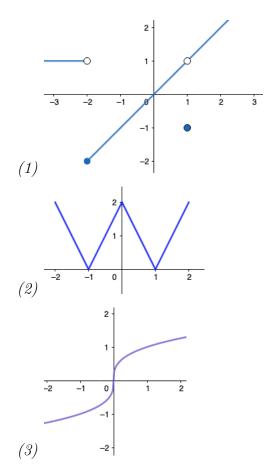
1. Chapter 2 Section 6: Differentiability


Definition 1.1. The function f is differentiable at x = a if $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ is a real number.

Remark 1.1. A function is not differentiable at x = a if...

- (3) The graph of the function has _____

2. Examples

Example 2.1 (2.6 WP Homework Question 1, 2; Text 2, 12). Determine where the functions do not appear to be differentiable.

Example 2.2. Recall Example 2.1 in the 2.3 course notes: Let $f(x) = \frac{1}{x+3}$. Find f'(x) using the definition of the derivative (the difference quotient).

Use the answer, $f'(x) = \frac{-1}{(x+3)^2}$, to find where f is differentiable.

Example 2.3 (2.6 WP Homework Question 4; Text 7, 16). Use the definition of the derivative to show the function below is not differentiable at x = 0.

$$f(x) = \begin{cases} -2x & \text{if } x < 0\\ x^2 & \text{if } x \ge 0 \end{cases}$$