1. Chapter 6 Section 3: Differential Equations and Motion

Definition 1.1. A differentiable equation is an equation that involves an unknown function and one or more of its derivatives.

Definition 1.2. The **order** of a differentiable equation is the highest derivative in the equation

Definition 1.3. A solution for the differentiable equation is a function that satisfies the differentiable equation

Example 1.1. Suppose $\frac{dy}{dt} = 10 \sin t + 7 \cos t$, and y(0) = 3, find the solution of the initial value problem.

Example 1.2. Use that $-9.8m/s^2$ is the acceleration due to the force of gravity to find the equation for the height of an object dropped from a height of $h_0 m$. Assume no other force acts on the object (e.g. no air resistance). Suppose the object is thrown with an initial velocity v_0 rather than just dropped. How is the equation for height changed?

Example 1.3 (6.3 WP Homework Question 7, Text 23). A 747 jet needs to attain a speed of 150 mph to take off. It can accelerate from 0 to 150 mph in 16 seconds, how long must the runway be, assuming acceleration is constant? Hint: We need to find s(16) - s(0), where s is the position of the jet at time t in the interval [0, 16].