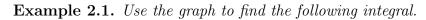
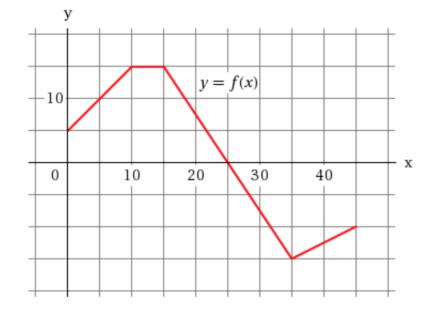
1. CHAPTER 5 SECTION 4: THEOREMS ABOUT DEFINITE INTEGRALS

Recall

Definition 1.1. The definite integral of f from a to b is defined by

$$\int_{a}^{b} f(x) \, dx = \lim_{\max(\Delta x_i) \to 0} \sum_{i=1}^{n} f(x_i^*) \Delta x_i$$


Note that when the subintervals are chosen so the width of each is $\frac{b-a}{n}$, then this is equivalent to the following limit using right Riemann sums.


$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x_i$$

2. Properties

- (1) If f(x) > 0 on [a, b] then $\int_{a}^{b} f(x) dx$ is the exact area between the curve and the *x*-axis over the interval [a, b].
- (2) If f(x) < 0 on [a, b] then $\int_a^b f(x) dx$ is -1 times the exact area between the curve and the x-axis over the interval [a, b].

(3)
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

$$\int_{10}^0 f(x)\,dx =$$

Properties continued

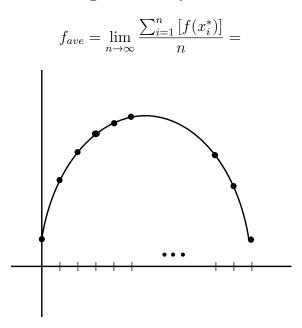
$$(4) \int_{a}^{a} f(x) dx = 0$$

$$(5) \int_{a}^{b} c dx = c(b-a)$$

$$(6) \int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

$$(7) \int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

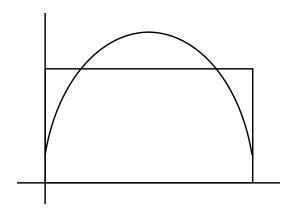
$$(8) \int_{a}^{b} [f(x) - g(x)] dx = \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx$$


$$(9) \int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

(10) If
$$f(x) \leq g(x)$$
 for all x in $[a, b]$, then $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$.
(11) If $m \leq f(x) \leq M$ for all x in $[a, b]$, then $m(b-a) \leq \int_{a}^{b} f(x) dx \leq M(b-a)$.
(12) If f is a continuous, even function; then $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$.
(13) If f is a continuous, odd function; then $\int_{-a}^{a} f(x) dx = 0$.
Example 2.2. . Suppose $\int_{3}^{5} f(x) dx = 6$, $\int_{0}^{5} f(x) dx = -1$, and $\int_{3}^{10} f(x) dx = 2$.
(1) Find $\int_{5}^{10} f(x) dx$.

(2) If f is an even function, find
$$\int_{-3}^{3} f(x) dx$$

3. Average Function Value


The average value of f over the interval [a, b] is defined as

4. MEAN VALUE THEOREM FOR INTEGRALS

If f is continuous on [a, b], then there is a number c in [a, b] with

$$\int_{a}^{b} f(x) \, dx = f(c)(b-a)$$

Example 4.1. Suppose
$$\int_{3}^{5} f(x) dx = 6$$
, $\int_{0}^{5} f(x) dx = -1$, and $\int_{3}^{10} f(x) dx = 2$.

Find the average value of f(x) on the interval from x = 5 to x = 10.

Example 4.2 (5.4 WP Homework Questions 2, Text 8). Find the average value of the function $g(t) = e^t$ over the interval [0, 10]. Illustrate the average value on a graph.