) Aalen's Formula
- 9. (5 points each) Approximate S(25) using the Kaplan-Meier estimate $S_{50}(20)$, and (a) Efron's tail correction
 - (b) the Klein and Moeschberger tail correction with $\omega = 30$
 - (c) the exponential tail correction of Brown, Hollander, and Kowar

Number 10 A mortality study starts with 100 dragons at time 0. You are given:

Time Interval	New Entrants	Withdrawals	Deaths
(0,2]	10	30	8
(2,5]	30	10	20
(5,9]	30	10	30
(9,10]	10	30	42

Deaths occur at the midpoint of each interval

60% of new entrants arrive during the first half of the interval; 40% in the second 40% of withdrawals depart during the first half of the interval; 60% in the second

10. (10 points) Determine the Kaplan-Meier estimate for S(9).