1. CHAPTER 4 SECTION 7: L'HOPITAL'S RULE, GROWTH, AND DOMINANCE

First we review some of the indeterminate forms that we have addressed earlier in the semester.

(1)
$$\frac{0}{0}$$

(2) $\pm \frac{\infty}{\infty}$
(3) $\pm \infty \cdot 0$
(4) $\infty - \infty$

Example 1.1. $\lim_{x \to \infty} \frac{3x^4 + 2x^2}{x^4 + 16}$

Theorem 1.1 (L'Hopital's Rule). Consider $\lim_{x\to a} \frac{f(x)}{g(x)}$. If this limit has the indeterminate form $\frac{0}{0}$ or $\pm \frac{\infty}{\infty}$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

To use l'Hospital's Rule for any other indeterminate form, the function must be rewritten so that it is in one of the indeterminate forms $\frac{0}{0}$ or $\pm \frac{\infty}{\infty}$.

Example 1.2. Redo using l'Hospital's Rule. $\lim_{x\to\infty} \frac{3x^4 + 2x^2}{x^4 + 16}$

Example 1.3. $\lim_{x\to 0^+} \tan x \ln x$

Example 1.4. $\lim_{x\to\infty} (x\cos(1/x) - x)$

2. Indeterminate Forms Continued

There are three more indeterminate forms that we will need to recognize that are new for this section.

(5)
$$0^0$$
 (6) ∞^0 (7) 1^∞

Example 2.1. $\lim_{n \to \infty} P\left(1 + \frac{r}{n}\right)^{nt}$

Example 2.2 (4.8 text 84). $\lim_{t\to 0} \left(\frac{3^t + 5^t}{2}\right)^{1/t}$