1. Chapter 1 Section 9: Using Simplification to Evaluate Limits Algebraically

In this section, we further develop the idea of finding a limit by using algebra to re-write the expression. We can then use the following property to evaluate many limits.

Recall from section 1.8 notes: If f(x) = g(x) for all x in an open interval containing a (except possibly at a), then $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$.

Example 1.1 (1.9 WP Homework Question 3, Text 19). Use algebra to evaluate the limit. $\lim_{h\to 0} \frac{1/(4+h) - 1/4}{h}.$

Example 1.2. Use algebra to evaluate the limit. $\lim_{x \to 5} \frac{\sqrt{x+4}-3}{x-5}$

Example 1.3 (1.9 practice question in text 43). Find all values for the constant k such that the limit exists.

$$\lim_{x \to 5} \frac{x^2 - kx + 5}{x^2 - 2x - 15}$$

Example 1.4 (1.9 WP Homework Question 8, Text 57). *Evaluate the limit using algebra.*

 $\lim_{x\to\infty}\frac{2e^{3x}-1}{5e^{3x}+e^x+1}=$

2. The Squeeze Theorem

Theorem 2.1. If f, a, and b are functions such that

 $b(x) \le f(x) \le a(x)$

for all x around c (except possibly at c), then

 $\lim_{x \to c} b(x) \le \lim_{x \to c} f(x) \le \lim_{x \to c} a(x)$

Theorem 2.2 (The Squeeze Theorem). If f, a, and b are functions such that $b(x) \le f(x) \le a(x)$ and $\lim_{x \to c} b(x) = L = \lim_{x \to c} a(x)$

for all x around c (except possibly at c), then

$$\lim_{x \to c} f(x) = L$$

Example 2.1 (1.9 Text 60). *Prove:* $\lim_{x \to \infty} \frac{\sin^2 x}{4x^3 + 5x + 1} = 0$

Example 2.2 (1.9 Text 38). Find $\lim_{x\to 0} f(x)$ if, for all x, $4\cos(2x) \le f(x) \le 3x^2 + 4$.