M159: Multi-State Models

Multi-State Probabilities:

\(i \quad \xrightarrow{i,j} \quad j \quad \xleftarrow{i,j} \quad k \)

\(n_{ij} = \Pr((x) \text{ will be in state } j \text{ at age } x+n \mid (x) \text{ is in state } i \text{ at age } x) \)

\(n_{ii} = \Pr((x) \text{ remains in state } i \text{ for } n \text{ years}) \)

Example:

\[n_{ii}^{(x)} = e^{-\int_{0}^{x} \mu_{x+t} dt} \]

\[n_{ii}^{(x)} = e^{-\int_{0}^{x} \mu_{x+t} dt} \]

Generally, \(n_{ii} = e^{-\int_{0}^{x} \mu_{x+t} dt} \)

\[\mu_{x+t} = \sum_{i,j} n_{ij} \text{ book } \mu_{x+t} \]

Note: \(\mu_{x+t}^{ii} \) does not exist
Specific Models

"Permanent" Disability model

\[\mu^o_x \neq 0 \]

\[\begin{array}{c}
(0) \\
(1) \\
(2)
\end{array} \]

\[nP_{20}^x = 0 = nP_{21}^x = nP_{10}^x \quad nP_{22}^x = 1 \]

\[nP_{11}^x = e^{-\int_0^x \mu^o_{x+t} \, dt} \quad (nP_{11}^x = nP_{11}^x \text{ since if state 1 is left, then can't return to it}) \]

\[nP_{00}^x = e^{-\int_0^x (\mu^o_{x+t} + \mu^o_{x+t}) \, dt} \quad (nP_{00}^x = nP_{00}^x) \]

\[nP_{12}^x = ? \text{ easy way} \]

\[nP_{12}^x + nP_{11}^x + nP_{10}^x = 1 \]

\[nP_{12}^x = 1 - nP_{11}^x \]