MLC Module 1 Section 2 Exercises

- 1. In each part, you are given $\mu_x(t) = 0.1(1.01)^{x+t}$ and assume that "moment" means in the next 12-hour period. Also assume there are 360 days in a year.
- (a) approximate the probability that an 80-year old dies the moment after turning 80
- (b) given $_{20}p_{60}=.018$, approximate the probability that a 60-year old survives to age 80 and then dies the moment after turning 80
- 2. Given $_tp_x = e^{-.05t}$, determine μ_{x+t}
- 3. Given $_tp_x = (.9)^t$, determine μ_{x+t}
- 4. Given $_tq_x = \frac{t}{100-x}$, determine μ_{50}
- 5. Given $_t p_x = \left(\frac{100-x-t}{100-x}\right)^2$, determine μ_{50}
- 6. Given $_t p_x = \left(\frac{100 x t}{100 x}\right)^{1/2}$, determine μ_{50}
- 7. Given $_{t}p_{0}=\begin{cases} 1, & 0 \leq t < 1\\ 1-\frac{e^{t}}{100}, & 1 \leq t < 4.5 \text{ determine } \mu_{4}\\ 0, & 4.5 \leq t \end{cases}$
- 8. Given $\int_0^{10} t p_{20} \mu_{20+t} dt = .05$, determine $t_{10} p_{20}$
- 9. Given $_{20}p_{30}=.85$ and $\int_{0}^{15} {}_{t}p_{50}\mu_{50+t}dt=.2$, determine $_{35}q_{30}$
- 10. Given $\int_{10}^{30} t p_{30} \mu_{30+t} dt = \frac{2}{7}$ and $t_{10}q_{30} = \frac{1}{7}$, determine $t_{30}p_{30}$
- 11. Given $\mu_{20+t} = \frac{1}{60-t}$, 0 < t < 60, determine $_{10}p_{20}$
- 12. Given $\mu_t = \frac{1}{80-t}$, 0 < t < 80, determine $_{10}p_{20}$
- 13. Given $\mu_x = \sqrt{\frac{1}{100-x}}$, 0 < x < 100, determine $_{17}p_{19}$
- 14. Given $\mu_{25+t} = 0.1(1-t)$ for $0 \le t \le 1$, determine p_{25}
- 15. Given $\mu_x = e^{2x}$, determine $_{0.4}p_0$

- 16. Given $\int_{71}^{75} \mu_x dx = .107$ and $\int_0^5 \mu_{70+t} dt = .189$, determine q_{70}
- 17. Given $\mu_x = .02$, determine $_3p_{x+10}$
- 18. Given $\mu_x = \begin{cases} .05 & 50 \le x < 60 \\ .04 & 60 \le x < 70 \end{cases}$, determine
- (a) $_{4}q_{50}$
- (b) $_{18}q_{50}$
- 19. Given smokers (s) have a constant force of mortality of 0.2 and non-smokers (ns) have a constant force of mortality of 0.1, determine
- (a) $_{10}q_x^s$ (i.e. the probability that an x-year old smoker dies within 10 years)
- (b) $_{10}q_x^{ns}$
- (c) $_{10}q_x$ for a population of x-year olds, 30% of whom are smokers
- (d) the 75th percentile of T_x for the population of x-year olds in part (c).
- 20. Given males (m) have a constant force of morality of 0.1 and females (f) have a constant force of mortality of 0.08, determine
- (a) $_{60}p_0^m$ (i.e. the probability that a newborn male lives 60 years)
- (b) $_{60}p_0^f$
- (c) $_{60}p_0$ for a population of newborns, 50% of whom are male
- (d) for the population of newborns in part (c) the proportion of 60-year olds who are male
- (e) q_{60} for the population of newborns in part (c)
- 21. If the force of mortality, μ , is constant for (x), determine
- (a) the expression for ${}_5p_x$, as a function of μ
- (b) the value of $_5p_x$ if $\mu = .02$ for 30% of x-year olds, and $\mu = .03$ for the other 70%
- (c) the value of $_5p_x$ if μ is drawn from the uniform distribution on the interval [0.01,0.02]
- 22. Given $\mu_x^m = \mu_x^f + .02$ and $p_x^m = .95$, determine p_x^f
- 23. Given $\mu_x^m = \mu_x^f + k$, $_{10}p_x^f = .74$, and $_{10}p_x^m = .64$, determine k.
- 24. Given $\mu_x^s = 1.1 \mu_x^{ns}$ and $_k p_x^{ns} = .75$, determine $_k p_x^s$
- 25. Given $\mu_x^{ns} = c \cdot \mu_x^s$, $_k p_x^s = .54$, and $_k p_x^{ns} = .6$, determine c