MLC Module 1 Section 9 Exercises

- 1. Given a 3-state model with $\mu_x^{01}=.05$, $\mu_x^{02}=.10$, $\mu_x^{12}=.20$, and all other forces of transition equal to zero, determine
 - (a) $_{5}p_{x}^{00}$
 - (b) $_{5}p_{x}^{01}$
 - (c) $_5p_x^{02}$
- 2. Given a 2-state model with $\mu_{x+t}^{01}=.02t$ and $\mu_{x+t}^{10}=0$, determine
 - (a) $_{10}p_x^{00}$
 - (b) $_{10}p_x^{01}$
- 3. Given a 3-state model with $\mu_{x+t}^{01}=.01+.02t$ and $\mu_{x+t}^{02}=.02+.04t$, determine
 - (a) $_{10}p_x^{00}$
 - (b) $_{n}p_{x}^{10}$
 - (c) $_{k}p_{x}^{11}$
 - (d) $_{10}p_x^{02}$
- 4. Given a 4-state model with $\mu_x^{01}=\mu_x^{03}=\mu_x^{23}=.1$, $\mu_x^{10}=\mu_x^{12}=\mu_x^{13}=.2$, and all other forces of transition equal to zero, determine
 - (a) $_{0}p_{x}^{01}$
 - (b) $_{5}p_{x}^{\overline{1}\overline{1}}$
 - (c) $_{10}p_x^{22}$
 - (d) $_t \dot{p}_x^{23}$
 - (e) $_t\dot{p}_x^{10}$

5. Given independent lives (x) and (y), where (x) is the husband and (y) is the wife, define the following states of the joint-life, last-survivor process:

State 0: Both Husband and Wife are Alive

State 1: Husband is Dead and Wife is Alive

State 2: Husband is Alive and Wife is Dead

State 3: Both Husband and Wife are Dead

Suppose
$$\mu_{xy}^{01}=.01=\mu_x^{23}$$
, $\mu_{xy}^{02}=.02=\mu_y^{13}$, and all other forces of transition equal 0.

Determine the probability that at the end of 5 years the husband is dead and the wife is alive.

- 6. Given a three state model with $\mu_x^{01} = .02$, $\mu_x^{10} = .01$, $\mu_x^{02} = .03 = \mu_x^{20}$, $\mu_x^{12} = .04$, and $\mu_x^{21} = 0$, you are given $_{0.5}p_x^{00} = .975$, $_{0.5}p_x^{01} = .010$, and $_{0.5}p_x^{02} = .015$
 - (a) determine the value of $_{0.5}\dot{p}_{x}^{00}$ according to Kolmogorov differential equations.
 - (b) use Euler's method with step size 0.1 to approximate $_{0.6}p_x^{00}$