MLC Module 1 Section 5 Exercises

1. For a 2-year select period, you are given:

$$q_{[x]} = 0.8q_x$$

 $q_{[x]+1} = 0.9q_{x+1}$
 $q_{50+k} = 0.02 + 0.005k$ for $k = 0, 1$, and 2

- (a) Determine $l_{[50]}$ given $l_{50} = 1000$
- (b) Determine l_{50} given $l_{[50]} = 1000$
- (c) Determine the probability that a person selected for insurance at age 50 dies between ages 52 and 53
- (d) Determine the probability that a person selected for insurance at age 50 dies between ages 51.4 and 52.7 using a UDD assumption
- (e) Determine the probability that a person selected for insurance at age 50 dies between ages 51.4 and 52.7 using a CF assumption
- (f) Given $e_{52}=9$ determine $\stackrel{o}{e}_{[50]}$ assuming a uniform distribution of deaths between integer ages

2. You are given the following select-and-ultimate table for a 3-year select period:

x	$q_{[x]}$	$q_{[x-1]+1}$	$q_{[x-2]+2}$	q_x
60	0.09	0.10	0.11	0.12
61	0.10	0.11	0.12	0.13
62	0.11	0.12	0.13	0.14
63	0.12	0.13	0.14	0.15
64	0.13	0.14	0.15	0.16

- (a) Determine the probability that a person selected at age 60 dies between ages 62 and 63
- (b) Determine the probability that a person selected at age 60 dies between ages 63 and 64
- (c) Determine the probability that a person selected at age 60, who is now age 61, dies between ages 62 and 64

3. For a life table with a 1-year select period, you are given:

$$p_{[80]} = \frac{91}{100}$$

$$p_{81} = \frac{83}{91}$$

$$p_{[81]} = \frac{83}{92}$$

$$e_{[80]}=8$$

Determine $e_{[81]}$