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COUNTING CUSPS OF SUBGROUPS OF PSL2(OK)
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(Communicated by Ted Chinburg)

Abstract. Let K be a number field with r real places and s complex places,
and let OK be the ring of integers of K. The quotient [H2]r×[H3]s/PSL2(OK)
has hK cusps, where hK is the class number of K. We show that under the
assumption of the generalized Riemann hypothesis that if K is not Q or an
imaginary quadratic field and if i �∈ K, then PSL2(OK) has infinitely many
maximal subgroups with hK cusps. A key element in the proof is a connection
to Artin’s Primitive Root Conjecture.

1. Introduction

It is well known that the group of orientation preserving isometries of the hy-
perbolic plane Isom+(H2) is isomorphic to PSL2(R) and Isom+(H3) ∼= PSL2(C). It
follows that PSL2(R)r × PSL2(C)s is isomorphic to the group of orientation pre-
serving isometries of Hr,s = [H2]r × [H3]s. If K is a number field with r real places
and s complex places and OK is the ring of integers of K, then PSL2(OK) embeds
discretely in PSL2(R)r × PSL2(C)s via the map

±
(

α β
γ δ

)
�→

∏
σ

±
(

σ(α) σ(β)
σ(γ) σ(δ)

)

where the product is taken over all infinite places, σ of K. The quotient MK =
Hr,s/PSL2(OK) is a finite volume (2r + 3s)-dimensional orbifold equipped with a
metric inherited from Hr,s. This orbifold has hK cusps where hK is the class number
of K. If Γ is a finite index subgroup of PSL2(OK), then we let MΓ = Hr,s/Γ. If
MΓ has n cusps, we say that Γ is n-cusped.

The orbifolds MK have been the focus of much study. The most classical example
is MQ, the quotient of H2 by the modular group, PSL2(Z). It is a hyperbolic 2-
orbifold with a single cusp, and is the prototype non-compact arithmetic hyperbolic
2-orbifold. In fact, non-compact arithmetic hyperbolic 2-orbifolds are precisely
those hyperbolic 2-orbifolds that are commensurable with MQ. (Two orbifolds are
commensurable if they share a common finite sheeted cover.) Given an imaginary
quadratic field Q(

√
−d) with a ring of integers Od, the groups PSL2(Od) are the

Bianchi groups, and the corresponding quotients are hyperbolic 3-orbifolds. As in
the case of the modular group, the class of all non-compact arithmetic hyperbolic
3-orbifolds consists of those orbifolds commensurable with a quotient of H3 by a
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Bianchi group. When K is totally real, PSL2(OK) is called the Hilbert modular
group of K. If K is a real quadratic field, the quotient [H2]2/PSL2(OK) is a 4-
dimensional orbifold, called a Hilbert modular surface.

Our result is the following.

Theorem 1.1. Let K be a number field other than Q or an imaginary qua-
dratic field and, in addition, assume that i /∈ K. Assuming the Generalized Rie-
mann Hypothesis (GRH), there are infinitely many maximal hK-cusped subgroups
of PSL2(OK), where hK is the class number of K.

We show that PSL2(OK) has infinitely many maximal hK-cusped subgroups if
there are infinitely many primes P in OK such that NK/Q(P) ≡ 3 mod 4 and
|O×

K mod P| = |(OK/P)×|. The GRH is used to prove that there are infinitely
many such primes.

The groups PSL2(OK) have been studied extensively, especially in the context
of their normal subgroups. For a non-zero ideal J ⊂ OK , the principal congruence
subgroup of level J is Γ(J ) = {A ∈ PSL2(OK) : A ≡ I mod J }. A (finite index)
subgroup of PSL2(OK) is called a congruence subgroup if it contains a principal
congruence subgroup. We say that PSL2(OK) has the congruence subgroup property
(CSP) if “almost all” finite index subgroups are congruence subgroups. Precisely,
define ĜK and GK as the profinite and congruence completions of PSL2(OK).
There is an exact sequence

{1} → CK → ĜK → GK → {1},
where CK is called the congruence kernel and measures the prevalence of non-
congruence subgroups. Serre [11] proved that CK is infinite when K = Q or an
imaginary quadratic field. Otherwise, CK is trivial if K contains a real place, and
is isomorphic to the finite cyclic group containing the roots of unity of K if K is
totally imaginary.

Rhode [8] proved that for every positive n, there are at least two conjugacy
classes of one-cusped subgroups of index n in the modular group. Later, Petersson
[9] proved that there are only finitely many one-cusped congruence subgroups of
the modular group, and that the indices of such groups are the divisors of 55440
= 11 · 7 · 5 · 32 · 24. The commutator subgroup of PSL2(Z), a subgroup of index 6,
is a torsion-free one-cusped congruence subgroup containing Γ(6).

Famously, the class number of Q(
√
−d) is one precisely when d = 1, 2, 3, 7, 11,

19, 43, 67, or 163. These values of d are the only values for which the Bianchi group
PSL2(Od) has one cusp, and consequently such that PSL2(Od) can contain a one-
cusped subgroup. (In contrast, it is a famous conjecture that there are infinitely
many real quadratic fields, K, with class number one. If this is true, there are
infinitely many quotients [H2]2/PSL2(OK) with one cusp.) Two notable one-cusped
congruence subgroups in PSL2(O3) are associated to the figure-eight knot and its
sister. The fundamental group of the complement of the figure-eight knot in S3

injects as an index 12 subgroup containing Γ(4) (see [4]). The fundamental group
of the sister of the figure-eight knot complement, a knot in the lens space L(5, 1),
injects as an index 12 subgroup containing Γ(2) (see [1]). Reid [10] has shown that
the figure-eight knot complement is the only arithmetic knot complement in S3.
If d = 2, 7, 11, 19, 43, 67, or 163 there are infinitely many maximal one-cusped
subgroups of PSL2(Od), as there is a surjection onto Z with a parabolic element
generating the image. If d = 1 or 3 there are infinitely many one-cusped subgroups.
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(The fundamental groups of cyclic covers of the figure-eight knot complement all
have one cusp.) In contrast, it is shown in [7] that there are only finitely many
maximal one-cusped congruence subgroups of the Bianchi groups, and that if d =
11, 19, 43, 67, or 163 there are only finitely many one-cusped congruence subgroups
in PSL2(Od). Therefore, we see that especially when the class number is one,
Theorem 1.1 further demonstrates the dichotomy between Q, imaginary quadratic
number fields, and other number fields.

There are many examples of one-cusped hyperbolic 2- and 3-manifolds, for exam-
ple, hyperbolic knot complements in S3. As commented, the commutator subgroup
of the modular group is torsion-free and has one-cusp. Additionally, the figure-eight
knot complement and sister are one-cusped manifolds. However, the groups consid-
ered in the proof of Theorem 1.1 all necessarily contain torsion. In fact, there are
no known examples of one-cusped hyperbolic n-manifolds for n ≥ 4, or of torsion-
free subgroups of PSL2(OK) whose quotients have finite volume and only one cusp
when K 	= Q or has an imaginary quadratic field.

2. Proof

Before we proceed, we will review some information about peripheral subgroups
and cusps. Recall that ±A ∈ PSL2(C) is parabolic if ±A 	= ±I and |trace A| = 2.
Let Γ be a finite index subgroup of PSL2(OK). We define T ∈ C∪∞ to be a cusp
of Γ if T is a parabolic fixed point of Γ or if there is a parabolic element A ∈ Γ
such that A · T = T where the action is by linear fractional transformations. For
any such T , we define the corresponding peripheral subgroup as

StabT (Γ) = {A ∈ Γ : A · T = T } .

Two cusps are equivalent in Hr,s/Γ if they are in the same Γ orbit under this ac-
tion. Each equivalence class corresponds to a conjugacy class of maximal peripheral
subgroups of Γ and to a cusp of MΓ, a finite volume topological end. The orbifold
MK has hK cusps where hK is the class number of K, and hence PSL2(OK) has
hK equivalence classes of cusps. The cusps of PSL2(OK) correspond to elements
of K ∪∞. The equivalence classes of cusps correspond to fractional ideals of OK

and with elements of PK1. If T ∈ K and T = τ1/τ2 as a reduced fraction, then T
also corresponds to the fractional ideal generated by τ1 and τ−1

2 and the element
(τ1 : τ2) ⊂ PK1 (see [13]).

For any T = (t1 : t2) in PFq, we define

StabT (PSL2(Fq)) =
{
±

(
a b
c d

)
:

at1 + bt2
ct1 + dt2

=
t1
t2

}
.

For a non-zero prime P in OK with q = NK/Q(P), let φP be the modulo P map,
followed by the isomorphism from OK/P to Fq:

φP : OK → Fq.

Additionally, let ΦP be the modulo Γ(P) map, followed by the identification of
OK/P with Fq as above:

ΦP : PSL2(OK) → PSL2(Fq).

Notice that 0 /∈ φP(O×
K), so we can think of φP : O×

K → F×
q where F×

q is the group
of non-zero elements of Fq.
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2.1. Cusps and units. Let P be a non-zero prime in OK of odd norm, q. The
groups PSL2(Fq) always contain a maximal subgroup, Dq+1, isomorphic to the
dihedral group of order q + 1 (see [12]). Let

ΓP = Φ−1
P (Dq+1).

In this section we will prove

Proposition 2.1. Let K be a number field, let P be a prime in OK with q =
NK/Q(P) and set l = [F×

q : φP(O×
K)]. There is an M > 2 such that if q > M and

(i) if q ≡ 3 mod 4, then ΓP has hK l cusps; otherwise
(ii) if q ≡ 1 mod 4, then ΓP has either 2hK l or hK l cusps depending on whether

or not Dq+1 contains a non-identity element of the form ±
(

a 0
0 a−1

)
.

This reduces the proof of Theorem 1.1 to understanding the distribution of the
indices [F×

q : φP(O×
K)] over primes P in OK . This will be addressed in the next

section. Assuming the following lemma, we will now complete the proof of Propo-
sition 2.1.

Lemma 2.2. With the notation as above, there is an M > 2 such that if q > M,
then for any cusp T of PSL2(OK),

[StabT (PSL2(OK)) : StabT (Γ(P))] = q(q − 1)/2l.

Lemma 2.2 shows that if q > M, then all cusps of MΓ(P) cover the corresponding
cusp of MK with the same degree. Since Γ(P) is a normal subgroup of PSL2(OK),
the number of cusps of MΓ(P) covering a single cusp of MK is

[PSL2(OK) : Γ(P)]
[Stab∞(PSL2(OK)) : Stab∞(Γ(P))]

=
1
2q(q2 − 1)
1
2q(q − 1)/l

= l(q + 1).

Therefore since PSL2(OK) has hK cusps, Γ(P) has hK l(q + 1) cusps.
First, assume that P is as above and additionally that q ≡ 3 mod 4. Since

|Stab∞(PSL2(Fq))| =
1
2
q(q − 1)

and q ≡ 3 mod 4, gcd(q(q − 1)/2, q + 1) = 1 and we conclude that

Stab∞(PSL2(Fq)) ∩ Dq+1 = {id}.
As a result, for any cusp T of ΓP , StabT (ΓP) = StabT (Γ(P)). Therefore, each cusp
of Γ(P) covers the corresponding cusp of ΓP with degree one. Since [ΓP : Γ(P)] =
q + 1, the cusp at ∞, and hence T , is covered by exactly q + 1 cusps of Γ(P).
Therefore ΓP has hK l cusps.

If q ≡ 1 mod 4, then gcd(q(q − 1)/2, q + 1) = 2 and therefore

|Stab∞(PSL2(Fq)) ∩ Dq+1| = 1 or 2.

If it is the former, then by the above argument ΓP has hK l cusps. The latter case
occurs precisely when a non-trivial element of the form

±
(

a 0
0 a−1

)
is in Dq+1. After conjugation we conclude that for each cusp T of ΓP , |StabT (ΓP)|
= 2|StabT (Γ(P))|. Therefore each cusp of Γ(P) covers the corresponding cusp of
ΓP with degree two and hence ΓP has 2hK l cusps. This proves Proposition 2.1.
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Proof of Lemma 2.2. Let M > 2 be such that if q > M, then for any cusp T of
PSL2(OK) the parabolic elements in the stabilizer of T generate a subgroup of
order q modulo P. Since there are only finitely many equivalence classes of cusps,
and all stabilizers in each equivalence class are conjugate, such an M exists. First,
we will prove the lemma for T = ∞. Notice that Stab∞(PSL2(Fq)) is generated by
elements of the form

±
(

a 0
0 a−1

)
and ±

(
1 b
0 1

)
where a ∈ F×

q and b ∈ Fq. Hence |Stab∞(PSL2(Fq))| = q(q − 1)/2. An ele-
ment of the second type always has a preimage in Stab∞(PSL2(OK)), as there
is always a β ∈ OK such that φP(β) = b. An element of the first type has
a preimage in Stab∞(PSL2(OK)) precisely when there is an α ∈ O×

K mapping
to a modulo P. By hypothesis, [F×

q : φP(O×
K)] = l so (q − 1)/l of the ele-

ments in F×
q have preimages in O×

K . As a result, (q − 1)/2l elements of the first
type have preimages in Stab∞(PSL2(OK)). We conclude that q(q − 1)/2l ele-
ments of Stab∞(PSL2(Fq)) have preimages in Stab∞(PSL2(OK)), establishing that
[Stab∞(PSL2(OK)) : Stab∞(Γ(P))] = q(q − 1)/2l.

Now we will show the result for T 	= ∞. Let (τ1 : τ2) be a representative for T
in PK1. We will use T to denote the fractional ideal generated by τ1 and τ−1

2 as
well. There is an ν ∈ OK such that T −1 = ν−1J for some ideal J ∈ OK . One can
conjugate (τ1 : τ2) to ∞ via a matrix of the form

AT = ±
(

τ1 τ ′
1

τ2 τ ′
2

)
where τ ′

1, τ ′
2 ∈ T −1. Therefore (see [13]) StabT (PSL2(OK)) is conjugate in PSL2(K)

to Stab∞(PSL2(OK) ⊕ T −2), which is{
±

(
α β
0 δ

)
∈ PSL2(K) : α, δ ∈ OK , αδ = 1, β ∈ T −2

}
.

Let G(P) be the image of Γ(P) under this conjugation. Since q > M,
Stab∞(PSL2(OK) ⊕ T −2) surjects the parabolic subgroup of Stab∞(PSL2(Fq)) in
the quotient by G(P). As in the T = ∞ case,{

±
(

a 0
0 a−1

)
: a ∈ F×

q

}
pulls back to an order (q−1)/2l subgroup of Stab∞(PSL2(OK)⊕T −2). We conclude
that q(q − 1)/2l of the elements in Stab∞(PSL2(Fq)) pull back to elements in
Stab∞(PSL2(OK) ⊕ T −2), implying that [StabT (PSL2(OK)) : StabT (Γ(P))] =
q(q − 1)/2l. �

2.2. Artin’s Primitive Root Conjecture. To prove Theorem 1.1 it suffices to
prove the following lemma.

Lemma 2.3. Let K be a number field other than Q or an imaginary quadratic
field, and, in addition, assume that i 	∈ K. Assuming the GRH, there are infinitely
many primes P in OK with q = NK/Q(P) ≡ 3 mod 4 such that O×

K surjects onto
F×

q under the modulo P map, i.e. such that [F×
q : φP(O×

K)] = 1.

Together with Proposition 2.1 this proves Theorem 1.1. The generalized Rie-
mann hypothesis assumed is as follows, as required in [5].
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Assumption. For all square-free n > 0 the Dedekind zeta function of Ln,l satisfies
the generalized Riemann hypothesis, where Ln,l is the field obtained by adjoining to
K the ql(n)th roots of elements in O×

K . We define ql(n) as follows:

ql(n) =
∏
r|n

ql(r),

where the product is taken over all primes r dividing n and ql(r) is the smallest
power of r not dividing l.

The condition that we require in Lemma 2.3 is closely related to Artin’s Primitive
Root Conjecture, which we will now state.

Conjecture 2.4 (Artin). Let b be an integer other than −1 or a square. There are
infinitely many primes, p, such that b generates the multiplicative group modulo p,
i.e. such that [F×

p : φp(〈b〉)] = 1.

Hooley [3] proved the above conjecture under the assumption of the generalized
Riemann hypothesis. Weinberger [14] generalized Hooley’s conditional proof to the
number field setting, and later Lenstra [5] refined this work. Unconditionally, if K
is Galois with unit rank greater than 3, techniques of Murty and Harper [2] imply
that there are infinitely many primes P such that O×

K surjects the multiplicative
group modulo P. Therefore we have the following, unconditionally.

Theorem 2.5. If K is Galois with unit rank greater than 3, there are infinitely
many maximal subgroups of PSL2(OK) with either hK or 2hK cusps.

We will make use of [5], Theorem 3.1. First, we establish some notation. If
F is a Galois extension of K, recall that the Artin symbol (P, F/K) denotes the
set of σ ∈ Gal(F/K) for which there is a prime Q in F lying over P such that
σ(Q) = Q and σ(α) ≡ αq mod Q where q = NK/Q(P). Following [5], for F a
Galois extension of K, C a subset of Gal(F/K), W a finitely generated subgroup of
K×, and l a positive integer, let M(K, F, C, W, l) denote those primes P of K which
satisfy (P, F/K) ⊂ C, ordP(w) = 0 for all w ∈ W, and such that [F×

q : φP(O×
K)] is

divisible by l. Let µ be the Möbius function

µ(n) =

⎧⎨
⎩

0 if n has one or more repeated prime divisors,
1 if n = 1,
(−1)k if n is a product of k distinct primes,

and let c(n, l, C) = |C ∩ Gal(F/(F ∩ Ln,l))|. Define

D(K, F, C, W, l) =
∑

n

µ(n)c(n, l, C)
[F · Ln,l : K]

,

where Ln,l is the field obtained by adjoining to K the ql(n)th roots of elements
in W . Assuming the GRH, it is shown in [5] that M(K, F, C, W, l) has a natural
density equal to D(K, F, C, W, l).

Proof of Lemma 2.3. The set M(K, K(i), {σ},O×
K , 1) is the set of unramified

primes P with q = NK/Q(P) ≡ 3 mod 4 such that [F×
q : φP(O×

K)] = 1. Since i /∈ K,
the stipulation that (P, K(i)/K) = {σ} corresponds to the norm being congruent
to 3 mod 4. The stipulation that l = 1 is the condition that [F×

q : φP(O×
K)] = 1.
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It follows from the conditions in [5] that D(K, K(i), {σ},O×
K , 1) is positive when

K is a number field other than Q or an imaginary quadratic number field, i 	∈ K,
and σ is complex conjugation. In fact, if r is the rank of O×

K ,

D(K, K(i), {σ},O×
K , 1) =

(
1 − 1

2r

) ∑
n

µ(n)
[Ln,l : K]

=
(

1 − 1
2r

)
D(K, K, {id},O×

K , 1),

where D(K, K, {id},O×
K , 1) is the previous density without the congruence condi-

tion. �
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