MAP	4176	5/	51	78
Test 1	1			

Name:	
	Date: April 11 2018

Show all work for full credit, and use correct notation. Simplify answers completely. See other side for additional problems.

1. For a fully discrete whole life insurance of 150,000 issued to (40), you are given:

(i)
$$\ddot{a}_{40} = 15$$
 $\ddot{a}_{55} = 12$ (iii) $\ddot{a}_{55} = 12$ (iii) $d = 0.06$ \Rightarrow $A_{55} = 1 - d \ddot{a}_{55} = 0.28$

(ii)
$$\ddot{a}_{55} = 12$$

(iii) $d = 0.06$ \Rightarrow $A_{55} = 1 - d\ddot{a}_{55} = 0.28$

(iv)
$$p_{40} = 0.98$$

The only expenses are 50 at the beginning of every year (v)

Determine

(a) (10 points) the gross premium using the equivalence principle, and the corresponding gross premium reserve at time k = 15

(b) (10 points) the expense premium and the corresponding expense premium reserve at time

$$\pi^{2} = \frac{150000 \text{ Ayo}}{\ddot{a}_{40}} = 1000 \implies \pi^{2} = \pi^{3} - \pi^{2} = 50$$

(c) (10 points) the full preliminary term reserve at time k = 15

$$|SV|^{FPT} = |V_{41}|^{2} = |S0000(1 - \frac{\ddot{a}_{55}}{\ddot{a}_{41}})$$

$$|\tilde{a}_{40}| = |+ 2P_{40} \cdot \ddot{a}_{41}| \implies \ddot{a}_{41} = |5| \cdot |9756|$$

$$|SV|^{FPT} = |31| \cdot |560|$$

- 2. For a fully discrete insurance issued to (x) you are given:
 - (i) the death benefit is 10000
 - (ii) the annual premium is 750
 - (ii) $p_{x+6} = 0.95$ and $p_{x+7} = 0.90$
 - (iii) i = 4%
 - (iii) $_{8}V = 3000$

Determine ₆V

$$V = 10000 \ \mathcal{D}_{x+6} + 10000 \ \mathcal{D}^{3} \cdot P_{x+6} \cdot g_{x+7} - 750 - 750 \ \mathcal{D} P_{x+6} + 8V \cdot \mathcal{D}^{3} \cdot P_{x+6} \cdot P_{x+7}$$

$$\implies V = 2,295.488 - -.$$

- 3. For a fully discrete whole life insurance of 10000 issued (30), you are given:
 - (i) the death benefit is paid at the end of the quarter of death
 - (ii) premiums of 15 are paid at the beginning of each quarter
 - (iii) $A_{40} = 0.15$
 - (iv) i = 0.05

Assuming a uniform distribution of deaths between integer ages, determine the reserve at time k = 10.

$$|V| = 10000 A_{40}^{(4)} - 4.15. \tilde{A}_{40}^{(4)} = 10000 A_{40}^{(4)} - 60. \tilde{A}_{40}^{(4)}$$

$$A_{40}^{(4)} = \frac{i}{i^{(4)}}.A_{40} \quad (1 + \frac{i^{(4)}}{4}) = 1 + i = 1.05$$

$$A_{40}^{(4)} = 0.15278...$$

$$A_{40}^{(4)} = \frac{1-A_{40}^{(4)}}{A_{40}^{(4)}} \quad (1 - \frac{A_{40}^{(4)}}{4}) = 1 + i = 1.05$$

$$A_{40}^{(4)} = 17.4706...$$

$$A_{40}^{(4)} = 17.4706...$$

$$A_{40}^{(4)} = 17.4706...$$