1. Chapter 6 Section 1: Antiderivatives Graphically and Numerically

In Chapter 5 we discussed the Definite integral and have touched on the relationships between the antiderivative and the definite integral. We re-state that information and dig further into the anti derivative in this section.

Definition 1.1. A function F is called an **antiderivative** of f on an interval I if F'(x) = f(x) for all $x \in I$.

Theorem 1.1 (Fundamental Theorem of Calculus). If f is continuous on [a, b] and f(t) = F'(t), then

$$\int_{a}^{b} f(x) \, dx = F(b) - F(a)$$

Example 1.1. Select all of the following functions that are antiderivatives for $f(x) = x^4$.

(1) $F(x) = \frac{1}{5}x^5 - \sqrt{3}$ (2) $F(x) = x^5$ (3) $F(x) = \frac{1}{5}x^5 + 4$ (4) $F(x) = \frac{1}{5}x^5$ (5) $F(x) = \frac{1}{4}x^5$

Example 1.2. Select all of the following functions, F, that are antiderivatives for $f(x) = x^4$ AND are such that F(0) = 4

(1) $F(x) = \frac{1}{5}x^5 - \sqrt{3}$ (2) $F(x) = x^5$ (3) $F(x) = \frac{1}{5}x^5 + 4$ (4) $F(x) = \frac{1}{5}x^5$ (5) $F(x) = \frac{1}{4}x^5$

Notice in the prior examples that it is possible to find infinitely many antiderivatives of a single function, but additional condition(s) may restrict the answer to only one antiderivative.

2. VISUALIZING ANTIDERIVATIVES

Example 2.1. Which of the following curves could be the graph of an antiderivative of the graph of the function given by curve C?

Example 2.2 (6.1 WP Homework Questions 5, Text 24). Estimate f(x) for x = 2, 4, 6, using the given values of f'(x) and the fact that f(0) = 21. Use an average of left- and right-hand sums to estimate the integrals.

x	0	2	4	6
f'(x)	14	23	30	33

Example 2.3. Suppose the graph below is the graph of f(x). Sketch the graph of the antiderivative, F(x), of f is it is given that F(0) = 2. Plot the points F has local extrema, changes in concavity, and the endpoints. If F(0) = -2, how does the graph change?

Remark 2.1. If F is an antiderivative of f on an interval I and C is any constant, then F(x) + C also defines an antiderivative of f on I.

- **Definitions 2.1.** (1) If F is an antiderivative of f, then the most general antiderivative or the family of antiderivatives is F(x) + C, where C is understood to represent any constant.
 - (2) The most general antiderivative is also called the indefinite integral of f.
 - (3) The most general antiderivative of f(x) is also called the indefinite integral of f and is denoted $\int f(x) dx$.

In other words, if
$$F'(x) = f(x)$$
, then $\int f(x) dx = F(x) + C$.

(4) The constant C is called the constant of the antiderivative or integration.