1. Section 13.3 Geometric Sequences

Example 1.1.	What do	you notice	about the	following	sequences:
--------------	---------	------------	-----------	-----------	------------

- (1) {2, 5, 8, 11, 14, ...}
- (2) {2, 6, 18, 54, 162, ...}

Definition 1.1. A geometric sequence is a sequence where the "next" term is

More precisely, $\{a_n\}$ is geometric if

 $a_{n+1} =$ _____

where r is a constant.

- (1) $a_1 = a$ is the initial term.
- (2) r is called the _____
- (3) r =_____

Example 1.2. Find the common ratio in each of the geometric sequence in example 1.1

Example 1.3. Which sequences are geometric?

- (1) $\{1,3,9,27,\dots\}$
- $(2) \{1, 3, 5, 7, 9 \dots \}$
- $(3) \{3, -\frac{3}{2}, \frac{3}{4}, -\frac{3}{8} \dots \}$

2. Finding the n-th term

Theorem 2.1 (Formula). Assume $\{a_n\}$ is a geometric sequence with common ratio r. Then

 $a_n =$

Example 2.1. Given the first term of a geometric sequence is $a_1 = 4$ and the common ratio is $r = -\frac{2}{3}$, find the term below

(1) a_4

(2) the 30-th term.

(3) the n-th term.

Example 2.2. Find the n-th term of a geometric sequence given the first term is $a_1 = 4$ and the common ratio is $r = \sqrt[3]{2}$

Example 2.3. Suppose $\{a_n\}$ is a geometric sequence with $a_{16} = 15$ and $a_{20} = 30$.

(1) Find a_1 .

(2) Find the common ratio.

(3) Find a_{10} .

3. FINDING FINITE SUMS

Notation 3.1 (Notation). $S_n =$

Theorem 3.1 (Formula). $S_n =$

Example 3.1. Find $2 + \frac{2}{5} + \frac{2}{5^2} + \dots + \frac{2}{5^{31}}$.

Example 3.2. Find $2 + \frac{2}{5} + \frac{2}{5^2} + \cdots + \frac{2}{5^{n-1}}$.

5

4. Geometric Series

Definition 4.1. A geometric series is an infinite sum of a geometric sequence.

Notation 4.1.

$$S = \sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

Theorem 4.1 (Formula). $S = \sum_{k=1}^{\infty} ar^{k-1} =$ ______

if |r| < 1. When $|r| \ge 1$ then the sum is ______

Example 4.1. Find $2 + \frac{2}{5} + \frac{2}{5^2} + \cdots + \frac{2}{5^{n-1}} + \cdots$

Example 4.2. Determine if the sum converges or diverges. If it converges, find the sum.

$$1 - \frac{3}{4} + \frac{9}{16} - \frac{27}{64} + \cdots$$

Example 4.3. Determine if the sum converges or diverges. If it converges, find the sum.

$$\sum_{k=1}^{\infty} \frac{2^{k-1}}{5}$$

5. MIXED EXAMPLES

Example 5.1. Determine if the sequence is arithmetic, geometric, or neither. If it is arithmetic or geometric find the sum of the first 50 terms.

$$(1) \left\{ \frac{n}{n+1} \right\}$$

(2)
$$\{3-5n\}$$

$$(3) \{100^{-n/2}\}$$