Chapter 2 Section 1: How do we Measure Speed?

1. Velocity

Definition 1.1. The average velocity of an object over a given interval of time, $[t_1, t_2]$, is the change in the position divided by the change in time.

$$v_{ave} = \frac{\Delta s}{\Delta t} = \frac{s(t_2) - s(t_1)}{t_2 - t_1}$$

Definition 1.2. The instantaneous velocity of an object at a given time, t = a is the limiting value of the average velocity over the time interval between t and a as t approaches a. The speed of an object is the magnitude, or absolute value of velocity. Using limit notation this is stated

v(a) =

Example 1.1 (2.1 WP Homework Question 4, Text 11). If a rock is thrown upward on the planet Mars with an initial velocity of 10 m/s, its approximate height in meters t seconds later is given by $s(t) = 10t - 1.86t^2$.

(1) Find the average velocity over the given time intervals:

(i) $[1,2]$	(ii) [1, 1.5]	(iii) [1, 1.1]
(iv) [1, 1.01]	(v) [1, 1.001]	

Solution

	t	$10t - 1.86t^2$	$v_{ave} over [1, t]$
(i)	2	12.56	4.42
(ii)	1.5	10.815	5.35
(iii)	1.1	8.7494	6.094
(iv)	1.01	8.202614	6.2614
(vi)	1.001	8.14627814	6.27814

(2) Estimate the instantaneous velocity when t = 1 based on the table of values.

Example 1.2. Recall from example 1.1 that if a rock is thrown upward on the planet Mars with an initial velocity of 10 m/s, its approximate height in meters t seconds later is given by $s(t) = 10t - 1.86t^2$.

- (1) Express the value of the instantaneous velocity when t = 1 as a limit.
- (2) (2.1 WP Homework Question 7, 8; Text 35, 38) Use algebra to find the limit in part 1.

2. VISUALIZING VELOCITY

Definition 2.1. (Informal) The line **tangent** to the graph of a function at a point is the line that "best approximates" the graph at that point. The **slope** of a curve at a point is the slope of the tangent line at that point.

We use the previous example to explore how to visualize velocity.

Example 2.1. Desmos: https://www.desmos.com/calculator/ncdh4uqmz5 Recall from example, 1.1, that if a rock is thrown upward on the planet Mars with an initial velocity of 10 m/s, its approximate height in meters t seconds later is given by $s(t) = 10t - 1.86t^2$.

- (1) Sketch a graph of s in a coordinate plane with the horizontal axis represented by t and the vertical axis represented by s.
- (2) On your sketch draw the secant line through (1, s(1)) and (2, s(2)).
- (3) On your sketch draw the tangent line at (1, s(1)). That is, draw the line that best approximate the graph of the function at the given point.
- (4) Identify from the previous examples the slopes of the lines in parts 2 and 3

Example 2.2 (2.1 WP Homework Question 6; Text 27). The graph of a function y = f(x) is given below. Determine the signs of the slopes at each labeled point, then put the slopes in increasing order.

