Show all work for full credit, and use correct notation. Simplify answers completely.

1. Given a triple decrement model with $\mu_x^{(1)}=1$, $\mu_x^{(2)}=2$, and $\mu_x^{(3)}=3$ determine $_{0.5}q_x^{(2)}$.

2. For a double decrement model where each decrement is uniformly distributed in the double decrement table, given $q_x^{\prime(1)}=0.20$ and $q_x^{\prime(2)}=0.40$, determine $_{0.25}p_x^{\prime(1)}$.

3. Given a double decrement model where decrement 1 has $\mu_x^{(1)} = 0.01$ and decrement 2 is DML(100) in the associated single decrement table, determine $_{10}q_{75}^{(1)}$.

4. For a double decrement model where $\mu_{x+t}^{(1)} = 2t$, and decrement 2 is MOY, you are given $q_x^{(2)} = 0.3$. Determine $q_x'^{(2)}$.

5. For a triple decrement model where decrements 1 and 2 are uniformly distributed in their associated single decrement tables, and decrement 3 is EOY, given $q_x^{(1)} = 0.1$, $q_x^{(2)} = 0.2$, and $q_x^{(3)} = 0.3$, determine $_{0.5}q_x'^{(2)}$.