MAP 4176 / 5178	Name:	
Test 3		Date: January 30, 2019

Each problem is worth 10 points. Show all work for full credit, and use correct notation. Simplify answers completely. See other side for additional problems.

For Numbers 1 and 2, determine the APV of the annuity described, using constant force actuarial assumptions with $\mu = 0.02$ and $\delta = 0.04$.

1. a continuous 10-year temporary annuity with annual payment rate of 500 issued to (45)

 $APV = 500 \cdot \bar{a}_{45:\overline{10}|} = 500 \cdot (\bar{a}_{45} - {}_{10}E_{45} \cdot \bar{a}_{55})$ Since CF, $\bar{a}_{45} = \bar{a}_{55} = \frac{1}{\mu+\delta} = \frac{1}{0.06}$ and ${}_{10}E_{45} = e^{-10(\mu+\delta)} = e^{-0.6}$ $\therefore APV = 3.760$

2. a continuous 20-year certain-and-life annuity paying 3000 per year issued to (60)

$$APV = 3000 \cdot \bar{a}_{\overline{60:20|}} = 3000 \cdot \left(\bar{a}_{\overline{20|}} + {}_{20}E_{60} \cdot \bar{a}_{80}\right)$$
$$\bar{a}_{\overline{20|}} = \frac{1 - \nu^{20}}{\delta} = \frac{1 - e^{-20(0.04)}}{0.04}, \quad {}_{20}E_{60} = e^{-20(0.06)}, \quad \text{and } \bar{a}_{80} = \frac{1}{0.06}$$
$$\therefore APV = 56,360$$

3. Given independent lives (x) and (y) with $\mu_x = 0.04$, $\mu_y = 0.14$, and $\delta = 0.02$, determine the actuarial present value of a continuous annuity issued to (x) and (y) that pays 7,500 per year until the last of the death of (x) and (y).

$$APV = 7500 \cdot \bar{a}_{\overline{xy}} = 7500 \cdot (\bar{a}_x + \bar{a}_y - \bar{a}_{xy})$$

By CF, $\bar{a}_x = \frac{1}{\mu_x + \delta} = \frac{1}{0.06}$, $\bar{a}_y = \frac{1}{\mu_y + \delta} = \frac{1}{0.16}$, and by independence $\bar{a}_{xy} = \frac{1}{\mu_x + \mu_y + \delta} = \frac{1}{0.20}$
 $\therefore APV = 134,375$

- 4. Under certain actuarial assumptions, you are given:
 - (i) $\alpha(\infty) = 1.00076$
 - (ii) $\beta(\infty) = 0.51627$
 - (iii) $a_x = 5.439$

Using the UDD assumption, determine \bar{a}_x

By UDD, $\bar{a}_x = \alpha(\infty) \cdot \ddot{a}_x - \beta(\infty)$ $\ddot{a}_x = 1 + a_x = 6.439$

$$\therefore \bar{a}_x = 5.92762 \cdots$$

5. Using the actuarial assumptions in the Standard Sickness-Death Model in the L-TAM Tables, determine the APV of a 10-year deferred continuous annuity issued to a healthy 50-year old that pays 5,000 per year while the annuitant is healthy.

$$APV = 5000 \cdot {}_{10|} \bar{a}_{50}^{00} = 5000 \cdot \left({}_{10} E_{50}^{00} \cdot \bar{a}_{60}^{00} + {}_{10} E_{50}^{01} \cdot \bar{a}_{60}^{10} \right)$$

= 5000 \cdot ((1.05)^{-10} \cdot {}_{10} p_{50}^{00} \cdot \bar{a}_{60}^{00} + (1.05)^{-10} \cdot {}_{10} p_{50}^{01} \cdot \bar{a}_{60}^{10})
\therefore APV = 21,640