Case 1: If given unprimed probabilities (no p's)

Then \[nq_x = \sum_j nq_x \]

Then \[np_x = 1 - nq_x \]

Case 2: If given primed probabilities

Then \[np_x = \prod_j np_x \]

Then \[nq_x = 1 - np_x \]

Relating Primed \& Unprimed Probabilities

3 Cases:

Case 1: (CF) There is a constant force of

departure each year for each decrement

Case 2: (MUDD) There is a uniform distribution of

departures each year in the multiple decrement model

\[t \cdot q_x = t \cdot q_x \]

\[\Rightarrow t \cdot q_x = t \cdot q_x \]
Case 3: (SUDP) There is a uniform distribution of departures each year in the associated single decrement model.

\[t^q(i) = t \cdot q^i(i) \]

\[t^{\Delta q} = t \cdot \Delta q \]

and \[t^p_x \cdot \mu_{x+t} = \text{constant} = q^i(i) \]

Formulas:

CF and MUDD give the same formula:

\[t^p_x = \left[t^p_x \right] \]

\[\left(\frac{\frac{q(i)}{b(i)}}{b(i)} \right) \]

Commit to Memory