
Florida State University

Course Notes

MAD 2104 Discrete Mathematics I

Florida State University

Tallahassee, Florida 32306-4510

Copyright c©2011 Florida State University

Written by Dr. John Bryant and Dr. Penelope Kirby. All rights reserved. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without permission from the authors or a license from
Florida State University.

Contents

Chapter 1. Introduction to Sets and Functions 9
1. Introduction to Sets 9
1.1. Basic Terminology 9
1.2. Notation for Describing a Set 9
1.3. Common Universal Sets 10
1.4. Complements and Subsets 11
1.5. Element v.s. Subsets 11
1.6. Cardinality 12
1.7. Set Operations 12
1.8. Example 1.8.1 13
1.9. Product 13
2. Introduction to Functions 15
2.1. Function 15
2.2. Terminology Related to Functions 16
2.3. Example 2.3.1 16
2.4. Floor and Ceiling Functions 17
2.5. Characteristic Function 19

Chapter 2. Logic 21
1. Logic Definitions 21
1.1. Propositions 21
1.2. Examples 21
1.3. Logical Operators 22
1.4. Negation 23
1.5. Conjunction 24
1.6. Disjunction 24
1.7. Exclusive Or 25
1.8. Implications 25
1.9. Terminology 26
1.10. Example 27
1.11. Biconditional 27
1.12. NAND and NOR Operators 28
1.13. Example 29
1.14. Bit Strings 31
2. Propositional Equivalences 33
2.1. Tautology/Contradiction/Contingency 33

3

CONTENTS 4

2.2. Logically Equivalent 34
2.3. Examples 35
2.4. Important Logical Equivalences 37
2.5. Simplifying Propositions 38
2.6. Implication 40
2.7. Normal or Canonical Forms 41
2.8. Examples 41
2.9. Constructing Disjunctive Normal Forms 42
2.10. Conjunctive Normal Form 43
3. Predicates and Quantifiers 45
3.1. Predicates and Quantifiers 45
3.2. Example of a Propositional Function 45
3.3. Quantifiers 46
3.4. Example 3.4.1 47
3.5. Converting from English 47
3.6. Additional Definitions 48
3.7. Examples 48
3.8. Multiple Quantifiers 49
3.9. Ordering Quantifiers 49
3.10. Unique Existential 51
3.11. De Morgan’s Laws for Quantifiers 52
3.12. Distributing Quantifiers over Operators 54

Chapter 3. Methods of Proofs 56
1. Logical Arguments and Formal Proofs 56
1.1. Basic Terminology 56
1.2. More Terminology 56
1.3. Formal Proofs 58
1.4. Rules of Inference 59
1.5. Example 1.5.1 60
1.6. Rules of Inference for Quantifiers 63
1.7. Example 1.7.1 64
1.8. Fallacies 65
2. Methods of Proof 69
2.1. Types of Proofs 69
2.2. Trivial Proof/Vacuous Proof 69
2.3. Direct Proof 70
2.4. Proof by Contrapositive 72
2.5. Proof by Contradiction 74
2.6. Proof by Cases 76
2.7. Existence Proofs 77
2.8. Constructive Proof 77
2.9. Nonconstructive Proof 78
2.10. Nonexistence Proofs 79

CONTENTS 5

2.11. The Halting Problem 80
2.12. Counterexample 80
2.13. Biconditional 81
3. Mathematical Induction 83
3.1. First Principle of Mathematical Induction 83
3.2. Using Mathematical Induction 84
3.3. Example 3.3.1 85
3.4. Example 3.4.1 88
3.5. Example 3.5.1 90
3.6. The Second Principle of Mathematical Induction 92
3.7. Well-Ordered Sets 94

Chapter 4. Applications of Methods of Proof 96
1. Set Operations 96
1.1. Set Operations 96
1.2. Equality and Containment 96
1.3. Union and Intersection 97
1.4. Complement 97
1.5. Difference 97
1.6. Product 98
1.7. Power Set 98
1.8. Examples 98
1.9. Venn Diagrams 99
1.10. Examples 100
1.11. Set Identities 101
1.12. Union and Intersection of Indexed Collections 105
1.13. Infinite Unions and Intersections 106
1.14. Example 1.14.1 107
1.15. Computer Representation of a Set 108
2. Properties of Functions 111
2.1. Injections, Surjections, and Bijections 111
2.2. Examples 111
2.3. Example 2.3.1 113
2.4. Example 2.4.1 114
2.5. Example 2.5.1 114
2.6. Example 2.6.1 115
2.7. Inverse Functions 115
2.8. Inverse Image 117
2.9. Composition 118
2.10. Example 2.10.1 119
3. Recurrence 120
3.1. Recursive Definitions 120
3.2. Recursive Definition of the Function f(n) = n! 121
3.3. Recursive Definition of the Natural Numbers 121

CONTENTS 6

3.4. Proving Assertions About Recursively Defined Objects 122
3.5. Definition of fn 125
3.6. Example 3.6.1 126
3.7. Fibonacci Sequence 127
3.8. Strings 130
3.9. Bit Strings 131
4. Growth of Functions 135
4.1. Growth of Functions 135
4.2. The Big-O Notation 135
4.3. Proofs of Theorems 4.2.1 and 4.2.2 137
4.4. Example 4.4.1 138
4.5. Calculus Definition 139
4.6. Basic Properties of Big-O 141
4.7. Proof of Theorem 4.6.3 142
4.8. Example 4.8.1 142
4.9. Big-Omega 143
4.10. Big-Theta 143
4.11. Summary 144
4.12. Appendix. Proof of the Triangle Inequality 145

Chapter 5. Number Theory 146
1. Integers and Division 146
1.1. Divisibility 146
1.2. Basic Properties of Divisibility 146
1.3. Theorem 1.3.1 - The Division Algorithm 147
1.4. Proof of Division Algorithm 147
1.5. Prime Numbers, Composites 148
1.6. Fundamental Theorem of Arithmetic 149
1.7. Factoring 149
1.8. Mersenne Primes 150
1.9. Greatest Common Divisor and Least Common Multiple 150
1.10. Modular Arithmetic 151
1.11. Applications of Modular Arithmetic 153
2. Integers and Algorithms 155
2.1. Euclidean Algorithm 155
2.2. GCD’s and Linear Combinations 156
2.3. Uniqueness of Prime Factorization 159
3. Applications of Number Theory 163
3.1. Representation of Integers 163
3.2. Constructing Base b Expansion of n 163
3.3. Cancellation in Congruences 164
3.4. Inverses mod m 165
3.5. Linear Congruence 166
3.6. Criterion for Invertibility mod m 166

CONTENTS 7

3.7. Example 3.7.1 167
3.8. Fermat’s Little Theorem 167
3.9. RSA System 169
4. Matrices 170
4.1. Definitions 170
4.2. Matrix Arithmetic 171
4.3. Example 4.3.1 171
4.4. Special Matrices 173
4.5. Boolean Arithmetic 175
4.6. Example 4.6.1 176

Chapter 6. Introduction to Graph Theory 178
1. Introduction to Graphs 178
1.1. Simple Graphs 178
1.2. Examples 178
1.3. Multigraphs 179
1.4. Pseudograph 180
1.5. Directed Graph 181
1.6. Directed Multigraph 182
1.7. Graph Isomorphism 183
2. Graph Terminology 186
2.1. Undirected Graphs 186
2.2. The Handshaking Theorem 187
2.3. Example 2.3.1 187
2.4. Directed Graphs 188
2.5. The Handshaking Theorem for Directed Graphs 189
2.6. Underlying Undirected Graph 189
2.7. New Graphs from Old 189
2.8. Complete Graphs 190
2.9. Cycles 191
2.10. Wheels 191
2.11. n-Cubes 192
2.12. Bipartite Graphs 193
2.13. Examples 193
3. Representing Graphs and Graph Isomorphism 195
3.1. Adjacency Matrix 195
3.2. Example 3.2.1 195
3.3. Incidence Matrices 197
3.4. Degree Sequence 198
3.5. Graph Invariants 198
3.6. Example 3.6.1 199
3.7. Example 200
3.8. Proof of Theorem 3.5.1 Part 3 for Finite Simple Graphs 203

Chapter 7. Introduction to Relations 204

CONTENTS 8

1. Relations and Their Properties 204
1.1. Definition of a Relation 204
1.2. Examples 205
1.3. Directed Graphs 206
1.4. Inverse Relation 207
1.5. Special Properties of Binary Relations 208
1.6. Examples of Relations and Their Properties 208
1.7. Proving or Disproving Relations have a Property 209
1.8. Combining Relations 211
1.9. Example of Combining Relations 212
1.10. Composition 212
1.11. Example of Composition 213
1.12. Characterization of Transitive Relations 215

CHAPTER 1

Introduction to Sets and Functions

1. Introduction to Sets

1.1. Basic Terminology. We begin with a refresher in the basics of set theory.
Our treatment will be an informal one rather than taking an axiomatic approach at
this time. Later in the semester we will revisit sets with a more formal approach.

A set is a collection or group of objects or elements or members. (Cantor 1895)

• A set is said to contain its elements.
• In each situation or context, there must be an underlying universal set U ,

either specifically stated or understood.

Notation:

• If x is a member or element of the set S, we write x ∈ S.
• If x is not an element of S we write x 6∈ S.

1.2. Notation for Describing a Set.

Example 1.2.1. List the elements between braces:

• S = {a, b, c, d} = {b, c, a, d, d}

Specify by attributes:

• S = {x|x ≥ 5 or x < 0}, where the universe is the set of real numbers.

Use brace notation with ellipses:

• S = {. . . ,−3,−2,−1}, the set of negative integers.

Discussion

9

1. INTRODUCTION TO SETS 10

Sets can be written in a variety of ways. One can, of course, simply list the
elements if there are only a few. Another way is to use set builder notation, which
specifies the sets using a predicate to indicate the attributes of the elements of the
set. For example, the set of even integers is

{x|x = 2n, n ∈ Z}

or

{. . . ,−2, 0, 2, 4, 6, . . . }.

The first set could be read as “the set of all x’s such that x is twice an integer.”
The symbol | stands for “such that.” A colon is often used for “such that” as well, so
the set of even integers could also be written

{x : x = 2n, n ∈ Z}.

1.3. Common Universal Sets. The following notation will be used throughout
these notes.

• R = the real numbers
• N = the natural numbers = {0, 1, 2, 3, . . . }
• Z = the integers = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }
• Z+ = the positive integers = {1, 2, 3, . . . }

Discussion

The real numbers, natural numbers, rational numbers, and integers have special
notation which is understood to stand for these sets of numbers. Corresponding bold
face letters are also a common notation for these sets of numbers. Some authors do
not include 0 in the set of natural numbers. We will include zero.

Exercise 1.3.1. Which of the following sets are equal to the set of all integers
that are multiples of 5. There may be more than one or none.

(1) {5n|n ∈ R}
(2) {5n|n ∈ Z}
(3) {n ∈ Z|n = 5k and k ∈ Z}
(4) {n ∈ Z|n = 5k and n ∈ Z}
(5) {−5, 0, 5, 10}

1. INTRODUCTION TO SETS 11

1.4. Complements and Subsets.

Definition 1.4.1. The complement of A

A = {x ∈ U |x 6∈ A}.
Definition 1.4.2. A set A is a subset of a set B, denoted

A ⊆ B, if and only if every element of A is also an element of B.

Definition 1.4.3. If A ⊆ B but A 6= B then we say A is a proper subset of B
and denote it by

A ⊂ B.

Definition 1.4.4. The null set, or empty set, denoted ∅, is the set with no
members.

Note:

• ∅ is a subset of every set.
• A set is always a subset of itself.

Discussion

Please study the notation for elements, subsets, proper subsets, and the empty
set. Two other common notations for the complement of a set, A, is Ac and A′.
Notice that we make a notational distinction between subsets in general and proper
subsets. Not all texts and/or instructors make this distinction, and you should check
in other courses whether or not the notation ⊂ really does mean proper as it does
here.

1.5. Element v.s. Subsets. Sets can be subsets and elements of other sets.

Example 1.5.1. Let A = {∅, {∅}}. Then A has two elements

∅ and {∅}
and the four subsets

∅, {∅}, {{∅}}, {∅, {∅}}.
Example 1.5.2. Pay close attention to whether the symbols means “element” or

“subset” in this example

If S = {2, 3, {2}, {4}}, then

• 2 ∈ S • 3 ∈ S • 4 6∈ S
• {2} ∈ S • {3} 6∈ S • {4} ∈ S
• {2} ⊂ S • {3} ⊂ S • {4} 6⊂ S
• {{2}} ⊂ S • {{3}} 6⊂ S • {{4}} ⊂ S

1. INTRODUCTION TO SETS 12

Exercise 1.5.1. Let A = {1, 2, {1}, {1, 2}}. True or false?

(a) {1} ∈ A
(b) {1} ⊆ A

(c) {{1}} ∈ A
(d) {{1}} ⊆ A

(e) 2 ∈ A
(f) 2 ⊆ A

(g) {2} ∈ A
(h) {2} ⊆ A

1.6. Cardinality.

Definition 1.6.1. The number of (distinct) elements in a set A is called the
cardinality of A and is written |A|.

If the cardinality is a natural number, then the set is called finite, otherwise it is
called infinite.

Example 1.6.1. Suppose A = {a, b}. Then

|A| = 2,

Example 1.6.2. The cardinality of ∅ is 0, but the cardinality of {∅, {∅}} is 2.

Example 1.6.3. The set of natural numbers is infinite since its cardinality is not
a natural number. The cardinality of the natural numbers is a transfinite cardinal
number.

Discussion

Notice that the real numbers, natural numbers, integers, rational numbers, and
irrational numbers are all infinite. Not all infinite sets are considered to be the same
“size.” The set of real numbers is considered to be a much larger set than the set of
integers. In fact, this set is so large that we cannot possibly list all its elements in
any organized manner the way the integers can be listed. We call a set like the real
numbers that has too many elements to list uncountable and a set like the integers
that can be listed is called countable. We will not delve any deeper than this into the
study of the relative sizes of infinite sets in this course, but you may find it interesting
to read further on this topic.

Exercise 1.6.1. Let A = {1, 2, {1}, {1, 2}}, B = {1, {2}}, C = {1, 2, 2, 2}, D =
{5n|n ∈ R} and E = {5n|n ∈ Z}.

Find the cardinality of each set.

1.7. Set Operations.

Definition 1.7.1. The union of sets A and B, denoted by A∪B (read “A union
B”), is the set consisting of all elements that belong to either A or B or both. In
symbols

A ∪B = {x|x ∈ A or x ∈ B}

1. INTRODUCTION TO SETS 13

Definition 1.7.2. The intersection of sets A and B, denoted by A ∩ B (read
“A intersection B”), is the set consisting of all elements that belong both A and B.
In symbols

A ∩B = {x|x ∈ A and x ∈ B}

Definition 1.7.3. The difference or relative compliment of two sets A and
B, denoted by A−B is the set of all elements in A that are not in B.

A−B = {x|x ∈ A and x 6∈ B}

Discussion

The operations of union and intersection are the basic operations used to combine
two sets to form a third. Notice that we always have A ⊆ A ∪ B and A ∩ B ⊆ A for
arbitrary sets A and B.

1.8. Example 1.8.1.

Example 1.8.1. Suppose
A = {1, 3, 5, 7, 9, 11},
B = {3, 4, 5, 6, 7} and
C = {2, 4, 6, 8, 10}.
Then

(a) A ∪B = {1, 3, 4, 5, 6, 7, 9, 11}
(b) A ∩B = {3, 5, 7}
(c) A ∪ C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
(d) A ∩ C = ∅
(e) A−B = {1, 9, 11}
(f) |A ∪B| = 8
(g) |A ∩ C| = 0

Exercise 1.8.1. Let A = {1, 2, {1}, {1, 2}} and B = {1, {2}}. True or false:

(a) 2 ∈ A ∩B (b) 2 ∈ A ∪B (c) 2 ∈ A−B
(d) {2} ∈ A ∩B (e) {2} ∈ A ∪B (f) {2} ∈ A−B

1.9. Product.

Definition 1.9.1. The (Cartesian) Product of two sets, A and B, is denoted
A×B and is defined by

A×B = {(a, b)|a ∈ A and b ∈ B}

1. INTRODUCTION TO SETS 14

Discussion

A cartesian product you have used in previous classes is R×R. This is the same
as the real plane and is shortened to R2. Elements of R2 are the points in the plane.

Notice the notation for an element in R × R is the same as the notation for an
open interval of real numbers. In other words, (3, 5) could mean the ordered pair in
R×R or it could mean the interval {x ∈ R|3 < x < 5}. If the context does not make
it clear which (3, 5) stands for you should make it clear.

Example 1.9.1. Let A = {a, b, c, d, e} and let B = {1, 2}. Then

(1) A×B = {(a, 1), (b, 1), (c, 1), (d, 1), (e, 1), (a, 2), (b, 2), (c, 2), (d, 2), (e, 2)}.
(2) |A×B| = 10
(3) {a, 2} 6∈ A×B
(4) (a, 2) 6∈ A ∪B

Exercise 1.9.1. Let A = {a, b, c, d, e} and let B = {1, 2}. Find

(1) B × A.
(2) |B × A|
(3) Is (a, 2) ∈ B × A?
(4) Is (2, a) ∈ B × A?
(5) Is 2a ∈ B × A?

2. INTRODUCTION TO FUNCTIONS 15

2. Introduction to Functions

2.1. Function.

Definition 2.1.1. Let A and B be sets. A function

f : A→ B

is a rule which assigns to every element in A exactly one element in B.

If f assigns a ∈ A to the element b ∈ B, then we write

f(a) = b,

and we call b the image or value of f at a.

Discussion

This is the familiar definition of a function f from a set A to a set B as a rule that
assigns each element of A to exactly one element B. This is probably quite familiar
to you from your courses in algebra and calculus. In the context of those subjects,
the sets A and B are usually subsets of real numbers R, and the rule usually refers
to some concatenation of algebraic or transcendental operations which, when applied
to a number in the set A, give a number in the set B. For example, we may define a
function f : R → R by the formula (rule) f(x) =

√
1 + sin x. We can then compute

values of f – for example, f(0) = 1, f(π/2) =
√

2, f(3π/2) = 0, f(1) = 1.357
(approximately) – using knowledge of the sine function at special values of x and/or
a calculator. Sometimes the rule may vary depending on which part of the set A the
element x belongs. For example, the absolute value function f : R→ R is defined by

f(x) = |x| =
{

x, if x ≥ 0,
−x, if x < 0.

The rule that defines a function, however, need not be given by a formula of such
as those above. For example, the rule that assigns to each resident of the state of
Florida his or her last name defines a function from the set of Florida residents to
the set of all possible names. There is certainly nothing formulaic about the rule
that defines this function. At the extreme we could randomly assign everyone in this
class one of the digits 0 or 1, and we would have defined a function from the set
of students in the class to the set {0, 1}. We will see a more formal definition of a
function later on that avoids the use of the term rule, but for now it will serve us
reasonably well. We will instead concentrate on terminology related to the concept
of a function, including special properties a function may possess.

2. INTRODUCTION TO FUNCTIONS 16

2.2. Terminology Related to Functions. Let A and B be sets and suppose
f : A→ B.

• The set A is called the domain of f .
• The set B is called the codomain of f .
• If f(x) = y, then x is a preimage of y. Note, there may be more than one

preimage of y, but only one image (or value) of x.
• The set f(A) = {f(x)|x ∈ A} is called the range of f .
• If S ⊆ A, then the image of S under f is the set

f(S) = {f(s)|s ∈ S}.
• If T ⊆ B, then the preimage of T under f is the set

f−1(T) = {x ∈ A|f(x) ∈ T}.

Discussion

Some of the fine points to remember:

• Every element in the domain must be assigned to exactly one element in the
codomain.
• Not every element in the codomain is necessarily assigned to one of the

elements in the domain.
• The range is the subset of the codomain consisting of all those elements that

are the image of at least one element in the domain. It is the image of the
domain.
• If a subset T of the codomain consists of a single element, say, T = {b},

then we usually write f−1(b) instead of f−1({b}). Regardless, f−1(b) is still
a subset of A.

2.3. Example 2.3.1.

Example 2.3.1. Let A = {a, b, c, d} and B = {x, y, z}. The function f is defined
by the relation pictured below:

a

��

x

b // y

c // z

d

88

2. INTRODUCTION TO FUNCTIONS 17

• f(a) = z
• the image of d is z
• the domain of f is A = {a, b, c, d}
• the codomain is B = {x, y, z}
• f(A) = {y, z}
• f({c, d}) = {z}
• f−1(y) = {b}.
• f−1(z) = {a, c, d}
• f−1({y, z}) = {a, b, c, d}
• f−1(x) = ∅.

Discussion

This example helps illustrate some of the differences between the codomain and
the range. f(A) = {y, z} is the range, while the codomain is all of B = {x, y, z}.

Notice also that the image of a single element is a single element, but the preimage
of a single element may be more than one element. Here is another example.

Example 2.3.2. Let f : N→ R be defined by f(n) =
√
n.

• The domain is the set of natural numbers.
• The codomain is the set of real numbers.
• The range is {0, 1,

√
2,
√

3, 2,
√

5, . . . }.
• The image of 5 is

√
5.

• The preimage of 5 is 25.
• The preimage of N is the set of all perfect squares in N.

Exercise 2.3.1. Suppose f : R→ R is defined by f(x) = |x|. Find

(1) the range of f .
(2) the image of Z, the set of integers.
(3) f−1(π).
(4) f−1(−1).
(5) f−1(Q), where Q is the set of rational numbers.

2.4. Floor and Ceiling Functions.

Definitions 2.4.1. Floor and ceiling functions:

• The floor function, denoted

f(x) = bxc
or

f(x) = floor(x),

2. INTRODUCTION TO FUNCTIONS 18

is the function that assigns to x the greatest integer less than or equal to x.

• The ceiling function, denoted

f(x) = dxe
or

f(x) = ceiling(x),

is the function that assigns to x the smallest integer greater than or equal to
x.

Discussion

These two functions may be new to you. The floor function, bxc, also known as
the “greatest integer function”, and the ceiling function, dxe, are assumed to have
domain the set of all reals, unless otherwise specified, and range is then the set of
integers.

Example 2.4.1. (a) b3.5c = 3
(b) d3.5e = 4
(c) b−3.5c = −4
(d) d−3.5e = −3
(e) notice that the floor function is the same as truncation for positive numbers.

Exercise 2.4.1. Suppose x is a real number. Do you see any relationships among
the values b−xc, −bxc, d−xe, and −dxe?

Exercise 2.4.2. Suppose f : R→ R is defined by f(x) = bxc. Find

(1) the range of f .
(2) the image of Z, the set of integers.
(3) f−1(π).
(4) f−1(−1.5).
(5) f−1(N), where N is the set of natural numbers.
(6) f−1([2.5, 5.5]).
(7) f([2.5, 5.5]).
(8) f(f−1([2.5, 5.5])).
(9) f−1(f([2.5, 5.5])).

Example 2.4.2. Let h : [0,∞)→ R be defined by h(x) = b3x− 1c. Let A = {x ∈
R|4 < x < 10}.

(1) The domain is [0,∞)
(2) The codomain is R
(3) The range is {−1, 0, 1, 2, . . . }
(4) h(A) = {11, 12, 13, 14, . . . , 28}.

2. INTRODUCTION TO FUNCTIONS 19

(5) h−1(A) = [2, 11/3).

Exercise 2.4.3. Let g : R → [0,∞) be defined by g(x) = dx2e. Let A = {x ∈
[0,∞)|3.2 < x < 8.9}.

(1) domain
(2) codomain
(3) range
(4) Find g(A).
(5) Find g−1(A).

2.5. Characteristic Function.

Definition: Let U be a universal set and A ⊆ U . The Characteristic Func-
tion of A is defined by

χA(s) =

{
1 if s ∈ A
0 if s 6∈ A

Discussion

The Characteristic function is another function that may be new to you.

Example 2.5.1. Consider the set of integers as a subset of the real numbers. Then

χ
Z(y)

will be 1 when y is an integer and will be zero otherwise.

Exercise 2.5.1. Graph the function

χ
Z

given in the previous example in the plane.

Exercise 2.5.2. Find

(1) χZ(0)
(2) χ−1Z (0)
(3) χZ([3, 5])
(4) χ−1Z ([3, 5])

Exercise 2.5.3. Let E = {4n|n ∈ N} and consider the characteristic function
χE : Z→ Z. What is the . . .

(1) domain
(2) codomain
(3) range

2. INTRODUCTION TO FUNCTIONS 20

(4) χE({2n|n ∈ N})
(5) χ−1E ({2n|n ∈ N})

CHAPTER 2

Logic

1. Logic Definitions

1.1. Propositions.

Definition 1.1.1. A proposition is a declarative sentence that is either

true (denoted either T or 1) or

false (denoted either F or 0).

Notation: Variables are used to represent propositions. The most common variables
used are p, q, and r.

Discussion

Logic has been studied since the classical Greek period (600-300BC). The Greeks,
most notably Thales, were the first to formally analyze the reasoning process. Aristo-
tle (384-322BC), the “father of logic”, and many other Greeks searched for universal
truths that were irrefutable. A second great period for logic came with the use of sym-
bols to simplify complicated logical arguments. Gottfried Leibniz (1646-1716) began
this work at age 14, but failed to provide a workable foundation for symbolic logic.
George Boole (1815-1864) is considered the “father of symbolic logic”. He developed
logic as an abstract mathematical system consisting of defined terms (propositions),
operations (conjunction, disjunction, and negation), and rules for using the opera-
tions. It is this system that we will study in the first section.

Boole’s basic idea was that if simple propositions could be represented by pre-
cise symbols, the relation between the propositions could be read as precisely as an
algebraic equation. Boole developed an “algebra of logic” in which certain types of
reasoning were reduced to manipulations of symbols.

1.2. Examples.

Example 1.2.1. “Drilling for oil caused dinosaurs to become extinct.” is a propo-
sition.

21

1. LOGIC DEFINITIONS 22

Example 1.2.2. “Look out!” is not a proposition.

Example 1.2.3. “How far is it to the next town?” is not a proposition.

Example 1.2.4. “x+ 2 = 2x” is not a proposition.

Example 1.2.5. “x+ 2 = 2x when x = −2” is a proposition.

Recall a proposition is a declarative sentence that is either true or false. Here are
some further examples of propositions:

Example 1.2.6. All cows are brown.

Example 1.2.7. The Earth is further from the sun than Venus.

Example 1.2.8. There is life on Mars.

Example 1.2.9. 2× 2 = 5.

Here are some sentences that are not propositions.

Example 1.2.10. “Do you want to go to the movies?” Since a question is not a
declarative sentence, it fails to be a proposition.

Example 1.2.11. “Clean up your room.” Likewise, an imperative is not a declar-
ative sentence; hence, fails to be a proposition.

Example 1.2.12. “2x = 2 + x.” This is a declarative sentence, but unless x is
assigned a value or is otherwise prescribed, the sentence neither true nor false, hence,
not a proposition.

Example 1.2.13. “This sentence is false.” What happens if you assume this state-
ment is true? false? This example is called a paradox and is not a proposition, because
it is neither true nor false.

Each proposition can be assigned one of two truth values. We use T or 1 for true
and use F or 0 for false.

1.3. Logical Operators.

Definition 1.3.1. Unary Operator negation: “not p”, ¬p.

Definitions 1.3.1. Binary Operators

(a) conjunction: “p and q”, p ∧ q.
(b) disjunction: “p or q”, p ∨ q.
(c) exclusive or: “exactly one of p or q”, “p xor q”, p⊕ q.
(d) implication: “if p then q”, p→ q.
(e) biconditional: “p if and only if q”, p↔ q.

1. LOGIC DEFINITIONS 23

Discussion

A sentence like “I can jump and skip” can be thought of as a combination of the
two sentences “I can jump” and “I can skip.” When we analyze arguments or logical
expression it is very helpful to break a sentence down to some composition of simpler
statements.

We can create compound propositions using propositional variables, such as
p, q, r, s, ..., and connectives or logical operators. A logical operator is either a unary
operator, meaning it is applied to only a single proposition; or a binary operator,
meaning it is applied to two propositions. Truth tables are used to exhibit the rela-
tionship between the truth values of a compound proposition and the truth values of
its component propositions.

1.4. Negation. Negation Operator, “not”, has symbol ¬.

Example 1.4.1. p: This book is interesting.

¬p can be read as:

(i.) This book is not interesting.
(ii.) This book is uninteresting.

(iii.) It is not the case that this book is interesting.

Truth Table:
p ¬ p
T F
F T

Discussion

The negation operator is a unary operator which, when applied to a proposition
p, changes the truth value of p. That is, the negation of a proposition p, denoted
by ¬p, is the proposition that is false when p is true and true when p is false. For
example, if p is the statement “I understand this”, then its negation would be “I do
not understand this” or “It is not the case that I understand this.” Another notation
commonly used for the negation of p is ∼ p.

Generally, an appropriately inserted “not” or removed “not” is sufficient to negate
a simple statement. Negating a compound statement may be a bit more complicated
as we will see later on.

1. LOGIC DEFINITIONS 24

1.5. Conjunction. Conjunction Operator, “and”, has symbol ∧.

Example 1.5.1. p: This book is interesting. q: I am staying at home.

p ∧ q: This book is interesting, and I am staying at home.

Truth Table:
p q p ∧ q
T T T
T F F
F T F
F F F

Discussion

The conjunction operator is the binary operator which, when applied to two propo-
sitions p and q, yields the proposition “p and q”, denoted p∧q. The conjunction p∧q of
p and q is the proposition that is true when both p and q are true and false otherwise.

1.6. Disjunction. Disjunction Operator, inclusive “or”, has symbol ∨.

Example 1.6.1. p: This book is interesting. q: I am staying at home.

p ∨ q: This book is interesting, or I am staying at home.

Truth Table:
p q p ∨ q
T T T
T F T
F T T
F F F

Discussion

The disjunction operator is the binary operator which, when applied to two propo-
sitions p and q, yields the proposition “p or q”, denoted p ∨ q. The disjunction p ∨ q
of p and q is the proposition that is true when either p is true, q is true, or both are
true, and is false otherwise. Thus, the “or” intended here is the inclusive or. In fact,
the symbol ∨ is the abbreviation of the Latin word vel for the inclusive “or”.

1. LOGIC DEFINITIONS 25

1.7. Exclusive Or. Exclusive Or Operator, “xor”, has symbol ⊕.

Example 1.7.1. p: This book is interesting. q: I am staying at home.

p⊕ q: Either this book is interesting, or I am staying at home, but not both.

Truth Table:
p q p⊕ q
T T F
T F T
F T T
F F F

Discussion

The exclusive or is the binary operator which, when applied to two propositions
p and q yields the proposition “p xor q”, denoted p ⊕ q, which is true if exactly one
of p or q is true, but not both. It is false if both are true or if both are false.

Many times in our every day language we use “or” in the exclusive sense. In logic,
however, we always mean the inclusive or when we simply use “or” as a connective
in a proposition. If we mean the exclusive or it must be specified. For example, in a
restaurant a menu may say there is a choice of soup or salad with a meal. In logic
this would mean that a customer may choose both a soup and salad with their meal.
The logical implication of this statement, however, is probably not what is intended.
To create a sentence that logically states the intent the menu could say that there
is a choice of either soup or salad (but not both). The phrase “either . . . or . . . ” is
normally indicates the exclusive or.

1.8. Implications. Implication Operator, “if...then...”, has symbol →.

Example 1.8.1. p: This book is interesting. q: I am staying at home.

p→ q: If this book is interesting, then I am staying at home.

Truth Table:
p q p→ q
T T T
T F F
F T T
F F T

Equivalent Forms of “If p then q”:

1. LOGIC DEFINITIONS 26

• p implies q
• If p, q
• p only if q
• p is a sufficient condition for q
• q if p
• q whenever p
• q is a necessary condition for p

Discussion

The implication p → q is the proposition that is often read “if p then q.” “If p
then q” is false precisely when p is true but q is false. There are many ways to say
this connective in English. You should study the various forms as shown above.

One way to think of the meaning of p → q is to consider it a contract that says
if the first condition is satisfied, then the second will also be satisfied. If the first
condition, p, is not satisfied, then the condition of the contract is null and void. In
this case, it does not matter if the second condition is satisfied or not, the contract
is still upheld.

For example, suppose your friend tells you that if you meet her for lunch, she
will give you a book she wants you to read. According to this statement, you would
expect her to give you a book if you do go to meet her for lunch. But what if you do
not meet her for lunch? She did not say anything about that possible situation, so
she would not be breaking any kind of promise if she dropped the book off at your
house that night or if she just decided not to give you the book at all. If either of
these last two possibilities happens, we would still say the implication stated was true
because she did not break her promise.

Exercise 1.8.1. Which of the following statements are equivalent to “If x is even,
then y is odd”? There may be more than one or none.

(1) y is odd only if x is even.
(2) x is even is sufficient for y to be odd.
(3) x is even is necessary for y to be odd.
(4) If x is odd, then y is even.
(5) x is even and y is even.
(6) x is odd or y is odd.

1.9. Terminology. For the compound statement p→ q

• p is called the premise, hypothesis, or the antecedent.
• q is called the conclusion or consequent.
• q → p is the converse of p→ q.

1. LOGIC DEFINITIONS 27

• ¬p→ ¬q is the inverse of p→ q.
• ¬q → ¬p is the contrapositive of p→ q.

Discussion

We will see later that the converse and the inverse are not equivalent to the
original implication, but the contrapositive ¬q → ¬p is. In other words, p → q and
its contrapositive have the exact same truth values.

1.10. Example.

Example 1.10.1. Implication: If this book is interesting, then I am staying at
home.

• Converse: If I am staying at home, then this book is interesting.
• Inverse: If this book is not interesting, then I am not staying at home.
• Contrapositive: If I am not staying at home, then this book is not inter-

esting.

Discussion

The converse of your friend’s promise given above would be “if she gives you a
book she wants you to read, then you will meet her for lunch,” and the inverse would
be “If you do not meet her for lunch, then she will not give you the book.” We can
see from the discussion about this statement that neither of these are the same as the
original promise. The contrapositive of the statement is “if she does not give you the
book, then you do not meet her for lunch.” This is, in fact, equivalent to the original
promise. Think about when would this promise be broken. It should be the exact
same situation where the original promise is broken.

1.11. Biconditional. Biconditional Operator, ”if and only if”, has symbol
↔.

Example 1.11.1. p: This book is interesting. q: I am staying at home.

p↔ q: This book is interesting if and only if I am staying at home.

Truth Table:
p q p↔ q
T T T
T F F
F T F
F F T

1. LOGIC DEFINITIONS 28

Discussion

The biconditional statement is equivalent to (p → q) ∧ (q → p). In other words,
for p ↔ q to be true we must have both p and q true or both false. The difference
between the implication and biconditional operators can often be confusing, because
in our every day language we sometimes say an “if...then” statement, p→ q, when we
actually mean the biconditional statement p ↔ q. Consider the statement you may
have heard from your mother (or may have said to your children): “If you eat your
broccoli, then you may have some ice cream.” Following the strict logical meaning of
the first statement, the child still may or may not have ice cream even if the broccoli
isn’t eaten. The “if...then” construction does not indicate what would happen in the
case when the hypothesis is not true. The intent of this statement, however, is most
likely that the child must eat the broccoli in order to get the ice cream.

When we set out to prove a biconditional statement, we often break the proof
down into two parts. First we prove the implication p → q, and then we prove the
converse q → p.

Another type of “if...then” statement you may have already encountered is the one
used in computer languages. In this “if...then” statement, the premise is a condition
to be tested, and if it is true then the conclusion is a procedure that will be performed.
If the premise is not true, then the procedure will not be performed. Notice this is
different from “if...then” in logic. It is actually closer to the biconditional in logic.
However, it is not actually a logical statement at all since the “conclusion” is really
a list of commands, not a proposition.

1.12. NAND and NOR Operators.

Definition 1.12.1. The NAND Operator, which has symbol | (“Sheffer Stroke”),
is defined by the truth table

p q p|q
T T F
T F T
F T T
F F T

Definition 1.12.2. The NOR Operator, which has symbol ↓ (“Peirce Arrow”),
is defined by the truth table

1. LOGIC DEFINITIONS 29

p q p ↓ q
T T F
T F F
F T F
F F T

Discussion

These two additional operators are very useful as logical gates in a combinatorial
circuit, a topic we will discuss later.

1.13. Example.

Example 1.13.1. Write the following statement symbolically, and then make a
truth table for the statement. “If I go to the mall or go to the movies, then I will not
go to the gym.”

Solution. Suppose we set

• p = I go to the mall
• q = I go to the movies
• r = I will go to the gym

The proposition can then be expressed as “If p or q, then not r,” or (p ∨ q)→ ¬r.

p q r (p ∨ q) ¬r (p ∨ q)→ ¬r
T T T T F F
T T F T T T
T F T T F F
T F F T T T
F T T T F F
F T F T T T
F F T F F T
F F F F T T

Discussion

When building a truth table for a compound proposition, you need a row for every
possible combination of T’s and F’s for the component propositions. Notice if there
is only one proposition involved, there are 2 rows. If there are two propositions, there
are 4 rows, if there are 3 propositions there are 8 rows.

1. LOGIC DEFINITIONS 30

Exercise 1.13.1. How many rows should a truth table have for a statement in-
volving n different propositions?

It is not always so clear cut how many columns one needs. If we have only three
propositions p, q, and r, you would, in theory, only need four columns: one for
each of p, q, and r, and one for the compound proposition under discussion, which is
(p ∨ q) → ¬r in this example. In practice, however, you will probably want to have
a column for each of the successive intermediate propositions used to build the final
one. In this example it is convenient to have a column for p∨ q and a column for ¬r,
so that the truth value in each row in the column for (p ∨ q)→ ¬r is easily supplied
from the truth values for p ∨ q and ¬r in that row.

Another reason why you should show the intermediate columns in your truth table
is for grading purposes. If you make an error in a truth table and do not give this
extra information, it will be difficult to evaluate your error and give you partial credit.

Example 1.13.2. Suppose p is the proposition “the apple is delicious” and q is
the proposition “I ate the apple.” Notice the difference between the two statements
below.

(a) ¬p ∧ q = The apple is not delicious, and I ate the apple.
(b) ¬(p ∧ q) = It is not the case that: the apple is delicious and I ate the apple.

Exercise 1.13.2. Find another way to express Example 1.13.2 Part b without
using the phrase “It is not the case.”

Example 1.13.3. Express the proposition “If you work hard and do not get dis-
tracted, then you can finish the job” symbolically as a compound proposition in terms
of simple propositions and logical operators.

Set

• p = you work hard
• q = you get distracted
• r = you can finish the job

In terms of p, q, and r, the given proposition can be written

(p ∧ ¬q)→ r.

The comma in Example 1.13.3 is not necessary to distinguish the order of the
operators, but consider the sentence “If the fish is cooked then dinner is ready and I
am hungry.” Should this sentence be interpreted as f → (r∧h) or (f → r)∧h, where
f , r, and h are the natural choices for the simple propositions? A comma needs to

1. LOGIC DEFINITIONS 31

be inserted in this sentence to make the meaning clear or rearranging the sentence
could make the meaning clear.

Exercise 1.13.3. Insert a comma into the sentence “If the fish is cooked then
dinner is ready and I am hungry.” to make the sentence mean

(a) f → (r ∧ h)
(b) (f → r) ∧ h

Example 1.13.4. Here we build a truth table for p → (q → r) and (p ∧ q) → r.
When creating a table for more than one proposition, we may simply add the necessary
columns to a single truth table.

p q r q → r p ∧ q p→ (q → r) (p ∧ q)→ r
T T T T T T T
T T F F T F F
T F T T F T T
T F F T F T T
F T T T F T T
F T F F F T T
F F T T F T T
F F F T F T T

Exercise 1.13.4. Build one truth table for f → (r ∧ h) and (f → r) ∧ h.

1.14. Bit Strings.

Definition 1.14.1. A bit is a 0 or a 1 and a bit string is a list or string of
bits.

The logical operators can be turned into bit operators by thinking of 0 as false
and 1 as true. The obvious substitutions then give the table

0 = 1 1 = 0

0 ∨ 0 = 0 0 ∧ 0 = 0 0⊕ 0 = 0

0 ∨ 1 = 1 0 ∧ 1 = 0 0⊕ 1 = 1

1 ∨ 0 = 1 1 ∧ 0 = 0 1⊕ 0 = 1

1 ∨ 1 = 1 1 ∧ 1 = 1 1⊕ 1 = 0

Discussion

1. LOGIC DEFINITIONS 32

We can define the bitwise NEGATION of a string and bitwise OR, bitwise AND,
and bitwise XOR of two bit strings of the same length by applying the logical operators
to the corresponding bits in the natural way.

Example 1.14.1.

(a) 11010 = 00101

(b) 11010 ∨ 10001 = 11011

(c) 11010 ∧ 10001 = 10000

(d) 11010⊕ 10001 = 01011

2. PROPOSITIONAL EQUIVALENCES 33

2. Propositional Equivalences

2.1. Tautology/Contradiction/Contingency.

Definition 2.1.1. A tautology is a proposition that is always true.

Example 2.1.1. p ∨ ¬p

Definition 2.1.2. A contradiction is a proposition that is always false.

Example 2.1.2. p ∧ ¬p

Definition 2.1.3. A contingency is a proposition that is neither a tautology
nor a contradiction.

Example 2.1.3. p ∨ q → ¬r

Discussion

One of the important techniques used in proving theorems is to replace, or sub-
stitute, one proposition by another one that is equivalent to it. In this section we will
list some of the basic propositional equivalences and show how they can be used to
prove other equivalences.

Let us look at the classic example of a tautology, p ∨ ¬p. The truth table

p ¬p p ∨ ¬p

T F T

F T T

shows that p ∨ ¬p is true no matter the truth value of p.

[Side Note. This tautology, called the law of excluded middle, is a
direct consequence of our basic assumption that a proposition is a
statement that is either true or false. Thus, the logic we will discuss
here, so-called Aristotelian logic, might be described as a “2-valued”
logic, and it is the logical basis for most of the theory of modern
mathematics, at least as it has developed in western culture. There
is, however, a consistent logical system, known as constructivist,
or intuitionistic, logic which does not assume the law of excluded
middle. This results in a 3-valued logic in which one allows for

2. PROPOSITIONAL EQUIVALENCES 34

a third possibility, namely, “other.” In this system proving that a
statement is “not true” is not the same as proving that it is “false,”
so that indirect proofs, which we shall soon discuss, would not be
valid. If you are tempted to dismiss this concept, you should be
aware that there are those who believe that in many ways this type
of logic is much closer to the logic used in computer science than
Aristotelian logic. You are encouraged to explore this idea: there
is plenty of material to be found in your library or through the
worldwide web.]

The proposition p ∨ ¬(p ∧ q) is also a tautology as the following the truth table
illustrates.

p q (p ∧ q) ¬(p ∧ q) p ∨ ¬(p ∧ q)

T T T F T

T F F T T

F T F T T

F F F T T

Exercise 2.1.1. Build a truth table to verify that the proposition (p↔ q)∧(¬p∧q)
is a contradiction.

2.2. Logically Equivalent.

Definition 2.2.1. Propositions r and s are logically equivalent if the statement
r ↔ s is a tautology.

Notation: If r and s are logically equivalent, we write

r ⇔ s.

Discussion

A second notation often used to mean statements r and s are logically equivalent
is r ≡ s. You can determine whether compound propositions r and s are logically
equivalent by building a single truth table for both propositions and checking to see
that they have exactly the same truth values.

Notice the new symbol r ⇔ s, which is used to denote that r and s are logically
equivalent, is defined to mean the statement r ↔ s is a tautology. In a sense the

2. PROPOSITIONAL EQUIVALENCES 35

symbols ↔ and ⇔ convey similar information when used in a sentence. However,
r ⇔ s is generally used to assert that the statement r ↔ s is, in fact, true while the
statement r ↔ s alone does not imply any particular truth value. The symbol ⇔ is
the preferred shorthand for “is equivalent to.”

2.3. Examples.

Example 2.3.1. Show that (p→ q) ∧ (q → p) is logically equivalent to p↔ q.

Solution 1. Show the truth values of both propositions are identical.

Truth Table:

p q p→ q q → p (p→ q) ∧ (q → p) p↔ q

T T T T T T

T F F T F F

F T T F F F

F F T T T T

Solution 2. Examine every possible case in which the statement (p → q) ∧ (q → p)
may not have the same truth value as p↔ q

Case 1. Suppose (p→ q)∧ (q → p) is false and p↔ q is true. There are two possible
cases where (p → q) ∧ (q → p) is false. Namely, p → q is false or q → p
is false (note that this covers the possibility both are false since we use the
inclusive “or” on logic).
(a) Assume p → q is false. Then p is true and q is false. But if this is the

case, the p↔ q is false.
(b) Assume q → p is false. Then q is true and p is false. But if this is the

case, the p↔ q is false.
Case 2. Suppose (p → q) ∧ (q → p) is true and p ↔ q is false. If the latter is false,

the p and q do not have the same truth value and the there are two possible
ways this may occur that we address below.
(a) Assume p is true and q is false. Then p→ q is false, so the conjunction

also must be false.
(b) Assume p is false and q is true. Then q → p is false, so the conjunction

is also false.

We exhausted all the possibilities, so the two propositions must be logically equivalent.

2. PROPOSITIONAL EQUIVALENCES 36

Discussion

This example illustrates an alternative to using truth tables to establish the equiv-
alence of two propositions. An alternative proof is obtained by excluding all possible
ways in which the propositions may fail to be equivalent. Here is another example.

Example 2.3.2. Show ¬(p→ q) is equivalent to p ∧ ¬q.

Solution 1. Build a truth table containing each of the statements.

p q ¬q p→ q ¬(p→ q) p ∧ ¬q

T T F T F F

T F T F T T

F T F T F F

F F T T F F

Since the truth values for ¬(p→ q) and p∧¬q are exactly the same for all possible
combinations of truth values of p and q, the two propositions are equivalent.

Solution 2. We consider how the two propositions could fail to be equivalent. This
can happen only if the first is true and the second is false or vice versa.

Case 1. Suppose ¬(p→ q) is true and p ∧ ¬q is false.
¬(p → q) would be true if p → q is false. Now this only occurs if p is true
and q is false. However, if p is true and q is false, then p ∧ ¬q will be true.
Hence this case is not possible.

Case 2. Suppose ¬(p→ q) is false and p ∧ ¬q is true.
p ∧ ¬q is true only if p is true and q is false. But in this case, ¬(p→ q) will
be true. So this case is not possible either.

Since it is not possible for the two propositions to have different truth values, they
must be equivalent.

Exercise 2.3.1. Use a truth table to show that the propositions p↔ q and ¬(p⊕q)
are equivalent.

Exercise 2.3.2. Use the method of Solution 2 in Example 2.3.2 to show that the
propositions p↔ q and ¬(p⊕ q) are equivalent.

2. PROPOSITIONAL EQUIVALENCES 37

2.4. Important Logical Equivalences. The logical equivalences below are im-
portant equivalences that should be memorized.

Identity Laws: p ∧ T ⇔ p

p ∨ F ⇔ p

Domination Laws: p ∨ T ⇔ T

p ∧ F ⇔ F

Idempotent Laws: p ∨ p⇔ p

p ∧ p⇔ p

Double Negation ¬(¬p)⇔ p

Law:

Commutative Laws: p ∨ q ⇔ q ∨ p

p ∧ q ⇔ q ∧ p

Associative Laws: (p ∨ q) ∨ r ⇔ p ∨ (q ∨ r)

(p ∧ q) ∧ r ⇔ p ∧ (q ∧ r)

Distributive Laws: p ∨ (q ∧ r)⇔ (p ∨ q) ∧ (p ∨ r)

p ∧ (q ∨ r)⇔ (p ∧ q) ∨ (p ∧ r)

De Morgan’s Laws: ¬(p ∧ q)⇔ ¬p ∨ ¬q

¬(p ∨ q)⇔ ¬p ∧ ¬q

Absorption Laws: p ∧ (p ∨ q)⇔ p

p ∨ (p ∧ q)⇔ p

2. PROPOSITIONAL EQUIVALENCES 38

Implication Law: (p→ q)⇔ (¬p ∨ q)

Contrapositive Law: (p→ q)⇔ (¬q → ¬p)

Tautology: p ∨ ¬p⇔ T

Contradiction: p ∧ ¬p⇔ F

Equivalence: (p→ q) ∧ (q → p)⇔ (p↔ q)

Discussion

Study carefully what each of these equivalences is saying. With the possible
exceptions of the De Morgan Laws, they are fairly straight-forward to understand.
The main difficulty you might have with these equivalences is remembering their
names.

Example 2.4.1. Use the logical equivalences above and substitution to establish
the equivalence of the statements in Example 2.3.2.

Solution.

¬(p→ q) ⇔ ¬(¬p ∨ q) Implication Law

⇔ ¬¬p ∧ ¬q De Morgan’s Law

⇔ p ∧ ¬q Double Negation Law

This method is very similar to simplifying an algebraic expression. You are using
the basic equivalences in somewhat the same way you use algebraic rules like 2x−3x =

−x or
(x+ 1)(x− 3)

x− 3
= x+ 1.

Exercise 2.4.1. Use the propositional equivalences in the list of important logical
equivalences above to prove [(p→ q) ∧ ¬q]→ ¬p is a tautology.

Exercise 2.4.2. Use truth tables to verify De Morgan’s Laws.

2.5. Simplifying Propositions.

2. PROPOSITIONAL EQUIVALENCES 39

Example 2.5.1. Use the logical equivalences above to show that ¬(p ∨ ¬(p ∧ q))
is a contradiction.

Solution.

¬(p ∨ ¬(p ∧ q))

⇔ ¬p ∧ ¬(¬(p ∧ q)) De Morgan’s Law

⇔ ¬p ∧ (p ∧ q) Double Negation Law

⇔ (¬p ∧ p) ∧ q Associative Law

⇔ F ∧ q Contradiction

⇔ F Domination Law and Commutative Law

Example 2.5.2. Find a simple form for the negation of the proposition “If the
sun is shining, then I am going to the ball game.”

Solution. This proposition is of the form p→ q. As we showed in Example 2.3.2 its
negation, ¬(p→ q), is equivalent to p ∧ ¬q. This is the proposition

“The sun is shining, and I am not going to the ball game.”

Discussion

The main thing we should learn from Examples 2.3.2 and 2.5.2 is that the negation
of an implication is not equivalent to another implication, such as “If the sun is
shining, then I am not going to the ball game” or “If the sun is not shining, I am
going to the ball game.” This may be seen by comparing the corresponding truth
tables:

p q p→ ¬q ¬(p→ q)⇔ (p ∧ ¬q) ¬p→ q

T T F F T

T F T T T

F T T F T

F F T F F

If you were to construct truth tables for all of the other possible implications of the
form r → s, where each of r and s is one of p, ¬p, q, or ¬q, you will observe that
none of these propositions is equivalent to ¬(p→ q).

2. PROPOSITIONAL EQUIVALENCES 40

The rule ¬(p → q) ⇔ p ∧ ¬q should be memorized. One way to memorize this
equivalence is to keep in mind that the negation of p → q is the statement that
describes the only case in which p→ q is false.

Exercise 2.5.1. Which of the following are equivalent to ¬(p→ r)→ ¬q? There
may be more than one or none.

(1) ¬(p→ r) ∨ q
(2) (p ∧ ¬r) ∨ q
(3) (¬p→ ¬r) ∨ q
(4) q → (p→ r)
(5) ¬q → (¬p→ ¬r)
(6) ¬q → (¬p ∨ r)
(7) ¬q → ¬(p→ r)

Exercise 2.5.2. Which of the following is the negation of the statement “If you
go to the beach this weekend, then you should bring your books and study”?

(1) If you do not go to the beach this weekend, then you should not bring your
books and you should not study.

(2) If you do not go to the beach this weekend, then you should not bring your
books or you should not study.

(3) If you do not go to the beach this weekend, then you should bring your books
and study.

(4) You will not go to the beach this weekend, and you should not bring your
books and you should not study.

(5) You will not go to the beach this weekend, and you should not bring your
books or you should not study.

(6) You will go to the beach this weekend, and you should not bring your books
and you should not study.

(7) You will go to the beach this weekend, and you should not bring your books
or you should not study.

Exercise 2.5.3. p is the statement “I will prove this by cases”, q is the statement
“There are more than 500 cases,” and r is the statement “I can find another way.”

(1) State (¬r ∨ ¬q)→ p in simple English.
(2) State the converse of the statement in part 1 in simple English.
(3) State the inverse of the statement in part 1 in simple English.
(4) State the contrapositive of the statement in part 1 in simple English.
(5) State the negation of the statement in part 1 in simple English.

2.6. Implication.

Definition 2.6.1. We say the proposition r implies the proposition s and write
r ⇒ s if r → s is a tautology.

2. PROPOSITIONAL EQUIVALENCES 41

This is very similar to the ideas previously discussed regarding the ⇔ verses ↔.
We use r ⇒ s to imply that the statement r → s is true, while that statement r → s
alone does not imply any particular truth value. The symbol⇒ is often used in proofs
as a shorthand for “implies.”

Exercise 2.6.1. Prove (p→ q) ∧ ¬q ⇒ ¬p.

Exercise 2.6.2. Prove p ∧ (p→ q)→ ¬q is a contingency using a truth table.

Exercise 2.6.3. Prove p→ (p ∨ q) is a tautology using a verbal argument.

Exercise 2.6.4. Prove (p ∧ q)→ p is a tautology using the table of propositional
equivalences.

Exercise 2.6.5. Prove [(p→ q) ∧ (q → r)]⇒ (p→ r) using a truth table.

Exercise 2.6.6. Prove [(p ∨ q) ∧ ¬p]⇒ q using a verbal argument.

Exercise 2.6.7. Prove (p∧ q)→ (p∨ q) is a tautology using the table of proposi-
tional equivalences.

2.7. Normal or Canonical Forms.

Definition 2.7.1. Every compound proposition in the propositional variables p,
q, r, ..., is uniquely equivalent to a proposition that is formed by taking the disjunction
of conjunctions of some combination of the variables p, q, r, ... or their negations. This
is called the disjunctive normal form of a proposition.

Discussion

The disjunctive normal form of a compound proposition is a natural and useful
choice for representing the proposition from among all equivalent forms, although it
may not be the simplest representative. We will find this concept useful when we
arrive at the module on Boolean algebra.

2.8. Examples.

Example 2.8.1. Construct a proposition in disjunctive normal form that is true
precisely when

(1) p is true and q is false
Solution. p ∧ ¬q

(2) p is true and q is false or when p is true and q is true.

Solution. (p ∧ ¬q) ∨ (p ∧ q)
(3) either p is true or q is true, and r is false

Solution. (p ∨ q) ∧ ¬r ⇔ (p ∧ ¬r) ∨ (q ∧ ¬r) (Distributive Law)

2. PROPOSITIONAL EQUIVALENCES 42

(Notice that the second example could be simplified to just p.)

Discussion

The methods by which we arrived at the disjunctive normal form in these examples
may seem a little ad hoc. We now demonstrate, through further examples, a sure-fire
method for its construction.

2.9. Constructing Disjunctive Normal Forms.

Example 2.9.1. Find the disjunctive normal form for the proposition p→ q.

Solution. Construct a truth table for p→ q:

p q p→ q

T T T ←

T F F

F T T ←

F F T ←

p→ q is true when either
p is true and q is true, or
p is false and q is true, or
p is false and q is false.
The disjunctive normal form is then

(p ∧ q) ∨ (¬p ∧ q) ∨ (¬p ∧ ¬q)

Discussion

This example shows how a truth table can be used in a systematic way to construct
the disjunctive normal forms. Here is another example.

Example 2.9.2. Construct the disjunctive normal form of the proposition

(p→ q) ∧ ¬r

Solution. Write out the truth table for (p→ q) ∧ ¬r:

2. PROPOSITIONAL EQUIVALENCES 43

p q r p→ q ¬r (p→ q) ∧ ¬r

T T T T F F

T T F T T T

T F T F F F

F T T T F F

T F F F T F

F T F T T T

F F T T F F

F F F T T T

The disjunctive normal form will be a disjunction of three conjunctions, one for each
row in the truth table that gives the truth value T for (p→ q)∧¬r. These rows have
been boxed. In each conjunction we will use p if the truth value of p in that row is T
and ¬p if the truth value of p is F, q if the truth value of q in that row is T and ¬q if
the truth value of q is F, etc. The disjunctive normal form for (p→ q) ∧ ¬r is then

(p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ ¬r),
because each of these conjunctions is true only for the combination of truth values of
p, q, and r found in the corresponding row. That is, (p ∧ q ∧ ¬r) has truth value T
only for the combination of truth values in row 2, (¬p∧q∧¬r) has truth value T only
for the combination of truth values in row 6, etc. Their disjunction will be true for
precisely the three combinations of truth values of p, q, and r for which (p→ q)∧¬r
is also true.

Terminology. The individual conjunctions that make up the disjunctive normal
form are called minterms. In the previous example, the disjunctive normal form for
the proposition (p → q) ∧ ¬r has three minterms, (p ∧ q ∧ ¬r), (¬p ∧ q ∧ ¬r), and
(¬p ∧ ¬q ∧ ¬r).

2.10. Conjunctive Normal Form. The conjunctive normal form of a propo-
sition is another “canonical form” that may occasionally be useful, but not to the same
degree as the disjunctive normal form. As the name should suggests after our discus-
sion above, the conjunctive normal form of a proposition is the equivalent form that
consists of a “conjunction of disjunctions.” It is easily constructed indirectly using
disjunctive normal forms by observing that if you negate a disjunctive normal form
you get a conjunctive normal form. For example, three applications of De Morgan’s
Laws gives

¬[(p ∧ ¬q) ∨ (¬p ∧ ¬q)]⇔ (¬p ∨ q) ∧ (p ∨ q).

2. PROPOSITIONAL EQUIVALENCES 44

Thus, if you want to get the conjunctive normal form of a proposition, construct the
disjunctive normal form of its negation and then negate again and apply De Morgan’s
Laws.

Example 2.10.1. Find the conjunctive normal form of the proposition (p∧¬q)∨r.

Solution.

(1) Negate: ¬[(p ∧ ¬q) ∨ r]⇔ (¬p ∨ q) ∧ ¬r.
(2) Find the disjunctive normal form of (¬p ∨ q) ∧ ¬r:

p q r ¬p ¬r ¬p ∨ q (¬p ∨ q) ∧ ¬r

T T T F F T F

T T F F T T T

T F T F F F F

F T T T F T F

T F F F T F F

F T F T T T T

F F T T F T F

F F F T T T T

The disjunctive normal form for (¬p ∨ q) ∧ ¬r is

(p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ ¬q ∧ ¬r).

(3) The conjunctive normal form for (p∧¬q)∨ r is then the negation of this last
expression, which, by De Morgan’s Laws, is

(¬p ∨ ¬q ∨ r) ∧ (p ∨ ¬q ∨ r) ∧ (p ∨ q ∨ r).

3. PREDICATES AND QUANTIFIERS 45

3. Predicates and Quantifiers

3.1. Predicates and Quantifiers.

Definition 3.1.1. A predicate or propositional function is a description of
the property (or properties) a variable or subject may have. A proposition may be
created from a propositional function by either assigning a value to the variable or by
quantification.

Definition 3.1.2. The independent variable of a propositional function must have
a universe of discourse, which is a set from which the variable can take values.

Discussion

Recall from the introduction to logic that the sentence “x + 2 = 2x” is not a
proposition, but if we assign a value for x then it becomes a proposition. The phrase
“x+ 2 = 2x” can be treated as a function for which the input is a value of x and the
output is a proposition.

Another way we could turn this sentence into a proposition is to quantify its
variable. For example, “for every real number x, x+ 2 = 2x” is a proposition (which
is, in fact, false, since it fails to be true for the number x = 0).

This is the idea behind propositional functions or predicates. As stated above a
predicate is a property or attribute assigned to elements of a particular set, called the
universe of discourse. For example, the predicate “x + 2 = 2x”, where the universe
for the variable x is the set of all real numbers, is a property that some, but not all,
real numbers possess.

In general, the set of all x in the universe of discourse having the attribute P (x)
is called the truth set of P . That is, the truth set of P is

{x ∈ U |P (x)}.

3.2. Example of a Propositional Function.

Example 3.2.1. The propositional function P (x) is given by “x > 0” and the
universe of discourse for x is the set of integers. To create a proposition from P , we
may assign a value for x. For example,

• setting x = −3, we get P (−3): “−3 > 0”, which is false.
• setting x = 2, we get P (2): “2 > 0”, which is true.

3. PREDICATES AND QUANTIFIERS 46

Discussion

In this example we created propositions by choosing particular values for x.

Here are two more examples:

Example 3.2.2. Suppose P (x) is the sentence “x has fur” and the universe of
discourse for x is the set of all animals. In this example P (x) is a true statement if
x is a cat. It is false, though, if x is an alligator.

Example 3.2.3. Suppose Q(y) is the predicate “y holds a world record,” and
the universe of discourse for y is the set of all competitive swimmers. Notice that
the universe of discourse must be defined for predicates. This would be a different
predicate if the universe of discourse is changed to the set of all competitive runners.

Moral: Be very careful in your homework to specify the universe of discourse pre-
cisely!

3.3. Quantifiers. A quantifier turns a propositional function into a proposition
without assigning specific values for the variable. There are primarily two quantifiers,
the

universal quantifier

and the

existential quantifier.

Definition 3.3.1. The universal quantification of P (x) is the proposition

“P (x) is true for all values x in the universe of discourse.”

Notation: “For all x P (x)” or “For every x P (x)” is written

∀xP (x).

Definition 3.3.2. The existential quantification of P (x) is the proposition

“There exists an element x in the universe of discourse such that P (x) is true.”

Notation: “There exists x such that P (x)” or “There is at least one x such that
P (x)” is written

∃xP (x).

Discussion

3. PREDICATES AND QUANTIFIERS 47

As an alternative to assigning particular values to the variable in a propositional
function, we can turn it into a proposition by quantifying its variable. Here we see
the two primary ways in which this can be done, the universal quantifier and the
existential quantifier.

In each instance we have created a proposition from a propositional function by
binding its variable.

3.4. Example 3.4.1.

Example 3.4.1. Suppose P (x) is the predicate x + 2 = 2x, and the universe of
discourse for x is the set {1, 2, 3}. Then...

• ∀xP (x) is the proposition “For every x in {1, 2, 3} x+ 2 = 2x.” This propo-
sition is false.
• ∃xP (x) is the proposition “There exists x in {1, 2, 3} such that x+ 2 = 2x.”

This proposition is true.

Exercise 3.4.1. Let P (n,m) be the predicate mn > 0, where the domain for m
and n is the set of integers. Which of the following statements are true?

(1) P (−3, 2)
(2) ∀mP (0,m)
(3) ∃nP (n,−3)

3.5. Converting from English.

Example 3.5.1. Assume

F (x): x is a fox.

S(x): x is sly.

T (x): x is trustworthy.

and the universe of discourse for all three functions is the set of all animals.

• Everything is a fox: ∀xF (x)
• All foxes are sly: ∀x[F (x)→ S(x)]
• If any fox is sly, then it is not

trustworthy:
∀x[(F (x) ∧ S(x)→ ¬T (x)]⇔ ¬∃x[F (x) ∧ S(x) ∧ T (x)]

Discussion

3. PREDICATES AND QUANTIFIERS 48

Notice that in this example the last proposition may be written symbolically in
the two ways given. Think about the how you could show they are the same using
the logical equivalences in Module 2.2.

3.6. Additional Definitions.

• An assertion involving predicates is valid if it is true for every element in
the universe of discourse.
• An assertion involving predicates is satisfiable if there is a universe and an

interpretation for which the assertion is true. Otherwise it is unsatisfiable.
• The scope of a quantifier is the part of an assertion in which the variable is

bound by the quantifier.

Discussion

You would not be asked to state the definitions of the terminology given, but you
would be expected to know what is meant if you are asked a question like “Which of
the following assertions are satisfiable?”

3.7. Examples.

Example 3.7.1.

If the universe of discourse is U = {1, 2, 3}, then

(1) ∀xP (x)⇔ P (1) ∧ P (2) ∧ P (3)
(2) ∃xP (x)⇔ P (1) ∨ P (2) ∨ P (3)

Suppose the universe of discourse U is the set of real numbers.

(1) If P (x) is the predicate x2 > 0, then ∀xP (x) is false, since P (0) is false.
(2) If P (x) is the predicate x2 − 3x − 4 = 0, then ∃xP (x) is true, since P (−1)

is true.
(3) If P (x) is the predicate x2 + x+ 1 = 0, then ∃xP (x) is false, since there are

no real solutions to the equation x2 + x+ 1 = 0.
(4) If P (x) is the predicate “If x 6= 0, then x2 ≥ 1’, then ∀xP (x) is false, since

P (0.5) is false.

Exercise 3.7.1. In each of the cases above give the truth value for the statement
if each of the ∀ and ∃ quantifiers are reversed.

3. PREDICATES AND QUANTIFIERS 49

3.8. Multiple Quantifiers. Multiple quantifiers are read from left to right.

Example 3.8.1. Suppose P (x, y) is “xy = 1”, the universe of discourse for x
is the set of positive integers, and the universe of discourse for y is the set of real
numbers.

(1) ∀x∀yP (x, y) may be read “For every positive integer x and for every real
number y, xy = 1. This proposition is false.

(2) ∀x∃yP (x, y) may be read “For every positive integer x there is a real number
y such that xy = 1. This proposition is true.

(3) ∃y∀xP (x, y) may be read “There exists a real number y such that, for every
positive integer x, xy = 1. This proposition is false.

Discussion

Study the syntax used in these examples. It takes a little practice to make it come
out right.

3.9. Ordering Quantifiers. The order of quantifiers is important; they may
not commute.

For example,

(1) ∀x∀yP (x, y)⇔ ∀y∀xP (x, y), and
(2) ∃x∃yP (x, y)⇔ ∃y∃xP (x, y),

but
(3) ∀x∃yP (x, y) 6⇔ ∃y∀xP (x, y).

Discussion

The lesson here is that you have to pay careful attention to the order of the
quantifiers. The only cases in which commutativity holds are the cases in which both
quantifiers are the same. In the one case in which equivalence does not hold,

∀x∃yP (x, y) 6⇔ ∃y∀xP (x, y),

there is an implication in one direction. Notice that if ∃y∀xP (x, y) is true, then there
is an element c in the universe of discourse for y such that P (x, c) is true for all x in
the universe of discourse for x. Thus, for all x there exists a y, namely c, such that
P (x, y). That is, ∀x∃yP (x, y). Thus,

∃y∀xP (x, y)⇒ ∀x∃yP (x, y).

Notice predicates use function notation and recall that the variable in function
notation is really a place holder. The statement ∀x∃yP (x, y) means the same as

3. PREDICATES AND QUANTIFIERS 50

∀s∃tP (s, t). Now if this seems clear, go a step further and notice this will also mean
the same as ∀y∃xP (y, x). When the domain of discourse for a variable is defined it
is in fact defining the domain for the place that variable is holding at that time.

Here are some additional examples:

Example 3.9.1. P (x, y) is “x is a citizen of y.” Q(x, y) is “x lives in y.” The
universe of discourse of x is the set of all people and the universe of discourse for y
is the set of US states.

(1) All people who live in Florida are citizens of Florida.

∀x(Q(x, F lorida)→ P (x, F lorida))

(2) Every state has a citizen that does not live in that state.

∀y∃x(P (x, y) ∧ ¬Q(x, y))

Example 3.9.2. Suppose R(x, y) is the predicate “x understands y,” the universe
of discourse for x is the set of students in your discrete class, and the universe of
discourse for y is the set of examples in these lecture notes. Pay attention to the
differences in the following propositions.

(1) ∃x∀yR(x, y) is the proposition “There exists a student in this class who un-
derstands every example in these lecture notes.”

(2) ∀y∃xR(x, y) is the proposition “For every example in these lecture notes there
is a student in the class who understands that example.”

(3) ∀x∃yR(x, y) is the proposition “Every student in this class understands at
least one example in these notes.”

(4) ∃y∀xR(x, y) is the proposition “There is an example in these notes that every
student in this class understands.”

Exercise 3.9.1. Each of the propositions in Example 3.9.2 has a slightly different
meaning. To illustrate this, set up the following diagrams: Write the five letters
A,B,C,D,E on one side of a page, and put the numbers 1 through 6 on the other
side. The letters represent students in the class and the numbers represent examples.
For each of the propositions above draw the minimal number of lines connecting people
to examples so as to construct a diagram representing a scenario in which the given
proposition is true.

Notice that for any chosen pair of propositions above, you can draw diagrams that
would represent situations where the two propositions have opposite truth values.

Exercise 3.9.2. Give a scenario where parts 1 and 2 in Example 3.9.2 have
opposite truth values.

3. PREDICATES AND QUANTIFIERS 51

Exercise 3.9.3. Let P (x, y) be the predicate 2x + y = xy, where the domain of
discourse for x is {u ∈ Z|u 6= 1} and for y is {u ∈ Z|u 6= 2}. Determine the truth
value of each statement. Show work or briefly explain.

(1) P (−1, 1)
(2) ∃xP (x, 0)
(3) ∃yP (4, y)
(4) ∀yP (2, y)
(5) ∀x∃yP (x, y)
(6) ∃y∀xP (x, y)
(7) ∀x∀y[((P (x, y)) ∧ (x > 0))→ (y > 1)]

3.10. Unique Existential.

Definition 3.10.1. The unique existential quantification of P (x) is the
proposition “There exists a unique element x in the universe of discourse such that
P (x) is true.”

Notation: “There exists unique x such that P (x)” or “There is exactly one x P (x)”
is written

∃!xP (x).

Discussion

Continuing with Example 3.9.2, the proposition ∀x∃!yR(x, y) is the proposition
“Every student in this class understands exactly one example in these notes (but not
necessarily the same example for all students).”

Exercise 3.10.1. Let P (n,m) be the predicate mn ≥ 0, where the domain for m
and n is the set of integers. Which of the following statements are true?

(1) ∃!n∀mP (n,m)
(2) ∀n∃!mP (n,m)
(3) ∃!mP (2,m)

Exercise 3.10.2. Repeat Exercise 3.9.1 for the four propositions ∀x∃!yR(x, y),
∃!y∀xR(x, y), ∃!x∀yR(x, y), and ∀y∃!xR(x, y).

Remember: A predicate is not a proposition until all variables have been bound
either by quantification or by assignment of a value!

3. PREDICATES AND QUANTIFIERS 52

3.11. De Morgan’s Laws for Quantifiers.

• ¬∀xP (x)⇔ ∃x¬P (x)
• ¬∃xP (x)⇔ ∀x¬P (x)

Discussion

The negation of a quantified statement are obtained from the De Morgan’s Laws
in Module 2.1.

So the negation of the proposition “Every fish in the sea has gills,” is the propo-
sition “there is at least one fish in the sea that does not have gills.”

If there is more than one quantifier, then the negation operator should be passed
from left to right across one quantifier at a time, using the appropriate De Morgan’s
Law at each step. Continuing further with Example 3.9.2, suppose we wish to negate
the proposition “Every student in this class understands at least one example in these
notes.” Apply De Morgan’s Laws to negate the symbolic form of the proposition:

¬(∀x∃yR(x, y)) ⇔ ∃x(¬∃yR(x, y))

⇔ ∃x∀y¬R(x, y)

The first proposition could be read “It is not the case that every student in this
class understands at least one example in these notes.” The goal, however, is to find
an expression for the negation in which the verb in each predicate in the scope of the
quantifiers is negated, and this is the intent in any exercise, quiz, or test problem that
asks you to “negate the proposition” Thus, a correct response to the instruction to
negate the proposition “Every student in this class understands at least one example
in these notes” is the proposition “There is at least one student in this class that does
not understand any of the examples in these notes.”

Exercise 3.11.1. Negate the rest of the statements in Example 3.9.2.

It is easy to see why each of these rules of negation is just another form of De Mor-
gan’s Law, if you assume that the universe of discourse is finite: U = {x1, x2, ..., xn}.
For example,

∀xP (x)⇔ P (x1) ∧ P (x2) ∧ · · · ∧ P (xn)

so that

3. PREDICATES AND QUANTIFIERS 53

¬∀xP (x) ⇔ ¬[P (x1) ∧ P (x2) ∧ · · · ∧ P (xn)]

⇔ [¬P (x1) ∨ ¬P (x1) ∨ · · · ∨ ¬P (x1)]

⇔ ∃x¬P (x)

If U is an arbitrary universe of discouse, we must argue a little differently: Suppose
¬∀xP (x) is true. Then ∀xP (x) is false. This is true if and only if there is some c in
U such that P (c) is false. This is true if and only if there is some c in U such that
¬P (c) is true. But this is true if and only if ∃x¬P (x).

The argument for the other equivalence is similar.

Exercise 3.11.2. Suppose S(x, y) is the predicate “x saw y,” L(x, y) is the predi-
cate “x liked y,” and C(y) is the predicate “y is a comedy.” The universe of discourse
of x is the set of people and the universe of discourse for y is the set of movies. Write
the following in proper English. Do not use variables in your answers.

(1) ∀y¬S(Margaret, y)
(2) ∃y∀xL(x, y)
(3) ∃x∀y[C(y)→ S(x, y)]
(4) Give the negation for part 3 in symbolic form with the negation symbol to the

right of all quantifiers.
(5) state the negation of part 3 in English without using the phrase ”it is not the

case.”

Exercise 3.11.3. Suppose the universe of discourse for x is the set of all FSU
students, the universe of discourse for y is the set of courses offered at FSU, A(y) is
the predicate “y is an advanced course,” F (x) is “x is a freshman,” T (x, y) is “x is
taking y,” and P (x, y) is “x passed y.” Use quantifiers to express the statements

(1) No student is taking every advanced course.
(2) Every freshman passed calculus.
(3) Some advanced course(s) is(are) being taken by no students.
(4) Some freshmen are only taking advanced courses.
(5) No freshman has taken and passed linear algebra.

Here is a formidable example from the calculus. Suppose a and L are fixed real
numbers, and f is a real-valued function of the real variable x. Recall the rigorous
definition of what it means to say “the limit of f(x) as x tends to a is L”:

lim
x→a

f(x) = L ⇔

for every ε > 0 there exists δ > 0 such that, for every x,

3. PREDICATES AND QUANTIFIERS 54

if 0 < |x− a| < δ, then |f(x)− L| < ε.

Here, the universe of discourse for the variables ε, δ, and x is understood to be the
set of all real numbers.

What does it mean to say that lim
x→a

f(x) 6= L? In order to figure this out, it is

useful to convert this proposition into a symbolic proposition. So, let P (ε, δ, x) be
the predicate “0 < |x − a| < δ” and let Q(ε, δ, x) be the predicate “|f(x) − L| < ε.”
(It is perfectly OK to list a variable in the argument of a predicate even though it
doesn’t actually appear!) We can simplify the proposition somewhat by restricting
the universe of discourse for the variables ε and δ to be the set of positive real numbers.
The definition then becomes

∀ε∃δ∀x[P (ε, δ, x)→ Q(ε, δ, x)].

Use De Morgan’s Law to negate:

¬[∀ε∃δ∀x[P (ε, δ, x)→ Q(ε, δ, x)]]⇔ ∃ε∀δ∃x[P (ε, δ, x) ∧ ¬Q(ε, δ, x)],

and convert back into words:

There exists ε > 0 such that, for every δ > 0 there exists x such that,
0 < |x− a| < δ and |f(x)− L| ≥ ε.

3.12. Distributing Quantifiers over Operators.

(1) ∀x[P (x) ∧Q(x)]⇔ ∀xP (x) ∧ ∀xQ(x), but

(2) ∀x[P (x) ∨Q(x)] 6⇔ ∀xP (x) ∨ ∀xQ(x).

(3) ∃x[P (x) ∨Q(x)]⇔ ∃xP (x) ∨ ∃xQ(x), but

(4) ∃x[P (x) ∧Q(x)] 6⇔ ∃xP (x) ∧ ∃xQ(x).

Discussion

Here we see that in only half of the four basic cases does a quantifier distribute
over an operator, in the sense that doing so produces an equivalent proposition.

Exercise 3.12.1. In each of the two cases in which the statements are not equiv-
alent, there is an implication in one direction. Which direction? In order to help you
analyze these two cases, consider the predicates P (x) = [x ≥ 0] and Q(x) = [x < 0],
where the universe of discourse is the set of all real numbers.

Exercise 3.12.2. Write using predicates and quantifiers.

(1) For every m,n ∈ N there exists p ∈ N such that m < p and p < n.
(2) For all nonnegative real numbers a, b, and c, if a2 + b2 = c2, then a+ b ≥ c.

3. PREDICATES AND QUANTIFIERS 55

(3) There does not exist a positive real number a such that a+
1

a
< 2.

(4) Every student in this class likes mathematics.
(5) No student in this class likes mathematics.
(6) All students in this class that are CS majors are going to take a 4000 level

math course.

Exercise 3.12.3. Give the negation of each statement in example 3.12.2 using
predicates and quantifiers with the negation to the right of all quantifiers.

Exercise 3.12.4. Give the negation of each statement in example 3.12.2 using an
English sentence.

CHAPTER 3

Methods of Proofs

1. Logical Arguments and Formal Proofs

1.1. Basic Terminology.

• An axiom is a statement that is given to be true.
• A rule of inference is a logical rule that is used to deduce one statement

from others.
• A theorem is a proposition that can be proved using definitions, axioms,

other theorems, and rules of inference.

Discussion

In most of the mathematics classes that are prerequisites to this course, such
as calculus, the main emphasis is on using facts and theorems to solve problems.
Theorems were often stated, and you were probably shown a few proofs. But it is
very possible you have never been asked to prove a theorem on your own. In this
module we introduce the basic structures involved in a mathematical proof. One of
our main objectives from here on out is to have you develop skills in recognizing a
valid argument and in constructing valid mathematical proofs.

When you are first shown a proof that seemed rather complex you may think to
yourself “How on earth did someone figure out how to go about it that way?” As we
will see in this chapter and the next, a proof must follow certain rules of inference,
and there are certain strategies and methods of proof that are best to use for proving
certain types of assertions. It is impossible, however, to give an exhaustive list of
strategies that will cover all possible situations, and this is what makes mathematics
so interesting. Indeed, there are conjectures that mathematicians have spent much
of their professional lives trying to prove (or disprove) with little or no success.

1.2. More Terminology.

• A lemma is a “pre-theorem” or a result which is needed to prove a theorem.
• A corollary is a “post-theorem” or a result which follows from a theorem

(or lemma or another corollary).

56

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 57

Discussion

The terms “lemma” and “corollary” are just names given to theorems that play
particular roles in a theory. Most people tend to think of a theorem as the main
result, a lemma a smaller result needed to get to the main result, and a corollary
as a theorem which follows relatively easily from the main theorem, perhaps as a
special case. For example, suppose we have proved the Theorem: “If the product
of two integers m and n is even, then either m is even or n is even.” Then we have
the Corollary: “If n is an integer and n2 is even, then n is even.” Notice that the
Corollary follows from the Theorem by applying the Theorem to the special case in
which m = n. There are no firm rules for the use of this terminology; in practice,
what one person may call a lemma another may call a theorem.

Any mathematical theory must begin with a collection of undefined terms and
axioms that give the properties the undefined terms are assumed to satisfy. This may
seem rather arbitrary and capricious, but any mathematical theory you will likely
encounter in a serious setting is based on concrete ideas that have been developed
and refined to fit into this setting. To justify this necessity, see what happens if you
try to define every term. You define a in terms of b, and then you define b in terms
of c, etc. If a, b, c, ... are all different terms, you are lead to an infinite chain of
definitions; otherwise, one of them is repeated and you are left with a circular chain
of definitions. Neither of these alternatives is logically acceptable. A similar criticism
can be made for any attempt to prove every assertion. Here are a few important
examples of mathematical systems and their basic ingredients.

In plane geometry one takes “point” and “line” as undefined terms and assumes
the five axioms of Euclidean geometry.

In set theory, the concept of a “set” and the relation “is an element of,” or “∈”,
are left undefined. There are five basic axioms of set theory, the so-called Zermelo-
Fraenkel axioms, which we will use informally in this course, rather than giving them
a rigorous exposition. In particular, these axioms justify the “set builder” notation
we discussed in Module 1.1: Sets and the existence of the “power set” of a set, which
we shall discuss later in Module 4.1: Set Operations.

The real number system begins with the four Peano Postulates for the positive
integers, taking the elements, “numbers,” in the set of positive integers as undefined,
as well as the relation “is a successor of” between positive integers. (To say “x is a
successor of y” turns out to mean that x = y + 1.) The fourth Peano Postulate is
the Principle of Mathematical Induction, which we shall use extensively in the next
module. From these modest beginnings, and with a little help from set theory, one
can construct the entire set of real numbers, including its order and completeness
properties. As with our treatment of set theory, we shall, with the one exception
mentioned above, use these axioms informally, assuming the familiar model of the real

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 58

number line together with its important subsets, the natural numbers, the integers,
and the rational numbers.

Once we have the undefined terms and axioms for a mathematical system, we can
begin defining new terms and proving theorems (or lemmas, or corollaries) within the
system.

1.3. Formal Proofs. To prove an argument is valid:

• Assume the hypotheses are true.
• Use the rules of inference and logical equivalences to show that the conclusion

is true.

Discussion

What is a proof?

A proof is a demonstration, or argument, that shows beyond a shadow of a doubt
that a given assertion is a logical consequence of our axioms and definitions. Thus, in
any problem in which you are asked to provide a proof, your solution will not simply
be a short answer that you circle. There are certain rules that must be followed
(which we will get to shortly), and certain basic knowledge must be assumed. For
example, one may assume the axioms and any previously stated theorems (unless the
instructions state otherwise). A large number of proofs simply involve showing that
a certain definition is satisfied.

In almost every case, the assertions we will be proving are of the form “if p, then
q”, where p and q are (possibly compound) propositions. The proposition p is the
hypothesis and q is the conclusion. It is almost always useful to translate a statement
that must be proved into an “if ..., then ...” statement if it is not already in that form.
To begin a proof we assume the hypotheses. For example, consider the argument

Every dog will have his day.
Fido is a dog.
Therefore, Fido will have his day.

The hypotheses of this argument are “Every dog will have his day” and “Fido is a
dog.” The conclusion is “Fido will have his day.”

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 59

1.4. Rules of Inference.

Modus Ponens or p

the Law of Detachment p→ q

.·.q

Disjunction Introduction p

.·.p ∨ q

Conjunction Elimination p ∧ q

.·.p

Modus Tollens ¬q

p→ q

.·.¬p

Hypothetical Syllogism p→ q

q → r

.·.p→ r

Disjunctive Syllogism p ∨ q

¬p

.·.q

Conjunction Introduction p

q

.·.p ∧ q

Constructive Dilemma (p→ q) ∧ (r → s)

p ∨ r

.·.q ∨ s

Discussion

An argument is valid if it is uses only the given hypotheses together with the
axioms, definitions, previously proven assertions, and the rules of inference, which
are listed above. In those rules in which there is more than one hypothesis, the order

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 60

of the hypotheses is not important. For example, modus tollens could be just as well
stated:

p→ q

¬q

.·.¬p

The notation used in these slides is commonly used in logic to express an argument
symbolically. The proposition(s) before the horizontal line are the hypotheses and the
proposition below the line is the conclusion. The symbol .·. is a common shorthand
for “therefore.”

Each of the rules of inference is a tautology expressed in a different form. For
example, the rule of modus ponens, when stated as a propositional form, is the tau-
tology

[p ∧ (p→ q)]→ q.

(This can be verified using a truth table.)

Remark 1.4.1. An argument of the form

h1

h2
...

hn

.·.c

is valid if and only if the proposition [h1 ∧ h2 ∧ · · · ∧ hn]→ c is a tautology.

1.5. Example 1.5.1.

Example 1.5.1. The following is a valid logical argument:

1. If the dog eats the cat food or scratches at the door, then the parrot will bark.
2. If the cat eats the parrot, then the parrot will not bark.
3. If the cat does not eat the parrot, then it will eat the cat food.
4. The cat did not eat the cat food.
5. Therefore, the dog does not eat the cat food either.

Discussion

Here is how the hypotheses give us the conclusion:

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 61

1. Assign propositional variables to the component propositions in the argument:
• d – the dog eats the cat food
• s – the dog scratches at the door
• p – the parrot will bark
• c – the cat eats the parrot
• e – the cat eats the cat food

2. Represent the formal argument using the variables:
(d ∨ s)→ p
c→ ¬p
¬c→ e
¬e
.·.¬d

3. Use the hypotheses, the rules of inference, and any logical equivalences to prove
that the argument is valid:

Assertion Reason

1. ¬c→ e hypothesis 3

2. ¬e hypothesis 4

3. c steps 1 and 2 and modus tollens

4. c→ ¬p hypothesis 2

5. ¬p steps 3 and 4 and modus ponens

6. (d ∨ s)→ p hypothesis 1

7. ¬(d ∨ s) steps 5 and 6 and modus tollens

8. ¬d ∧ ¬s step 7 and De Morgan’s law

9. ¬d step 8 and conjunction elimination

We could also determine if the argument is valid by checking if the proposition
[((d∨s)→ p)∧(c→ ¬p)∧(¬c→ e)∧(¬e)]→ (¬d) is a tautology. In practice, though,
it is more useful to recognize if the rules of inference have been applied appropriately
or if one of the common fallacies have been used to determine if an argument is valid
or not. It will serve you better later on to understand the two column proof of a valid
argument and to recognize how the rules of inference are applied.

Exercise 1.5.1. Give a formal proof that the following argument is valid. Provide
reasons.

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 62

a ∨ b

¬c→ ¬b

¬a

.·.c

Exercise 1.5.2. Determine whether the following argument is valid. Give a for-
mal proof. Provide reasons.

¬(¬p ∨ q)

¬z → ¬s

s→ (p ∧ ¬q)

¬z ∨ r

.·.r

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 63

1.6. Rules of Inference for Quantifiers.

Universal Instantiation
∀xP (x)

.·.P (c)

Universal Generalization
P (c) for arbitrary member, c, of the universe

.·.∀xP (x)

Existential Generalization
P (c) for some member, c, of the universe

.·.∃xP (x)

Existential Instantiation
∃xP (x)

.·.P (c)

Discussion

Here is the list of additional rules of inference related to quantifiers. The symbol
c represents some particular element from the universe of discourse for the variable
x.

In Universal Instantiation, c may be any element from the universe of discourse
for x. For example, suppose the universe of discourse is the set of real numbers, and
P (x) is the predicate x2 ≥ 0. Since x2 ≥ 0 for all x, we may conclude (a− b)2 ≥ 0 for
arbitrary real numbers a and b. Here, c = a− b. We may also conclude (−π)2 ≥ 0.

In Existential Instantiation, c must be chosen so that P (c) is true. For example,
suppose the universe of discourse is the set of integers, and let P (x) be the predicate,
“x is a divisor of 17283 and 1 < x < 17283.” Then ∃xP (x) is a true statement (e.g.,
P (3)). We may then assume c is a divisor of 17283 and 1 < c < 17283 for some
integer c.

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 64

Sometimes we may know a statement of the form ∃xP (x) is true, but we may
not know exactly for what x in the domain of discourse gives us that this is true.
In a proof when we know the truth of ∃xP (x) we can define a variable, say c, to
stand for a fixed element of the domain where P (c) is true. This is what Existential
Instantiation gives you. An example in which we have this situation is by using the
Intermediate Value Theorem from algebra.

Let f : R → R be the polynomial f(x) = −3x4 + x3 + 2x + 1. Since f(1) = 1,
f(2) = −35, and f is continuous, there must be a solution to f(x) = 0 in the interval
[1, 2]. It may not possible to find this solution algebraically, though, and may only
be possible to numerically approximate the root. However, if we needed to use the
solution for some purpose we could simply say let c ∈ [1, 2] be such that f(c) = 0 and
this fixes c as the solution we know exists in [1, 2].

Universal Generalization is a subtle and very useful rule and the meaning may not
be clear to you yet. The variable x stands for any arbitrary element of the universe
of discourse. You only assume x is a member of the universe and do not place any
further restrictions on x. If you can show P (x) is true, then it will also be true for
any other object satisfying the same properties you’ve claimed for x. In other words,
P (x) is true for all the members of the universe, ∀xP (x). You will see a standard
approach in proving statements about sets is to use Universal Generalization.

1.7. Example 1.7.1.

Example 1.7.1. Here is a simple argument using quantifiers.

1. Every dog will have his day.
2. Fido is a dog.
3. Therefore, Fido will have his day.

Discussion

To verify this is a valid argument we use the same technique as before.

Define the predicates

• M(x): x is a dog
• D(x): x has his day

and let F represent Fido, a member of the universe of discourse.

The argument becomes

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 65

∀x[M(x)→ D(x)]

M(F)

.·.D(F)

The proof is

1. ∀x[M(x)→ D(x)] hypothesis 1

2. M(F)→ D(F) step 1 and universal instantiation

3. M(F) hypothesis 2

4. D(F) steps 2 and 3 and modus ponens

Exercise 1.7.1. Determine whether the following argument is valid or invalid.
Give a formal proof. Provide reasons.

There is someone in this class who has taken Calculus III. Everyone who takes
Calculus III also takes Physics (concurrently). Therefore, someone in this class has
taken Physics.

1.8. Fallacies. The following are not valid argument forms.

Affirming the

Consequent

p→ q

q

.·.p

Denying the

Antecedent

p→ q

¬p
.·.¬q

Begging the Question

or Circular Reasoning

Use the truth of the

consequent in the

argument

Discussion

There are several common mistakes made in trying to create a proof. Here we
list three of the most common fallacies or errors in logic. Since they are not valid
arguments, obviously you should not use them in a proof. Just as important, you
should be able to recognize one of them if you were to encounter it in someone else’s
argument.

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 66

The fallacy of affirming the consequent occurs when the converse of a premise is
used to prove a statement. For example, here is an “argument” using the fallacy of
affirming the consequent.

Example 1.8.1. If Jack lands the new account, then he will get a raise. Jack got
a raise. Therefore, he landed the new account.

Note that [(p → q) ∧ q] → p] is not a tautology, so this is not a valid argument.
The “if ..., then ...” statement is not equivalent to its converse. In the above example,
just because Jack got a raise, you can’t conclude from the hypothesis that he landed
the new account.

The fallacy of denying the antecedent comes from the fact that an implication
is not equivalent to its inverse. Here is an example of incorrect reasoning using the
fallacy of denying the antecedent:

Example 1.8.2. If the cat is purring, then he ate the canary. The cat is not
purring. Therefore, the cat didn’t eat the canary.

In this example, the hypothesis does not allow you to conclude anything if the
cat is not purring, only if he is purring. The fallacy results from the fact that the
propositional form [(p→ q) ∧ ¬p]→ ¬q is not a tautology.

Begging the question, or circular reasoning, occurs when the conclusion itself is
used in the proof. Here is an example of this type of fallacy:

Example 1.8.3. Prove: If xy is divisible by 5, then x is divisible by 5 or y is
divisible by 5.

Incorrect Proof: If xy is divisible by 5, then xy = 5k for some k.
Then x = 5` for some `, or y = 5` for some `. Hence, x is divisible
by 5 or y is divisible by 5.

This argument breaks down once we assert, without justification, that either x =
5` for some `, or y = 5` for some `. This, of course, is what we are trying to prove,
and it doesn’t follow directly from xy = 5k.

Exercise 1.8.1. Give a careful proof of the statement: For all integers m and n,
if m is odd and n is even, then m+ n is odd.

Example 1.8.4. Prove: for all real x, x < x+ 1.

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 67

Proof. First we fix an arbitrary real number: Let x ∈ R. We wish to show
x < x+1. This inequality is equivalent to 0 < (x+1)−x. But by the commutative and
associative properties of real numbers this inequality is equivalent to 0 < 1 + (x− x)
or equivalently, 0 < 1. We know the last inequality is true and so the equivalent
expression x < x+ 1 is also true.

�

In the previous example we took the expression we wished to show was true and
rewrote it several times until we reached an expression that we knew to be true. This
is a useful tool but one must be extremely cautious in using this technique. Notice
we did not actually assume what we wished to prove. Instead, we used equivalences
to rephrase what we needed to show.

Example 1.8.5. Now, here is an incorrect “proof” of the same statement in Ex-
ercise 1.8.4. This proof would be marked wrong.

Incorrect “proof” of Exercise 1.8.4. Let x ∈ R. Then

x < x+ 1

⇒ 0 < (x+ 1)− x

⇒ 0 < (x− x) + 1 by the associative and commutative

properties of real numbers

⇒ 0 < 1

We know 0 < 1. �

Exercise 1.8.2. Consider the following hypotheses: If the car does not start today,
then I will not go to class. If I go to class today then I will take the quiz. If I do not
take the quiz today then I will ask the teacher for an extra credit assignment. I asked
the teacher for an extra credit assignment.

Determine whether each of the following are valid or invalid conclusions of the
above hypotheses. Why or why not?

(1) I did not go to class today.
(2) Remove the hypothesis “I asked the teacher for an extra credit assignment”

from the above assumptions. Can one now conclude “If the car does not
start today, then I will ask the teacher for an extra credit assignment” for
the remaining assumptions?

Exercise 1.8.3. Find the error in the proof of the following statement.

1. LOGICAL ARGUMENTS AND FORMAL PROOFS 68

Suppose x is a positive real number. Claim: the sum of x and its reciprocal is
greater than or equal to 2.

Incorrect “proof”. Multiplying by x we get x2 + 1 ≥ 2x. By algebra, x2 −
2x+ 1 ≥ 0. Thus (x− 1)2 ≥ 0. Any real number squared is greater than or equal to

0, so x2+1
x
≥ 2 is true. �

Exercise 1.8.4. Find the fallacy associated with the following:

Problem: Solve for x given the equation
√
x +
√
x− a = 2, where a is a real

number.
Incorrect “Solution”: The given equation also implies that

1√
x+
√
x− a

=
1

2
,

so √
x−
√
x− a =

a√
x+
√
x− a

=
a

2
.

Adding the original equation with this one gives

2
√
x = 2 + (a/2)

and thus
x = (1 +

a

4
)2.

Notice, however, if a = 8 then x = 9 according to the solution, but this does not
satisfy the original equation.

2. METHODS OF PROOF 69

2. Methods of Proof

2.1. Types of Proofs. Suppose we wish to prove an implication p → q. Here
are some strategies we have available to try.

• Trivial Proof: If we know q is true then p → q is true regardless of the
truth value of p.
• Vacuous Proof: If p is a conjunction of other hypotheses and we know one

or more of these hypotheses is false, then p is false and so p→ q is vacuously
true regardless of the truth value of q.
• Direct Proof: Assume p, and then use the rules of inference, axioms, defi-

nitions, and logical equivalences to prove q.
• Indirect Proof or Proof by Contradiction: Assume p and ¬q and derive

a contradiction r ∧ ¬r.
• Proof by Contrapositive: (Special case of Proof by Contradiction.)

Give a direct proof of ¬q → ¬p. Assume ¬q and then use the rules of
inference, axioms, definitions, and logical equivalences to prove ¬p.(Can be
thought of as a proof by contradiction in which you assume p and ¬q and
arrive at the contradiction p ∧ ¬p.)
• Proof by Cases: If the hypothesis p can be separated into cases p1 ∨ p2 ∨
· · · ∨ pk, prove each of the propositions,
p1 → q, p2 → q, . . . , pk → q, separately.
(You may use different methods of proof for different cases.)

Discussion

We are now getting to the heart of this course: methods you can use to write
proofs. Let’s investigate the strategies given above in some detail.

2.2. Trivial Proof/Vacuous Proof.

Example 2.2.1. Prove the statement: If there are 100 students enrolled in this
course this semester, then 62 = 36.

Proof. The assertion is trivially true, since the conclusion is true, independent
of the hypothesis (which, may or may not be true depending on the enrollment).

�

Example 2.2.2. Prove the statement. If 6 is a prime number, then 62 = 30.

2. METHODS OF PROOF 70

Proof. The hypothesis is false, therefore the statement is vacuously true (even
though the conclusion is also false).

�

Discussion

The first two methods of proof, the “Trivial Proof” and the “Vacuous Proof” are
certainly the easiest when they work. Notice that the form of the “Trivial Proof”,
q → (p → q), is, in fact, a tautology. This follows from disjunction introduction,
since p → q is equivalent to ¬p ∨ q. Likewise, the “Vacuous Proof” is based on the
tautology ¬p→ (p→ q).

Exercise 2.2.1. Fill in the reasons for the following proof of the tautology ¬p→
(p→ q).

[¬p→ (p→ q)] ⇔ [p ∨ (¬p ∨ q)]

⇔ [(p ∨ ¬p) ∨ q]

⇔ T ∨ q

⇔ T

Exercise 2.2.2. Let A = {1, 2, 3} and R = {(2, 3), (2, 1)}(⊆ A × A). Prove: if
a, b, c ∈ A are such that (a, b) ∈ R and (b, c) ∈ R then (a, c) ∈ R.

Since it is a rare occasion when we are able to get by with one of these two methods
of proof, we turn to some we are more likely to need. In most of the following examples
the underlying “theorem” may be a fact that is well known to you. The purpose in
presenting them, however, is not to surprise you with new mathematical facts, but
to get you thinking about the correct way to set up and carry out a mathematical
argument, and you should read them carefully with this in mind.

2.3. Direct Proof.

Example 2.3.1. Prove the statement: For all integers m and n, if m and n are
odd integers, then m+ n is an even integer.

Proof. Assume m and n are arbitrary odd integers. Then m and n can be
written in the form

m = 2a+ 1 and n = 2b+ 1,

2. METHODS OF PROOF 71

where a and b are also integers. Then

m+ n = (2a+ 1) + (2b+ 1) (substitution)

= 2a+ 2b+ 2 (associative and commutative

laws of addition)

= 2(a+ b+ 1) (distributive law)

Since m+n is twice another integer, namely, a+b+1, m+n is an even integer. �

Discussion

The first strategy you should try when attempting to prove any assertion is to give
a direct proof. That is, assume the hypotheses that are given and try to argue directly
that the conclusion follows. This is often the best approach when the hypotheses
can be translated into algebraic expressions (equations or inequalities) that can be
manipulated to give other algebraic expressions, which are useful in verifying the
conclusion.

Example 2.3.1 shows a simple direct proof of a very familiar result. We are using
the familiar definitions of what it means for an integer to be even or odd: An integer
n is even if n = 2k for some integer k; an integer n is odd if n = 2k + 1 for some
integer k. Study the form of this proof. There are two hypotheses, “m is an odd
integer,” and “n is an odd integer”; and the conclusion is the statement “m + n is
an even integer.” This “theorem” is a quantified statement (“for all integers m and
n”, or “for all odd integers m and n”). In the proof we assumed the hypotheses held
for arbitrarily integers m and n, and then we wrote down equations that follow from
the definition of what it means for these integers to be odd. Although this looks like
a pretty obvious thing to do, at least when you see someone else do it, this step, in
which you bring your knowledge to the problem, may seem like a big one to take, and
you may find yourself stalling out at this point.

One possible reason this may happen is that you may be trying to do too much
at once. The cure for this is to be patient: take small steps, using the appropriate
definitions and previously proven facts, and see where they lead. When we wrote down
m = 2a+ 1 and n = 2b+ 1, we did a number of fairly sophisticated things. First, we
used our knowledge (definitions) of what it means for an integer to be odd. Second,
in order for this information to be useful, we needed to translate this knowledge into a
mathematical expression, or expressions in this case, that are subject to manipulation.
And third, in setting up these expressions, we needed to use appropriate mathematical
notation, so that we did not introduce any subtle or hidden relationships into the
picture that are unwarranted by the hypotheses.

2. METHODS OF PROOF 72

A common mistake of this type might arise as follows:

“Well, m is an odd integer, so I can write m = 2k + 1, where k is
an integer. Since n is also an odd integer, I can write n = 2k + 1,
where k is an integer.”

Do you see the mistake? By allowing the same letter k to represent what might be
different integers, we have inadvertently added another assumption, namely, that m =
n! Of course, we didn’t mean to do this, but, unfortunately, our intentions haven’t
been carried out, and so our proof breaks down at this point. In order to maintain
the “arbitrariness” of m and n, we must allow, at the least, that they be different.
We accomplish this by choosing different letters a and b in our representations of m
and n as “twice an integer plus one.” There is nothing sacred about a and b; we could
have used k and `, or x and y, or α and β, or any pair of symbols that have not been
appropriated for some other use.

Upon closer scrutiny, this first step now starts to seem like a big one indeed!
Especially if we may not be sure just where it will lead. The rest of the proof,
however, proceeds fairly routinely. We add m and n and observe that the resulting
expression has a factor of 2. We now only have to get past the recognition problem:
observing that the resulting expression gives us what we were looking for. Since
we have expressed m + n as twice another integer, m + n is, by definition, an even
integer. By Universal Generalization we may now confidently declare “Q.E.D.” (the
abbreviation of quod erat demonstrandum or “which was to be demonstrated”). Often
a box at the end of a proof or the abbrviation “Q.E.D.” is used at the end of a proof
to indicate it is finished.

Exercise 2.3.1. Give a careful proof of the statement: For all integers m and n,
if m is odd and n is even, then m+ n is odd.

2.4. Proof by Contrapositive.

Example 2.4.1. Prove the statement: For all integers m and n, if the product of
m and n is even, then m is even or n is even.

We prove the contrapositive of the statement: If m and n are both odd integers, then
mn is odd.

Proof. Suppose that m and n are arbitrary odd integers. Then m = 2a+ 1 and
n = 2b+ 1, where a and b are integers. Then

2. METHODS OF PROOF 73

mn = (2a+ 1)(2b+ 1) (substitution)

= 4ab+ 2a+ 2b+ 1 (associative, commutative, and distributive laws)

= 2(2ab+ a+ b) + 1 (distributive law)

Since mn is twice an integer (namely, 2ab+ a+ b) plus 1, mn is odd. �

Discussion

If a direct proof of an assertion appears problematic, the next most natural strat-
egy to try is a proof of the contrapositive. In Example 2.4.1 we use this method to
prove that if the product of two integers, m and n, is even, then m or n is even. This
statement has the form p→ (r∨ s). If you take our advice above, you will first try to
give a direct proof of this statement: assume mn is even and try to prove m is even
or n is even. Next, you would use the definition of “even” to write mn = 2k, where k
is an integer. You would now like to conclude that m or n has the factor 2. This can,
in fact, be proved directly, but it requires more knowledge of number theory than
we have available at this point. Thus, we seem to have reached a dead-end with the
direct approach, and we decide to try an indirect approach instead.

The contrapositive of p→ (r ∨ s) is ¬(r ∨ s)→ ¬p, or, by De Morgan’s Law,

(¬r ∧ ¬s)→ ¬p.

This translates into the statement

“If m and n are odd, then mn is odd”

(where “not even” translates to “odd”). This is a good illustration of how the symbolic
form of a proposition can be helpful in finding the correct statement we wish to prove.
In this particular example, the necessity of De Morgan’s Law may be more evident
in the symbolic form than in the “English version.”

Now we give a direct proof of the contrapositive: we assume m and n are arbitrary
odd integers and deduce mn is odd. This proof is carried out in very much the same
way as the direct proof in Example 2.3.1. The main difficulty we encounter with the
problem of proving the original assertion is to realize that a direct proof should be
abandoned in favor of some other strategy.

Exercise 2.4.1. The following statement is a special case of the proposition proved
in Example 2.4.1. Give a careful proof of this statement without assuming the result
in Example 2.4.1.

For every integer n, if n2 is even, then n is even.

2. METHODS OF PROOF 74

2.5. Proof by Contradiction.

Example 2.5.1. Prove the statement is true: Let x and y be real numbers. If
5x+ 25y = 1723, then x or y is not an integer.

Proof. Assume x and y are real numbers such that 5x+25y = 1723, and assume
that both x and y are integers. By the distributive law,

5(x+ 5y) = 1723.

Since x and y are integers, this implies 1723 is divisible by 5. The integer 1723,
however, is clearly not divisible by 5. This contradiction establishes the result. �

Discussion

If we have tried unsuccessfully to find a direct proof of a statement or its con-
trapositive, we might next try to give a proof by contradiction. In this method of
proof we assume the hypotheses are true and the conclusion is false and try to arrive
at a contradiction. The validity of proof by contradiction follows from the fact that
¬(p ∧ ¬q) is equivalent to p→ q: if we can show that p ∧ ¬q is false, then ¬(p ∧ ¬q)
is true, so that the equivalent proposition p→ q is also true.

In Example 2.5.1 we are asked to prove that if 5x+ 25y = 1723, then x is not an
integer or y is not an integer. This has the same propositional form as the example
in Example 2.4.1:

p→ (r ∨ s).

If we try to give a direct proof of this statement, then we are forced to “prove a
negative,” which can be difficult. If we try to prove the contrapositive, then knowing
that x and y are integers doesn’t seem to be helpful in trying to show directly that
5x+ 25y 6= 1723, since we are again trying to prove a negative.

On the other hand, if we assume p and ¬(r ∨ s), which is equivalent to ¬r ∧ ¬s,
then we have two positive statements to work with: 5x+25y = 1723, and x and y are
integers. After a couple of observations we arrive at the contradiction r ∧ ¬r, where
r is the statement “1723 is divisible by 5.” This contradiction establishes the truth
of the statement, and we are through.

Exercise 2.5.1. Prove: For all real numbers x and y, if 35x+ 14y = 253, then x
is not an integer or y is not an integer.

Here is another example of a proposition that is best proved by contradiction.

Example 2.5.2. For all positive real numbers a, b, and c, if ab = c, then a ≤
√
c

or b ≤
√
c.

2. METHODS OF PROOF 75

Proof. Suppose a, b, and c are positive real numbers such that ab = c, and
suppose a >

√
c and b >

√
c. (Notice the use of De Morgan’s Law again. Also, recall

that the symbol
√
c represents the positive square root of c, not ±

√
c.) By order

properties of the real numbers,

b >
√
c⇔ ab > a

√
c, since a > 0,

and

a >
√
c⇔ a

√
c >
√
c ·
√
c = c, since

√
c > 0.

Thus, ab > a
√
c >
√
c ·
√
c = c implies

ab > c.

But ab = c; hence, ab is not greater than c, a contradiction.

This proves our assumption a >
√
c and b >

√
c cannot be true when a, b, and c

are positive real numbers such that ab = c. Therefore a ≤
√
c or b ≤

√
c. �

Exercise 2.5.2. Consider the statement: For all nonnegative real numbers a, b,
and c, if a2 + b2 = c2, then a+ b ≥ c.

(a) Give a proof by contradiction.
(b) Give a direct proof. [Hint: The extra idea needed for a direct proof should

emerge naturally from a proof by contradiction.]

Let’s step back and compare direct proof, proof by contrapositive, and proof by
contradiction.

Exercise 2.5.3. Fill in the blanks.

If we are proving the implication p→ q we assume. . .

(1) p for a direct proof.
(2) for a proof by contrapositive
(3) for a proof by contradiction.

We are then allowed to use the truth of the assumption in 1, 2, or 3 in the proof.

After the initial assumption, we prove p→ q by showing

(4) q must follow from the assumptions for a direct proof.
(5) must follow the assumptions for a proof by contrapositive.
(6) must follow the assumptions for a proof by contradiction.

2. METHODS OF PROOF 76

2.6. Proof by Cases.

Example 2.6.1. If x is a real number such that
x2 − 1

x+ 2
> 0, then either x > 1 or

−2 < x < −1.

Proof. Assume x is a real number for which the inequality

x2 − 1

x+ 2
> 0

holds. Factor the numerator of the fraction to get the inequality

(x+ 1)(x− 1)

x+ 2
> 0.

For this combination of x + 1, x− 1, and x + 2 to be positive, either all are positive
or two are negative and the other is positive. This gives four cases to consider:

Case 1. x+ 1 > 0, x− 1 > 0, and x+ 2 > 0. In this case x > −1, x > 1, and x > −2,
which implies x > 1.

Case 2. x+ 1 > 0, x− 1 < 0, and x+ 2 < 0. In this case x > −1, x < 1, and x < −2,
and there is no x satisfying all three inequalities simultaneously.

Case 3. x+ 1 < 0, x− 1 > 0, and x+ 2 < 0. In this case x < −1, x > 1, and x < −2,
and there is no x satisfying all three inequalities simultaneously.

Case 4. x+ 1 < 0, x− 1 < 0, and x+ 2 > 0. In this case x < −1, x < 1, and x > −2,
which implies that −2 < x < −1.

Thus, either x > 1 (Case 1) or −2 < x < −1 (Case 4). �

Discussion

Sometimes the hypothesis of a statement can be broken down into simpler cases
that may be investigated separately. The validity of a proof by cases rests on the
equivalence

[(p1 ∨ · · · ∨ pn)→ q]⇔ [(p1 → q) ∨ · · · ∨ (pn → q)].

In Example 2.6.1 this method is used to verify the “solution” to the inequality,
x2 − 1

x+ 2
> 0.

Exercise 2.6.1. Prove: For every real number x,
√
x2 = |x|. [Hint: Recall as

above that
√
x2 represents the positive square root of x2, and look at two cases: x ≥ 0

and x < 0.]

A proof by cases can tend to be a little tedious. Here is an extreme example of
such a proof.

2. METHODS OF PROOF 77

Example 2.6.2. Prove that if n is a natural number less than 41, then n2−n+41
is a prime number.

Proof. Recall that a prime number is an integer greater than 1 that is only
divisible by itself and 1. It would be nice if there was some general line of argument
that would work, but, unfortunately, there doesn’t seem to be an obvious one. As a
result, the proof must be broken down into 41 cases corresponding to n = 0, 1, 2, ..., 40.
In each case we examine the integer n2−n+ 41 to see if it is prime. For example, we
can observe:

n = 0: 02 − 0 + 41 = 41 is prime.

n = 1: 12 − 1 + 41 = 41 is prime.

n = 2: 22 − 2 + 41 = 43 is prime.

n = 3: 32 − 3 + 41 = 47 is prime.

n = 4: 42 − 4 + 41 = 53 is prime.

As n increases, it becomes increasingly more time-consuming to show that n2−n+41
is, indeed, prime. For example, when n = 40, 402 − 40 + 41 = 1601. The simplest
way to show that 1601 is prime is to show that every prime number ≤

√
1601 fails to

be a divisor of 1601. There are 12 such numbers to try, and you might as well check
them on your calculator. Alternatively, you could write a computer program or use a
symbolic program such as Maple or Mathematica that has a routine to test a number
for primality. �

2.7. Existence Proofs. An existence proof is a proof of a statement of the
form ∃xP (x). Existence proofs generally fall into one of the following two types:

Constructive Proof: Establish P (c) for some c in the universe of discourse.

Nonconstructive Proof: Assume no c exists that makes P (c) true and derive a
contradiction. In other words, use a proof by contradiction.

2.8. Constructive Proof.

Example 2.8.1. Prove the statement: There exists a triple (a, b, c) of positive
integers such that a2 + b2 = c2.

Proof. Choose a = 3, b = 4 and c = 5. �

Discussion

2. METHODS OF PROOF 78

In a constructive proof one finds an explicit example in the universe of discourse
for which the statement is true.

Here is another example.

Example 2.8.2. Prove: If f(x) = x3 + x − 5, then there exists a positive real
number c such that f ′(c) = 7.

Proof. Calculate the derivative of f : f ′(x) = 3x2 + 1. Then we want to find a
positive number c such that f ′(c) = 3c2 + 1 = 7. Solving for c:

3c2 = 6

c2 = 2

c = ±
√

2

Then c =
√

2 is a positive real number and f ′(
√

2) = 3(
√

2)2 + 1 = 7. �

2.9. Nonconstructive Proof.

Example 2.9.1. Pigeon Hole Principle: If n + 1 objects (pigeons) are dis-
tributed into n boxes (pigeon holes), then some box must contain at least 2 of the
objects.

Proof. Assume n + 1 objects (pigeons) are distributed into n boxes. Suppose
the boxes are labeled
B1, B2, ..., Bn, and assume that no box contains more than 1 object. Let ki denote
the number of objects placed in Bi. Then ki ≤ 1 for i = 1, ..., n, and so

k1 + k2 + · · ·+ kn ≤ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n terms

≤ n.

But this contradicts the fact that k1 + k2 + · · · + kn = n + 1, the total number of
objects we started with. �

Discussion

Sometimes, constructing an example may be difficult, if not impossible, due to
the nature of the problem. If you suspect this is the case, you should try a proof
by contradiction: Assume there is no such example and show that this leads to a
contradiction. If you are successful, you have established existence, but you have not
exhibited a specific example. After you have studied the proof of the basic pigeon
hole principal in Example 2.9.1, try your hand at the following variations.

2. METHODS OF PROOF 79

Exercise 2.9.1. Prove: If 2n+ 1 objects are distributed into n boxes, then some
box must contain at least 3 of the objects.

Exercise 2.9.2. Fill in the blank in the following statement and then give a proof.

Suppose k is a positive integer. If kn+ 1 objects are distributed into n boxes, then
some box must contain at least of the objects.

Exercise 2.9.3. Suppose that 88 chairs are arranged in a rectangular array of 8
rows and 11 columns, and suppose 50 students are seated in this array (1 student per
chair).

(a) Prove that some row must have at least 7 students.
(b) Prove that some column must have at most 4 students.

2.10. Nonexistence Proofs. Suppose we wish to establish the truth of the
statement ¬∃xP (x), which is equivalent to ∀x¬P (x). One way is to assume there is
a member, c, of the universe of discourse for which P (c) is true, and try to arrive at
a contradiction.

Example 2.10.1. Prove there does not exist an integer k such that 4k + 3 is a
perfect square.

Proof. Proof by Contradiction: Assume there is an integer k such that 4k + 3
is a perfect square. That is, 4k + 3 = m2, where m is an integer. Since the square of
an even integer is even and 4k+ 3 is odd, m must be odd. Then m = 2a+ 1 for some
integer a. Thus,

4k + 3 = m2

4k + 3 = (2a+ 1)2

4k + 3 = 4a2 + 4a+ 1

4k + 3 = 4(a2 + a) + 1

3− 1 = 4(a2 + a)− 4k

2 = 4(a2 + a− k)

1 = 2(a2 + a− k)

But this contradicts the fact that 1 is an odd integer. �

Discussion

2. METHODS OF PROOF 80

In order to show some property is false for every member of the universe of dis-
course it is almost always best to try to use a proof by contradiction. Example 2.10.1
illustrates a property of the integers that can be easily proved in this way.

Exercise 2.10.1. Prove: There does not exist a positive real number a such that

a+
1

a
< 2.

2.11. The Halting Problem.

Example 2.11.1. The Halting Problem: There does not exist a program which
will always determine if an arbitrary program P halts. We say the Halting Problem
is undecidable. Note that this is not the same as determining if a specific program or
finite set of programs halts. This is decidable.

Proof. We simplify the proof by only considering input-free programs (which
may call other procedures). Assume there is a program called Halt which will deter-
mine if any input-free program P halts.

Halt(P) prints “yes” and halts if P halts. Halt(P) prints “no” and halts otherwise.

Now we construct a new procedure.

procedure Absurd
if Halt(Absurd) = “yes” then

while true do print “ha”

Notice that the procedure Absurd is input-free. Now we consider two cases.

Case 1 If Absurd halts then we execute the loop which prints unending gales of laugh-
ter, and thus the procedure does not halt – a contradiction.

Case 2 If Absurd does not halt then we will exit the program, and halt. Again, this
is a contradiction.

Now the only assumption we made was that a program exists which determines if
any program will halt. Thus this assumption must be false. There is no such program.

�

2.12. Counterexample. Counterexample to ∀xP (x): We may disprove a
statement of the form ∀xP (x) by finding a counterexample. That is, use the equiva-
lence ¬∀xP (x)⇔ ∃x¬P (x), and find a c in the universe of discourse for which P (x)
is false.

2. METHODS OF PROOF 81

Discussion

From Example 2.6.1 one might be led to think that n2−n+ 41 is a prime number
for every natural number n. After all, it worked for the first 41 natural numbers.
(Or so, you were led to believe. Did you finish the remaining 35 cases?) Showing
that a predicate P (x) is true for a few, perhaps many millions of x’s in its universe
of discourse, however, does not constitute a proof of ∀xP (x), unless you were able to
exhaust all possibilities. This, of course, is not possible if the universe of discourse is
an infinite set, such as the set of natural numbers or the set of real numbers. Since
the negation of ∀xP (x) is ¬∀xP (x)⇔ ∃x¬P (x), it only takes one x for which P (x) is
false, a counterexample, to disprove ∀xP (x). The assertion “for every natural number
n, n2 − n+ 41 is prime” is, in fact, false.

Exercise 2.12.1. Find a counterexample to the statement: For every natural
number n, n2 − n+ 41 is prime.

2.13. Biconditional. In order to establish the truth of the statement p↔ q, use
the fact that (p↔ q) is equivalent to (p→ q)∧ (q → p), and prove both implications
using any of the previous methods.

Discussion

We conclude this module with a discussion on proving a biconditional or “if and
only if” statement. As pointed out above, a proof of a biconditional requires two
proofs: the proof of an implication and a proof of its converse. Our example below
is very similar to theorems we have proved earlier. The point here is that the two
implications may be proved independently of each other, and the decision on the best
strategy to use should be made for each one separately.

Example 2.13.1. Prove: For any integer n, n is odd if and only if n2 is odd.

In order to prove this statement, we must prove two implications:

(a) If n is odd, then n2 is odd.
(b) If n2 is odd, then n is odd.

Proof of (a): We give a direct proof of this statement. Assume n is an odd
integer. Then n = 2a + 1 for some integer a. Then n2 = (2a + 1)2 = 4a2 + 4a + 1 =
2(2a2 + 2a) + 1, which is twice an integer plus 1. Thus, n2 is odd. �

2. METHODS OF PROOF 82

Proof of (b): We give a proof of the contrapositive of this statement: “If n is
even (not odd), then n2 is even (not odd). Assume n is an even integer. Then n = 2a
for some integer a. Then n2 = (2a)2 = 4a2 = 2(2a2), which is an even integer.

�

Exercise 2.13.1. Prove the following statements are equivalent.

(1) n− 5 is odd.
(2) 3n+ 2 is even.
(3) n2 − 1 is odd.

Hint: Prove the following implications:

(1) 1→2
(2) 2→1
(3) 1→3
(4) 3→1

3. MATHEMATICAL INDUCTION 83

3. Mathematical Induction

3.1. First Principle of Mathematical Induction. Let P (n) be a predicate
with domain of discourse (over) the natural numbers N = {0, 1, 2, ...}. If

(1) P (0), and
(2) P (n)→ P (n+ 1)

then ∀nP (n).

Terminology: The hypothesis P (0) is called the basis step and the hypothesis,
P (n)→ P (n+ 1), is called the induction (or inductive) step.

Discussion

The Principle of Mathematical Induction is an axiom of the system of natural
numbers that may be used to prove a quantified statement of the form ∀nP (n), where
the universe of discourse is the set of natural numbers. The principle of induction has
a number of equivalent forms and is based on the last of the four Peano Axioms we
alluded to in Module 3.1 Introduction to Proofs. The axiom of induction states that
if S is a set of natural numbers such that (i) 0 ∈ S and (ii) if n ∈ S, then n+ 1 ∈ S,
then S = N. This is a fairly complicated statement: Not only is it an “if ..., then ...”
statement, but its hypotheses also contains an “if ..., then ...” statement (if n ∈ S,
then n+ 1 ∈ S). When we apply the axiom to the truth set of a predicate P (n), we
arrive at the first principle of mathematical induction stated above. More generally,
we may apply the principle of induction whenever the universe of discourse is a set of
integers of the form {k, k + 1, k + 2, . . . } where k is some fixed integer. In this case
it would be stated as follows:

Let P (n) be a predicate over {k, k + 1, k + 2, k + 3, . . . }, where k ∈ Z. If

(1) P (k), and
(2) P (n)→ P (n+ 1)

then ∀nP (n).

In this context the “for all n”, of course, means for all n ≥ k.

3. MATHEMATICAL INDUCTION 84

Remark 3.1.1. While the principle of induction is a very useful technique for
proving propositions about the natural numbers, it isn’t always necessary. There were
a number of examples of such statements in Module 3.2 Methods of Proof that were
proved without the use of mathematical induction.

Why does the principle of induction work? This is essentially the domino effect.
Assume you have shown the premises. In other words you know P (0) is true and you
know that P (n) implies P (n+ 1) for any integer n ≥ 0.

Since you know P (0) from the basis step and P (0) → P (1) from the inductive
step, we have P (1) (by modus ponens).

Since you now know P (1) and P (1) → P (2) from the inductive step, you have
P (2).

Since you now know P (2) and P (2) → P (3) from the inductive step, you have
P (3).

And so on ad infinitum (or ad nauseum).

3.2. Using Mathematical Induction. Steps

1. Prove the basis step.
2. Prove the inductive step

(a) Assume P (n) for arbitrary n in the universe. This is called the induction
hypothesis.

(b) Prove P (n+ 1) follows from the previous steps.

Discussion

Proving a theorem using induction requires two steps. First prove the basis step.
This is often easy, if not trivial. Very often the basis step is P (0), but sometimes,
when the universal set has k as its least element, the basis step is P (k). Be careful
to start at the correct place.

Next prove the inductive step. Assume the induction hypothesis P (n) is true.
You do not try to prove the induction hypothesis. Now you prove that P (n+1) follows
from P (n). In other words, you will use the truth of P (n) to show that P (n + 1)
must also be true.

Indeed, it may be possible to prove the implication P (n)→ P (n+ 1) even though
the predicate P (n) is actually false for every natural number n. For example, suppose

3. MATHEMATICAL INDUCTION 85

P (n) is the statement n = n− 1, which is certainly false for all n. Nevertheless, it is
possible to show that if you assume P (n), then you can correctly deduce P (n+ 1) by
the following simple argument:

Proof. If n = n − 1, then, after adding 1 to both sides, n + 1 = (n − 1) + 1 =
(n+ 1)− 1. Thus P (n)→ P (n+ 1). �

It is easy at this point to think you are assuming what you have to prove (circular
reasoning). You must keep in mind, however, that when you are proving the impli-
cation P (n)→ P (n+ 1) in the induction step, you are not proving P (n) directly, as
the example above makes clear, so this is not a case of circular reasoning. To prove
an implication, all you need to show is that if the premise is true then the conclusion
is true. Whether the premise is actually true at this point of an induction argument
is completely irrelevant.

Exercise 3.2.1. Notice in the above example that, while we proved ∀n[P (n) →
P (n+ 1)], we did not prove ∀nP (n). Why?

3.3. Example 3.3.1.

Example 3.3.1. Prove:
n∑

i=0

i =
n(n+ 1)

2
for n = 0, 1, 2, 3, . . .

Proof. Let P (n) be the statement
n∑

i=0

i =
n(n+ 1)

2
.

1. Basis Step, n = 0:

Prove
0∑

i=0

i = 0(0 + 1)/2.

Proof:
0∑

i=0

i = 0 and 0(0 + 1)/2 = 0

Thus, P (0).

2. Induction Step: Let n ∈ N. At this step we are fixing an arbitrary integer n ≥ 0
and making the following assumption for this fixed n. We then show the statement
P (n+ 1) must also be true. In general, we assume the induction hypothesis for an
integer at least as large as the integer used in the basis case.

(i) Assume P (n):
n∑

i=0

i = n(n+ 1)/2, for some integer n ≥ 0.

3. MATHEMATICAL INDUCTION 86

(ii) Use the induction hypothesis to prove
n+1∑
i=0

i = (n+ 1)((n+ 1) + 1)/2.

Proof: Write out the sum on the left hand side of the statement to be proven.
n+1∑
i=0

i = 0 + 1 + 2 + 3 + · · ·+ n+ (n+ 1)

= (0 + 1 + 2 + 3 + · · ·+ n) + (n+ 1)

=

(
n∑

i=0

i

)
︸ ︷︷ ︸+(n+ 1)

↖
↙ equal by the induction hypothesis

=

︷ ︸︸ ︷[
n(n+ 1)

2

]
+(n+ 1)

=
n2 + n+ 2n+ 2

2
=
n2 + 3n+ 2

2

=
(n+ 1)(n+ 2)

2

=
(n+ 1)((n+ 1) + 1)

2

By the principle of mathematical induction it follows that
n∑

i=0

i =
n(n+ 1)

2

for all natural numbers n.

�

Discussion

Example 3.3.1 is a classic example of a proof by mathematical induction. In this
example the predicate P (n) is the statement

n∑
i=0

i = n(n+ 1)/2.

3. MATHEMATICAL INDUCTION 87

[Recall the “Sigma-notation”:
n∑

i=k

ai = ak + ak+1 + · · ·+ an.]

It may be helpful to state a few cases of the predicate so you get a feeling for
whether you believe it’s true and for the differences that occur when you change n.
But keep in mind that exhibiting a few cases does not constitute a proof. Here are a
few cases for Example 3.3.1. Notice what happens to the summation (left-hand side)
as you increase n.

P (0):
0∑

i=0

i = 0 = 0(0 + 1)/2.

P (1):
1∑

i=0

i = 0 + 1 = 1(1 + 1)/2.

P (2):
2∑

i=0

i = 0 + 1 + 2 = 2(2 + 1)/2.

P (3):
3∑

i=0

i = 0 + 1 + 2 + 3 = 3(3 + 1)/2.

In the basis step of an induction proof, you only need to prove the first statement
above, but not the rest.

In the induction step you assume the induction hypothesis, P (n), for some arbi-
trary integer n ≥ 0. Write it out so you know what you have to work with. Then
write out P (n+1) so you can see what you need to prove. It will be easier to see how
to proceed if you write both of these down. (A common mistake students make is to

think of P (n) as a particular expression (say, P (n) =
n∑

i=0

i) instead of as a sentence:

n∑
i=0

i =
n(n+ 1)

2
.) Once you have written down the induction hypothesis and what

you need to prove, look for a way to express part of P (n + 1) using P (n). In this

example we use the summation notation
n+1∑
i=0

ai = (
n∑

i=0

ai) + an+1. This is a typical

step when proving a summation formula of this type. After rewriting
n+1∑
i=0

i this way,

3. MATHEMATICAL INDUCTION 88

we can apply the induction hypothesis to substitute n(n + 1)/2 for
n∑

i=0

i. Note that

you should use the induction hypothesis at some point in the proof. Otherwise, it is
not really an induction proof.

Exercise 3.3.1. Prove:
n∑

i=1

(2i − 1) = 1 + 3 + 5 + · · · + (2n − 1) = n2, for all

n ≥ 1.

Exercise 3.3.2. Prove:
n∑

i=1

1

i(i+ 1)
=

n

n+ 1

Exercise 3.3.3. Prove
n∑

k=1

3 · 2k−1 = 3(2n − 1)

3.4. Example 3.4.1.

Example 3.4.1. Prove: 5n+ 5 ≤ n2 for all integers n ≥ 6.

Proof. Let P (n) be the statement 5n+ 5 ≤ n2.

1. Basis Step, n = 6: Since 5(6) + 5 = 35 and 62 = 36 this is clear. Thus, P (6).

2. Induction Step: Assume P (n): 5n + 5 ≤ n2, for some integer n ≥ 6. Use the
induction hypothesis to prove 5(n+ 1) + 5 ≤ (n+ 1)2.

First rewrite 5(n+ 1) + 5 so that it uses 5n+ 5:

5(n+ 1) + 5 = (5n+ 5) + 5.

By the induction hypothesis we know

(5n+ 5) + 5 ≤ n2 + 5.

Now we need to show

n2 + 5 ≤ (n+ 1)2 = n2 + 2n+ 1.

To see this we note that when n ≥ 2,

2n+ 1 ≥ 2 · 2 + 1 = 5

(and so this is also valid for n ≥ 6).
Thus, when n ≥ 6,

5(n+ 1) + 5 = (5n+ 5) + 5

(5n+ 5) + 5 ≤ n2 + 5

n2 + 5 ≤ n2 + 2n+ 1

n2 + 2n+ 1 = (n+ 1)2.

3. MATHEMATICAL INDUCTION 89

Which shows 5(n+ 1) + 5 ≤ (n+ 1)2. By the principle of mathematical induction it
follows that 5n+ 5 ≤ n2 for all integers n ≥ 6.

�

Discussion

In Example 3.4.1, the predicate, P (n), is 5n+5 ≤ n2, and the universe of discourse
is the set of integers n ≥ 6. Notice that the basis step is to prove P (6). You might
also observe that the statement P (5) is false, so that we can’t start the induction any
sooner.

In this example we are proving an inequality instead of an equality. This actually
allows you more “fudge room”, but sometimes that extra freedom can make it a bit
more difficult to see what to do next. In this example, the hardest part, conceptually,
is recognize that we need another inequality, 5 ≤ 2n+1, which holds whenever n ≥ 2.
A good approach to showing f(n+ 1) ≤ g(n+ 1) is to start with f(n+ 1), think of a
way express f(n+ 1) in terms of f(n) so that you can use the induction hypothesis,
then find ways to get to g(n + 1) using further equalities or inequalities (that go in
the right direction!).

In the induction step we use the fact that if you know a ≤ b, then a+ 5 ≤ b+ 5.
The induction hypothesis gives us an inequality. Then we add 5 to both sides of that
inequality prove P (n+ 1).

Remark 3.4.1. In proving an identity or inequality, you don’t always have to
start with the left side and work toward the right. In Example 3.4.1 you might try to
complete the induction step by starting with (n + 1)2 and showing that it is greater
than or equal to 5(n+ 1) + 5. The steps would go as follows:

(n+ 1)2 = n2 + 2n+ 1

n2 + 2n+ 1 ≥ (5n+ 5) + 2n+ 1 by the induction hypothesis

(5n+ 5) + 2n+ 1 = 5(n+ 1) + 2n+ 1

5(n+ 1) + 2n+ 1 ≥ 5(n+ 1) + 5 if n ≥ 2

With this approach the place where the induction hypothesis comes in as well as the
fact that we need the inequality 2n + 1 ≥ 5 for n ≥ 2 are, perhaps, a little more
transparent.

Exercise 3.4.1. Prove: 2n + 1 ≤ 2n, for all n ≥ 3. Establish the induction step
in two ways, as suggested in the remark above. [Hint: 2n + 2n = 2 · 2n = 2n+1.]

3. MATHEMATICAL INDUCTION 90

Exercise 3.4.2. Prove: n2 + 3 ≤ 2n, for all n ≥ 5. [Hint: Look for a place to use
the inequality in the exercise above in the induction step.]

3.5. Example 3.5.1.

Example 3.5.1. Prove: A set with n elements, n ≥ 0, has exactly 2n subsets.

Proof. Let P (n) be the statement “A set with n elements has 2n subsets.”

1. Basis Step, n = 0: The only set with 0 elements is the empty set, ∅, which has
exactly one subset, namely, ∅. We also have 20 = 1, therefore a set with 0 elements
has exactly 20 subsets. Thus P (0).

2. Induction Step: Let n ∈ N. Assume P (n): every set with n elements has 2n

subsets. Use the induction hypothesis to prove a set with n+ 1 elements has 2n+1

subsets.
Suppose A is a set with n + 1 elements, say, A = {a1, a2, . . . , an, an+1}. Let

B be the subset {a1, a2, . . . , an} of A. Since B has n elements, we can apply the
induction hypothesis to B, which says that B has exactly 2n subsets. Each subset
S of B corresponds to exactly two subsets of A, namely, S and S ∪ {an+1}. But
every subset of A is of one of these two forms; hence, A has exactly twice as many
subsets as B. Thus, A has exactly 2 · 2n = 2n+1 subsets.

By the principle of mathematical induction it follows that a set with n elements
has exactly 2n subsets for all n ≥ 0. �

Discussion

Exercise 3.5.1. Let A = {a, b, c, d, e} and B = {a, b, c, d}. List all the subsets of
A in one column and all the subsets of B in another column. Draw a line connecting
every subset of A to a subset from B to demonstrate the 2 to 1 correspondence used
in the previous proof. Note that an example such as this does not prove the previous
Theorem, but it does help to illustrate the tools used.

Induction is used in a variety of situations. In Example 3.5.1 induction is used to
establish a formula for the number of subsets of a set with n elements. In this case
we are not trying to prove an equality in the sense of establishing an identity, as with
the summation examples. The induction step involves more “pure reasoning” than
algebraic manipulation. We have to devise a strategy to count the number of subsets
of a set with n+ 1 elements, given that we know a formula for the number of subsets
of a set with n elements. Having devised a strategy, we then need to show that the
formula works for a set with n+ 1 elements as well. Once you begin to be proficient
in constructing inductive proofs of this type, you are well on your way to a complete
understanding of the induction process.

3. MATHEMATICAL INDUCTION 91

Exercise 3.5.2. Prove: For all n ≥ 0, a set with n elements has
n(n− 1)

2
subsets

with exactly two elements. [Hint: In order to complete the induction step try to devise
a strategy similar to the one used in the example in Example 3.5.1. It is interesting
to observe that the formula works for sets with fewer than 2 elements.]

Here is another type of problem from number theory that is amenable to induction.

Example 3.5.2. Prove: For every natural number n, n(n2 + 5) is a multiple of 6
(i.e. n(n2 + 5) equals 6 times some integer).

Proof. Let P (n) be the statement n(n2 + 5) is a multiple of 6.

1. Basis Step, n = 0: 0(02 + 5) = 0 = 0 · 6. Thus P (0).

2. Induction Step: Suppose n ∈ N, and suppose n(n2 +5) is divisible by 6. Show that
this implies (n + 1)((n + 1)2 + 5) is divisible by 6. In order to use the inductive
hypothesis, we need to extract the expression n(n2 + 5) out of the expression
(n+ 1)((n+ 1)2 + 5).

(n+ 1)((n+ 1)2 + 5) = n((n+ 1)2 + 5) + 1 · ((n+ 1)2 + 5)

= n(n2 + 2n+ 1 + 5) + (n2 + 2n+ 1 + 5)

= n(n2 + 5) + n(2n+ 1) + (n2 + 2n+ 6)

= n(n2 + 5) + 2n2 + n+ n2 + 2n+ 6

= n(n2 + 5) + 3n2 + 3n+ 6

= n(n2 + 5) + 3n(n+ 1) + 6

By the induction hypothesis, the first term on the right-hand side, n(n2 + 5), is a
multiple of 6. Notice that n and n + 1 are consecutive integers; hence, one of them
is even. Thus, n(n + 1) is a multiple of 2, and so 3n(n + 1) is a multiple of 6. If we
write n(n2 + 5) = 6k and 3n(n+ 1) = 6`, then

(n+ 1)((n+ 1)2 + 5) = n(n2 + 5) + 3n(n+ 1) + 6 = 6k + 6`+ 6 = 6(k + `+ 1)

so (n+ 1)((n+ 1)2 + 5) is a multiple of 6. Thus, we have shown P (n)→ P (n+ 1).

By the principle of mathematical induction, n(n2 + 5) is a multiple of 6 for every
n ≥ 0. �

You may have noticed that in order to make the inductive step work in most of
the examples and exercises we have seen so far, the restriction placed on n is actually

3. MATHEMATICAL INDUCTION 92

used, either implicitly or explicitly, whereas in the previous example it was not. (At
no place in the inductive step above did we need the assumption that n ≥ 0.) This
leaves open the possibility that n(n2 + 5) is a multiple of 6 for (some/all?) integers
n < 0 as well. Checking some cases, we see for

n = −1: n(n2 + 5) = (−1)((−1)2 + 5) = −6 is a multiple of 6,

n = −2: n(n2 + 5) = (−2)((−2)2 + 5) = −18 is a multiple of 6,

n = −3: n(n2 + 5) = (−3)((−3)2 + 5) = −42 is a multiple of 6,

n = −4: n(n2 + 5) = (−4)((−4)2 + 5) = −84 is a multiple of 6.

Exercise 3.5.3. Use mathematical induction to prove that n(n2 +5) is a multiple
of 6 for all n ≤ 0. [Hint: You will have to find the appropriate predicate P (k).]

Exercise 3.5.4. Prove 52n−1 + 1 is divisible by 6 for n ∈ Z+.

Exercise 3.5.5. Prove a − b is a factor of an − bn. Hint: ak+1 − bk+1 = a(ak −
bk) + bk(a− b).

Exercise 3.5.6. The following is an incorrect “proof” that any group of n horses
are the same color. What is the error in the proof?

Proof. The basis case is certainly true since any group of 1 horse is the same
color. Now, let n ∈ Z+ and assume any group of n horses are the same color. We
need to show any group of n + 1 horses is the same color. Let {h1, h2, . . . , hn+1} be
a set of n+ 1 horses. The set {h1, h2, . . . , hn} is a set of n horses and so these horses
are the same color. Moreover, the set {h2, h3, . . . , hn+1} is a set of n horses, so they
are all the same color. Therefore the set of horses {h1, h2, . . . hn+1} must all be the
same color.

�

3.6. The Second Principle of Mathematical Induction. Let k be an inte-
ger, and let P (n) be a predicate whose universe of discourse is the set of integers
{k, k + 1, k + 2, ...}. Suppose

1. P (k), and
2. P (j) for k ≤ j ≤ n implies P (n+ 1).

Then ∀nP (n).

Discussion

3. MATHEMATICAL INDUCTION 93

The second principle of induction differs from the first only in the form of the
induction hypothesis. Here we assume not just P (n), but P (j) for all the integers j
between k and n (inclusive). We use this assumption to show P (n+ 1). This method
of induction is also called strong mathematical induction. It is used in computer
science in a variety of settings such as proving recursive formulas and estimating the
number of operations involved in so-called “divide-and-conquer” procedures.

Exercise 3.6.1. Prove the first principle of mathematical induction is equivalent
to the second principle of mathematical induction.

Example 3.6.1. Prove: Every integer n ≥ 2 can be expressed as a product of one
or more prime numbers. A prime number is defined to be an integer greater than one
that is only divisible by itself and one.

Proof. Recall that a prime number is an integer ≥ 2 that is only divisible by
itself and 1. (The number 1 is not considered to be prime.)

Let P (n) be the predicate “n can be expressed as a product of prime numbers.”

1. Basis Step, n = 2: Since 2 is prime, 2 can be expressed as a product of prime
numbers in a trivial way (just one factor). Thus, P (2) is true.

2. Induction Step: Let n be an integer with n ≥ 2. Suppose that every integer j,
2 ≤ j ≤ n, can be expressed as a product of prime numbers.
The integer n+ 1 is either a prime number or it is not.
Case 1. If n + 1 is a prime number, then it is a product of prime numbers in a

trivial way.
Case 2. If n + 1 is not a prime number, then n + 1 = a · b where a and b are

positive integers, both different from n + 1 and 1. Thus, 2 ≤ a ≤ n and
2 ≤ b ≤ n. By the induction hypothesis, a and b can each be expressed
as a product of prime numbers, say a = p1p2, · · · pr and b = q1q2 · · · qs.
Since n + 1 = a · b = p1p2, · · · prq1q2 · · · qs, n + 1 can also be expressed as
a product of prime numbers, namely, the product of primes that multiply
to give a times the product of primes that multiply to give b.

By the second principle of mathematical induction, every n ≥ 2 can be expressed
as a product of prime numbers. �

Discussion

In this example, the first principle of induction would be virtually impossible to
apply, since the integer n is not a factor of n + 1 when n ≥ 2. That is, knowing the
factors of n doesn’t tell us anything about the factors of n+ 1.

3. MATHEMATICAL INDUCTION 94

3.7. Well-Ordered Sets.

Definition 3.7.1. A set S is well-ordered if every non-empty subset has a least
element.

Well-ordering Principle. The set N of natural numbers forms a well-ordered set.

Discussion

As we prove below, the principle of induction is equivalent to the well-ordering
principle.

Example 3.7.1. The set S of integers greater than −5 is a well-ordered set.

Example 3.7.2. The set P of rational numbers greater than or equal to zero is
not a well-ordered set.

Example 3.7.3. [0, 1] is not well-ordered. The subset (0, 1] does not have a least
element in the set. (You may have to think about this for a moment.)

Example 3.7.4. The set Z of integers is not well-ordered, since Z, itself, does not
have a least element.

Study the proof of the following theorem carefully. Although it uses methods of
proof discussed in Module 3.2, its level of abstraction may make it a bit difficult to
absorb at first.

Theorem 3.7.1. The second principle of mathematical induction is equivalent to
the well-ordering principle.

Proof. We must show that each principle implies the other.

1. Suppose N satisfies the principle of mathematical induction, and suppose that A
is a nonempty subset of N. We will give a proof by contradiction that A has a
least element. Suppose A does not have a least element. Let P (n) be the predicate
n 6∈ A. Then
(i) 0 6∈ A. Otherwise, 0 would be the least element of A. Thus P (0).
(ii) Let n ∈ N. Suppose P (k) for 0 ≤ k ≤ n. Then 0, . . . , n 6∈ A. If n + 1 were

in A, then n + 1 would be the least element of A. Thus, n + 1 6∈ A, and so
P (n+ 1). This proves that P (0) ∧ · · · ∧ P (n)→ P (n+ 1).

By the First Principle of Mathematical Induction, ∀nP (n) = ∀n[n 6∈ A]. But this
means that A is empty, a contradiction. Thus N is well-ordered.

2. Suppose N is well-ordered, and suppose P (n) is a predicate over N that satisfies
the hypotheses of the First Principle of Mathematical Induction. That is,
(i) P (0), and

3. MATHEMATICAL INDUCTION 95

(ii) P (0) ∧ · · · ∧ P (n)→ P (n+ 1).
We will prove ∀nP (n) by contradiction. Suppose ¬∀nP (n). Let A be the set
of all n ∈ N such that P (n) is false (i.e., ¬P (n)) Then A is nonempty, since
¬∀nP (n) ⇔ ∃n¬P (n). Since N is well-ordered and A is a nonempty subset of N,
A has a least element k. In other words, if P (n) fails to be true for all n, then
there is a smallest natural number k for which P (k) is false. By (i), k 6= 0, hence,
k > 0, which implies k − 1 is a natural number. Since k − 1 < k, and k is the
least element of A, k − 1 6∈ A, so that P (k − 1). But by (ii) P (k − 1) implies
P (k), or k 6∈ A, which contradicts k ∈ A. Therefore, ∀nP (n), and so N satisfies
the principle of mathematical induction.

�

CHAPTER 4

Applications of Methods of Proof

1. Set Operations

1.1. Set Operations. The set-theoretic operations, intersection, union, and
complementation, defined in Chapter 1.1 Introduction to Sets are analogous to the
operations ∧, ∨, and ¬, respectively, that were defined for propositions. Indeed, each
set operation was defined in terms of the corresponding operator from logic. We will
discuss these operations in some detail in this section and learn methods to prove
some of their basic properties.

Recall that in any discussion about sets and set operations there must be a set,
called a universal set, that contains all others sets to be considered. This term is a
bit of a misnomer: logic prohibits the existence of a “set of all sets,” so that there
is no one set that is “universal” in this sense. Thus the choice of a universal set will
depend on the problem at hand, but even then it will in no way be unique. As a rule
we usually choose one that is minimal to suit our needs. For example, if a discussion
involves the sets {1, 2, 3, 4} and {2, 4, 6, 8, 10}, we could consider our universe to be
the set of natural numbers or the set of integers. On the other hand, we might be
able to restrict it to the set of numbers {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

We now restate the operations of set theory using the formal language of logic.

1.2. Equality and Containment.

Definition 1.2.1. Sets A and B are equal, denoted A = B, if

∀x[x ∈ A↔ x ∈ B]

Note: This is equivalent to

∀x[(x ∈ A→ x ∈ B) ∧ (x ∈ B → x ∈ A)].

Definition 1.2.2. Set A is contained in set B (or A is a subset of B), denoted
A ⊆ B,if

∀x[x ∈ A→ x ∈ B].

96

1. SET OPERATIONS 97

The above note shows that
A = B

iff

A ⊆ B and B ⊆ A.

1.3. Union and Intersection.

Definitions 1.3.1.
• The union of A and B,

A ∪B = {x|(x ∈ A) ∨ (x ∈ B)}.
• The intersection of A and B,

A ∩B = {x|(x ∈ A) ∧ (x ∈ B)}.
• If A ∩B = ∅, then A and B are said to be disjoint.

1.4. Complement.

Definition 1.4.1. The complement of A

A = {x ∈ U |¬(x ∈ A)} = {x ∈ U |x 6∈ A}.

Discussion

There are several common notations used for the complement of a set. For exam-
ple, Ac is often used to denote the complement of A. You may find it easier to type
Ac than A, and you may use this notation in your homework.

1.5. Difference.

Definition 1.5.1. The difference of A and B, or the complement of B rela-
tive to A,

A−B = A ∩B.

Definition 1.5.2. The symmetric difference of A and B,

A⊕B = (A−B) ∪ (B − A)

= (A ∪B)− (A ∩B).

Discussion

The difference and symmetric difference of two sets are new operations, which
were not defined in Module 1.1. Notice that B does not have to be a subset of A for

1. SET OPERATIONS 98

the difference to be defined. This gives us another way to represent the complement
of a set A; namely, A = U − A, where U is the universal set.

The definition of the difference of two sets A and B in some universal set, U , is
equivalent to A−B = {x ∈ U |(x ∈ A) ∧ ¬(x ∈ B)}.

Many authors use the notation A \B for the difference A−B.

The symmetric difference of two sets corresponds to the logical operation ⊕, the
exclusive “or”.

The definition of the symmetric difference of two sets A and B in some universal
set, U , is equivalent to

A⊕B = {x ∈ U |[(x ∈ A) ∧ ¬(x ∈ B)] ∨ [¬(x ∈ A) ∧ (x ∈ B)]}.

1.6. Product.

Definition 1.6.1. The (Cartesian) Product of two sets, A and B, is denoted
A×B and is defined by

A×B = {(a, b)|a ∈ A ∧ b ∈ B}

1.7. Power Set.

Definition 1.7.1. Let S be a set. The power set of S, denoted P(S) is defined
to be the set of all subsets of S.

Discussion

Keep in mind the power set is a set where all the elements are actually sets and
the power set should include the empty set and itself as one of its elements.

1.8. Examples.

Example 1.8.1. Assume: U = {a, b, c, d, e, f, g, h}, A = {a, b, c, d, e}, B =
{c, d, e, f}, and C = {a, b, c, g, h}. Then

(a) A ∪B = {a, b, c, d, e, f}
(b) A ∩B = {c, d, e}
(c) A = {f, g, h}
(d) B = {a, b, g, h}
(e) A−B = {a, b}
(f) B − A = {f}
(g) A⊕B = {a, b, f}

1. SET OPERATIONS 99

(h) (A ∪B) ∩ C = {a, b, c}
(i) A×B = {(a, c), (a, d), (a, e), (a, f), (b, c), (b, d), (b, e), (b, f), (c, c), (c, d), (c, e),

(c, f), (d, c), (d, d), (d, e), (d, f), (e, c), (e, d), (e, e), (e, f)}
(j) P(A) = {∅, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e},
{c, d}, {c, e}, {d, e}, {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d},
{b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e},
{a, b, c, d, e}}

(k) |P(A)| = 32

Exercise 1.8.1. Use the sets given in Example 1.8.1 to find

(1) B × A
(2) P(B)
(3) |P(U)|

Example 1.8.2. Let the universal set be U = Z+ the set of all positive integers,
let P be the set of all prime (positive) integers, and let E be the set of all positive
even integers. Then

(a) P ∪ E = {n ∈ Z+|n is prime or even},
(b) P ∩ E = {2},
(c) P is the set of all positive composite integers,
(d) E is the set of all positive odd integers, {2n+ 1|n ∈ N},
(e) P −E is the set of all positive odd prime numbers (all prime numbers except 2),
(f) E − P = {4, 6, 8, 10, . . . } = {2n|n ∈ Z+ ∧ n ≥ 2},
(g) E ⊕ P = {n ∈ Z+|(n is prime or even) ∧ n 6= 2}

Exercise 1.8.2.
(1) If |A| = n and |B| = m, how many elements are in A×B?
(2) If S is a set with |S| = n, what is |P(S)|?

Exercise 1.8.3. Does A×B = B × A? Prove your answer.

1.9. Venn Diagrams. A Venn Diagram is a useful geometric visualization
tool when dealing with three or fewer sets. The Venn Diagram is generally set up as
follows:

• The Universe U is the rectangular box.
• A set are represented by a circle and its interior.
• In the absence of specific knowledge about the relationships among the sets

being represented, the most generic relationships should be depicted.

Discussion

1. SET OPERATIONS 100

Venn Diagrams can be very helpful in visualizing set operations when you are
dealing with three or fewer sets (not including the universal set). They tend not
to be as useful, however, when considering more than three sets. Although Venn
diagrams may be helpful in visualizing sets and set operations, they will not be used
for proving set theoretic identities.

1.10. Examples.

Example 1.10.1. The following Venn Diagrams illustrate generic relationships
between two and three sets, respectively.

U

A B

U

A B

C

Example 1.10.2. This Venn Diagram represents the difference A−B (the shaded
region).

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

B

U

A

A - B

The figures in the examples above show the way you might draw the Venn diagram
if you aren’t given any particular relations among the sets. On the other hand, if you
knew, for example, that A ⊆ B, then you would draw the set A inside of B.

1. SET OPERATIONS 101

1.11. Set Identities.

Example 1.11.1. Prove that the complement of the union is the intersection of
the complements:

A ∪B = A ∩B.

Proof 1. One way to show the two sets are equal is to use the fact that

A ∪B = A ∩B

iff

A ∪B ⊆ A ∩B and A ∩B ⊆ A ∪B.

Step 1. Show A ∪B ⊆ A ∩B.
Assume x is an arbitrary element of A ∪B (and show x ∈ A ∩ B). Since
x ∈ A ∪B, x 6∈ A ∪B. This means x 6∈ A and x 6∈ B (De Morgan’s Law).
Hence x ∈ A ∩B. Thus, by Universal Generalization,

∀x[x ∈ (A ∪B)→ x ∈ (A ∩B)]

so that, by definition,

A ∪B ⊆ A ∩B.

Step 2. Show A ∩B ⊆ A ∪B.
Suppose x is an arbitrary element of A ∩ B. Then x 6∈ A and x 6∈ B.
Therefore, x 6∈ A ∪ B (De Morgan’s Law). This shows x ∈ A ∪B. Thus, by
Universal Generalization,

∀x[x ∈ (A ∩B)→ x ∈ (A ∪B)]

so that, by definition,

A ∩B ⊆ A ∪B.

�

Proof 2. The following is a second proof of the same result, which emphasizes
more clearly the role of the definitions and laws of logic. We will show

∀x[x ∈ A ∪B ↔ x ∈ A ∩B].

1. SET OPERATIONS 102

Assertion Reason

∀x:

x ∈ A ∪B ⇔ x 6∈ [A ∪B] Definition of complement

⇔ ¬[x ∈ A ∪B] Definition of 6∈

⇔ ¬[(x ∈ A) ∨ (x ∈ B)] Definition of union

⇔ ¬(x ∈ A) ∧ ¬(x ∈ B) De Morgan’s Law

⇔ (x ∈ A) ∧ (x ∈ B) Definition of complement

⇔ x ∈ A ∩B Definition of intersection

Hence ∀x[x ∈ A ∪B ↔ x ∈ A ∩B] is a tautology. �

(In practice we usually omit the formality of writing ∀x in the initial line of the
proof and assume that x is an arbitrary element of the universe of discourse.)

Proof 3. A third way to prove this identity is to build a membership table for
the sets A ∪B and A∩B, and show the membership relations for the two sets are the
same. The 1’s represent membership in a set and the 0’s represent nonmembership.

A B A ∪B A ∪B A B A ∩B

1 1 1 0 0 0 0

1 0 1 0 0 1 0

0 1 1 0 1 0 0

0 0 0 1 1 1 1

Compare this table to the truth table for the proof of De Morgan’s Law:

¬(p ∨ q)↔ (¬p ∧ ¬q)

�

Discussion

A set identity is an equation involving sets and set operations that is true for all
possible choices of sets represented by symbols in the identity. These are analgous to
identities such as

(a+ b)(a− b) = a2 − b2

1. SET OPERATIONS 103

that you encounter in an elementary algebra course.

There are various ways to prove an identity, and three methods are covered here.
This is a good place to be reminded that when you are proving an identity, you must
show that it holds in all possible cases. Remember, giving an example does not prove
an identity. On the other hand, if you are trying to show that an expression is not
an identity, then you need only provide one counterexample. (Recall the negation of
∀xP (x) is ∃x¬P (x)).

Proof 1 establishes equality by showing each set is a subset of the other. This method
can be used in just about any situation.

Notice that in Proof 1 we start with the assumption, x is in A ∪B, where
x is otherwise an arbitrary element in some universal set. If we can show
that x must then be in A ∩B, then we will have established

∀x, [x ∈ A ∪B]→ [x ∈ A ∩B].

That is, the modus operandi is to prove the implications hold for an arbitrary
element x of the universe, concluding, by Universal Generalization, that the
implications hold for all such x.

Notice the way De Morgan’s Laws are used here. For example, in the first
part of Proof 1, we are given that x 6∈ (A ∪B). This means

¬[x ∈ (A ∪B)]⇔ ¬[(x ∈ A) ∨ (x ∈ B)]⇔ [(x 6∈ A) ∧ (x 6∈ B)].

Proof 2 more clearly exposes the role of De Morgan’s Laws. Here we prove the identity
by using propositional equivalences in conjunction with Universal General-
ization. When using this method, as well as any other, you must be careful
to provide reasons.

Proof 3 provides a nice alternative when the identity only involves a small number
of sets. Here we show two sets are equal by building a member table for the
sets. The member table has a 1 to represent the case in which an element is
a member of the set and a 0 to represent the case when it is not. The set
operations correspond to a logical connective and one can build up to the
column for the set desired.
You will have proved equality if you demonstrate that the two columns for
the sets in question have the exact same entries. Notice that all possible
membership relations of an element in the universal set for the sets A and B
are listed in the first two columns of the membership table. For example, if
an element is in both A and B in our example, then it satisfies the conditions
in the first row of the table. Such an element ends up in neither of the two
sets A ∪B nor A ∩B.

This is very straight forward method to use for proving a set identity. It
may also be used to prove containment. If you are only trying to show the
containment M ⊆ N , you would build the membership table for M and N
as above. Then you would look in every row where M has a 1 to see that

1. SET OPERATIONS 104

N also has a 1. However, you will see examples in later modules where a
membership table cannot be created. It is not always possible to represent
all the different possibilities with a membership table.

Example 1.11.2. Prove the identity (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

Proof 1. Suppose x is an arbitrary element of the universe.

Assertion Reason

x ∈ (A ∪B) ∩ C

⇔ [x ∈ (A ∪B)] ∧ [x ∈ C] definition of intersection

⇔ [(x ∈ A) ∨ (x ∈ B)] ∧ [x ∈ C] definition of union

⇔ [(x ∈ A) ∧ (x ∈ C)] ∨ [(x ∈ B) ∧ (x ∈ C)] distributive law of “and”

over “or”

⇔ [x ∈ (A ∩ C)] ∨ [(x ∈ (B ∩ C)] definition of intersection

⇔ x ∈ [(A ∩ C) ∪ (B ∩ C)] definition of union

�

Proof 2. Build a membership table:

A B C A ∪B (A ∩ C) (B ∩ C) (A ∪B) ∩ C (A ∩ C) ∪ (B ∩ C)

1 1 1 1 1 1 1 1

1 1 0 1 0 0 0 0

1 0 1 1 1 0 1 1

0 1 1 1 0 1 1 1

1 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

Since the columns corresponding to (A∪B)∩C and (A∩C)∪(B∩C) are identical,
the two sets are equal. �

1. SET OPERATIONS 105

Example 1.11.3. Prove (A−B)− C ⊆ A− (B − C).

Proof. Consider the membership table:

A B C A−B B − C (A−B)− C A− (B − C)

1 1 1 0 0 0 1

1 1 0 0 1 0 0

1 0 1 1 0 0 1

1 0 0 1 0 1 1

0 1 1 0 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

Notice the only 1 in the column for (A−B)−C is the fourth row. The entry in the
same row in the column for A−(B−C) is also a 1, so (A−B)−C ⊆ A−(B−C). �

Exercise 1.11.1. Prove the identity A−B = A∩B using the method of Proof 2
in Example 1.11.1.

Exercise 1.11.2. Prove the identity A−B = A∩B using the method of Proof 3
in Example 1.11.1.

Exercise 1.11.3. Prove the identity (A∪B)−C = (A−C)∪ (B −C) using the
method of Proof 1 in Example 1.11.1.

Exercise 1.11.4. Prove the identity (A∪B)−C = (A−C)∪ (B −C) using the
method of Proof 2 in Example 1.11.1.

Exercise 1.11.5. Prove the identity (A∪B)−C = (A−C)∪ (B −C) using the
method of Proof 3 in Example 1.11.1.

1.12. Union and Intersection of Indexed Collections.

Definition 1.12.1. The the union and intersection of an indexed collection of
sets

{A1, A2, A3, . . . , An}
can be written as

n⋃
i=1

Ai = A1 ∪ A2 ∪ A3 ∪ · · · ∪ An

1. SET OPERATIONS 106

and
n⋂

i=1

Ai = A1 ∩ A2 ∩ A3 ∩ · · · ∩ An,

respectively.

1.13. Infinite Unions and Intersections.

Definition 1.13.1. The union and intersection of an indexed collection of infin-
itely many sets

{A1, A2, A3, . . . , }
can be written as

∞⋃
i=1

Ai = {a|a ∈ Ai for some i in Z+}

and
∞⋂
i=1

Ai = {a|a ∈ Ai for all i in Z+}

Discussion

If you have a collection of more than two sets, you can define the intersection
and the union of the sets as above. (Since the operations are associative, it isn’t
necessary to clutter the picture with parentheses.) The notation is similar to the Σ
notation used for summations. The subscript is called an index and the collection of
sets is said to be indexed by the set of indices. In the example, the collection of sets is
{A1, A2, ..., An}, and the set of indices is the set {1, 2, ..., n}. There is no requirement
that sets with different indices be different. In fact, they could all be the same set.
This convention is very useful when each of the sets in the collection is naturally
described in terms of the index (usually a number) it has been assigned.

An equivalent definition of the union and intersection of an indexed collection of
sets is as follows:

n⋃
i=1

Ai = {x|∃i ∈ {1, 2, . . . , n} such that x ∈ Ai}

and
n⋂

i=1

Ai = {x|∀i ∈ {1, 2, . . . , n}, x ∈ Ai}.

1. SET OPERATIONS 107

Another standard notation for unions over collections of indices is⋃
i∈Z+

Ai =
∞⋃
i=1

Ai.

More generally, if I is any set of indices, we can define⋃
i∈I

Ai = {x|∃i ∈ I such that x ∈ Ai}.

1.14. Example 1.14.1.

Example 1.14.1. Let Ai = [i, i+ 1), where i is a positive integer. Then

•
n⋃

i=1

Ai = [1, n+ 1), and

•
n⋂

i=1

Ai = ∅, if n > 1.

•
∞⋃
i=1

Ai = [1,∞)

•
∞⋂
i=1

Ai = ∅

Discussion

This is an example of a collection of subsets of the real numbers that is naturally
indexed. If Ai = [i, i + 1), then A1 = [1, 2), A2 = [2, 3), A3 = [3, 4), etc. It may help
when dealing with an indexed collection of sets to explicitly write out a few of the
sets as we have done here.

Example 1.14.2. Suppose Ci = {i − 2, i − 1, i, i + 1, i + 2}, where i denotes an
arbitrary natural number. Then

• C0 = {−2,−1, 0, 1, 2},
• C1 = {−1, 0, 1, 2, 3},
• C2 = {0, 1, 2, 3, 4},

•
n⋃

i=0

Ci = {−2,−1, 0, 1, . . . , n, n+ 1, n+ 2}

•
4⋂

i=0

Ci = {2}

1. SET OPERATIONS 108

•
n⋂

i=0

Ci = ∅ if n > 4.

•
∞⋃
i=0

Ci = {−2,−1, 0, 1, 2, 3, . . . }

•
∞⋂
i=0

Ci = ∅

Exercise 1.14.1. For each positive integer k, let Ak = {kn|n ∈ Z}. For example,

• A1 = {n|n ∈ Z} = Z
• A2 = {2n|n ∈ Z} = {...,−2, 0, 2, 4, 6, ...}
• A3 = {3n|n ∈ Z} = {...,−3, 0, 3, 6, 9, ...}

Find

1.
10⋂
k=1

Ak

2.
m⋂
k=1

Ak, where m is an arbitrary positive integer.

Exercise 1.14.2. Use the definition for Ak in exercise 1.14.1 to answer the fol-
lowing questions.

(1)
∞⋂
i=1

Ai

(2)
∞⋃
i=1

Ai

1.15. Computer Representation of a Set. Here is a method for storing sub-
sets of a given, finite universal set:

Order the elements of the universal set and then assign a bit number to each
subset A as follows. A bit is 1 if the element corresponding to the position of the bit
in the universal set is in A, and 0 otherwise.

Example 1.15.1. Suppose U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, with the obvious order-
ing. Then

• The bit string corresponding to A = {2, 4, 6, 8, 10} is 0101010101.
• The bit string corresponding to B = {1, 2, 3, 4} is 1111000000.

1. SET OPERATIONS 109

Discussion

There are many ways sets may be represented and stored in a computer. One
such method is presented here. Notice that this method depends not only on the
universal set, but on the order of the universal set as well. If we rearrange the order
of the universal set given in Example 1.15.1 to U = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}, then
the bit string corresponding to the subset {1, 2, 3, 4} would be 0000001111.

The beauty of this representation is that set operations on subsets of U can be
carried out formally using the corresponding bitstring operations on the bit strings
representing the individual sets.

Example 1.15.2. For the sets A,B ⊆ U in Example 1.15.1:

A = (0101010101)

= 1010101010

= {1, 3, 5, 7, 9}

A ∪B = 0101010101 ∨ 1111000000

= 1111010101

= {1, 2, 3, 4, 6, 8, 10}

A ∩B = 0101010101 ∧ 1111000000

= 0101000000

= {2, 4}

A⊕B = 0101010101⊕ 1111000000

= 1010010101

= {1, 3, 6, 8, 10}

Exercise 1.15.1. Let U = {a, b, c, d, e, f, g, h, i, j} with the given alphabetical or-
der. Let A = {a, e, i}, B = {a, b, d, e, g, h, j}, and C = {a, c, e, g, i}.

(1) Write out the bit string representations for A, B, and C.
(2) Use these representations to find

(a) C

1. SET OPERATIONS 110

(b) A ∪B
(c) A ∩B ∩ C
(d) B − C

2. PROPERTIES OF FUNCTIONS 111

2. Properties of Functions

2.1. Injections, Surjections, and Bijections.

Definition 2.1.1. Given f : A→ B

1. f is one-to-one (short hand is 1 − 1) or injective if preimages are unique. In
this case, (a 6= b)→ (f(a) 6= f(b)).

2. f is onto or surjective if every y ∈ B has a preimage. In this case, the range of
f is equal to the codomain.

3. f is bijective if it is surjective and injective (one-to-one and onto).

Discussion

We begin by discussing three very important properties functions defined above.

1. A function is injective or one-to-one if the preimages of elements of the range are
unique. In other words, if every element in the range is assigned to exactly one
element in the domain. For example, if a function is defined from a subset of the
real numbers to the real numbers and is given by a formula y = f(x), then the
function is one-to-one if the equation f(x) = b has at most one solution for every
number b.

2. A function is surjective or onto if the range is equal to the codomain. In other
words, if every element in the codomain is assigned to at least one value in the
domain. For example, if, as above, a function is defined from a subset of the real
numbers to the real numbers and is given by a formula y = f(x), then the function
is onto if the equation f(x) = b has at least one solution for every number b.

3. A function is a bijection if it is both injective and surjective.

2.2. Examples.

Example 2.2.1. Let A = {a, b, c, d} and B = {x, y, z}. The function f is defined
by the relation pictured below. This function is neither injective nor surjective.

a

��

x

b // y

c // z

d

88

2. PROPERTIES OF FUNCTIONS 112

Example 2.2.2. f : A → B where A = {a, b, c, d} and B = {x, y, z} defined by
the relation below is a surjection, but not an injection.

a // x

b // y

c // z

d

88

Example 2.2.3. f : A→ B where A = {a, b, c, d} and B = {v, w, x, y, z} defined
by the relation below is an injection, but not a surjection.

a // v

b // w

c

&&

x

d

&&

y

z

Example 2.2.4. f : A→ B where A = {a, b, c, d} and B = {v, w, x, y} defined by
the relation below both a surjection and an injection, and therefore a bijection. Notice
that for a function to be a bijection, the domain and codomain must have the same
cardinality.

a

��

v

b // w

c

@@

x

d // y

Discussion

2. PROPERTIES OF FUNCTIONS 113

The examples illustrate functions that are injective, surjective, and bijective. Here
are further examples.

Example 2.2.5. Let f : [0,∞)→ [0,∞) be defined by f(x) =
√
x. This function

is an injection and a surjection and so it is also a bijection.

Example 2.2.6. Suppose f(x) = x2. If the domain and codomain for this function
is the set of real numbers, then this function would be neither a surjection nor an
injection. It is not a surjection because the range is not equal to the codomain. For
example, there is no number in the domain with image −1 which is an element of the
codomain. It is not an injection since more than one distinct element in the domain
is mapped to the same element in the codomain. For example, f(−1) = f(1) but
−1 6= 1.

Exercise 2.2.1. What if we say the domain of the function in Example 2.2.6 is
the set of all reals and the codomain is [0,∞). Which properties would the function
have (injective and/or surjective)? Explain.

Exercise 2.2.2. Now, if we say the domain and the codomain are both [0,∞).
What properties does the function in Example 2.2.6 have? Explain.

2.3. Example 2.3.1.

Example 2.3.1. Prove that the function f : N → N be defined by f(n) = n2 is
injective.

Proof. Let a, b ∈ N be such that f(a) = f(b). This implies

a2 = b2 by the definition of f .

Thus a = b or a = −b. Since the domain of f is the set of natural numbers, both
a and b must be nonnegative. Thus a = b.

This shows ∀a∀b[f(a) = f(b)→ a = b], which shows f is injective. �

Discussion

In Example 2.3.1 we prove a function is injective, or one-to-one. Notice that to
prove a function, f : A→ B is one-to-one we must show the following:

(∀x ∈ A)(∀y ∈ A)[(x 6= y)→ (f(x) 6= f(y))].

This is equivalent to showing

(∀x ∈ A)(∀y ∈ A)[(f(x) = f(y))→ (x = y)].

To prove this statement (which actually uses the contrapositive of the definition)
we begin by choosing two arbitrary elements of the domain and assume the hypothesis

2. PROPERTIES OF FUNCTIONS 114

of the implication, i.e. we begin with “Let x, y ∈ A and assume f(x) = f(y).” We
then use the rules of algebra to show that the conclusion must follow.

2.4. Example 2.4.1.

Example 2.4.1. Prove that the function g : N → N, defined by g(n) = bn/3c, is
surjective.

Proof. Let n ∈ N. Notice that g(3n) = b(3n)/3c = b(3n)/3c = n. Since 3n ∈ N,
this shows n is in the range of g. Hence g is surjective. �

Discussion

To prove a function, f : A → B is surjective, or onto, we must show f(A) = B.
In other words, we must show the two sets, f(A) and B, are equal. We already know
that f(A) ⊆ B if f is a well-defined function. While most functions encountered in
a course using algebraic functions are well-defined, this should not be an automatic
assumption in general. With that said, though, we will usually assume the functions
given to us are well defined, so all that must be shown is that B ⊆ f(A). To do this
we may use the definition of a subset: show every element of B is also an element
of f(A). Thus we begin the proof by fixing an arbitrary element of B. We then
use the tools at our disposal (definition of the function, algebra, any other known
information) to show that this arbitrary element must in fact be the image of some
element of A.

2.5. Example 2.5.1.

Example 2.5.1. Prove that the function g : N → N, defined by g(n) = bn/3c, is
not injective.

Proof. The numbers 1 and 2 are in the domain of g and are not equal, but
g(1) = g(2) = 0. Thus g is not injective. �

Discussion

To show a function is not injective we must show

¬[(∀x ∈ A)(∀y ∈ A)[(x 6= y)→ (f(x) 6= f(y))]].

This is equivalent to

(∃x ∈ A)(∃y ∈ A)[(x 6= y) ∧ (f(x) = f(y))].

2. PROPERTIES OF FUNCTIONS 115

Thus when we show a function is not injective it is enough to find an example of
two different elements in the domain that have the same image.

2.6. Example 2.6.1.

Example 2.6.1. Prove that the function f : N → N be defined by f(n) = n2, is
not surjective.

Proof. The number 3 is an element of the codomain, N. However, 3 is not the
square of any integer. Therefore, there is no element of the domain that maps to the
number 3, so f is not surjective. �

Discussion

To show a function is not surjective we must show f(A) 6= B. Since a well-defined
function must have f(A) ⊆ B, we should show B 6⊆ f(A). Thus to show a function is
not surjective it is enough to find an element in the codomain that is not the image
of any element of the domain. You may assume the familiar properties of numbers in
this module as done in the previous examples.

2.7. Inverse Functions.

Definition 2.7.1. Suppose f : A → B is a bijection. Then the inverse of f ,
denoted

f−1 : B → A,

is the function defined by the rule

f−1(y) = x if and only if f(x) = y.

Discussion

If a function f is a bijection, then it makes sense to define a new function that
reverses the roles of the domain and the codomain, but uses the same rule that defines
f . This function is called the inverse of the f . If the function is not a bijection, it
does not have an inverse.

You have seen many functions in algebra and calculus that are defined as inverses
of other functions. For example, the square-root function

√
x is defined by the rule

y =
√
x if and only if y ≥ 0 and y2 = x. That is, the square-root function is the

inverse of the square function. Before we can invert the square function, however, its
usual domain, the set of all real numbers, must be restricted to the set of nonnegative
real numbers in order to have a bijection. That is, if A = B = {x ∈ R : x ≥ 0},

2. PROPERTIES OF FUNCTIONS 116

then the function f : A → B defined by f(x) = x2 is a bijection, and its inverse
f−1 : B → A is the square-root function, f−1(x) =

√
x.

Another important example from algebra is the logarithm function. If a is a
positive real number, different from 1, and R+ = {x ∈ R : x > 0}, the function
f : R → R+ defined by f(x) = ax is a bijection. Its inverse, f−1 : R+ → R, is the
logarithm function with base a: f−1(x) = loga x. In other words y = loga x if and
only if ay = x.

Example 2.7.1. Let f : A → B, where A = {a, b, c, d} and B = {v, w, x, y}, be
defined as follows

a

��

v

b // w

c

@@

x

d // y

Then the inverse function is f−1 : B → A defined as follows

v

��

a

w // b

x

@@

c

y // d

Example 2.7.2. Suppose f : R− {2} → R− {1} is defined by f(x) =
x

x− 2
.

Then the function f−1(x) =
2x

x− 1
is the inverse of f . This is a good example of an

algebraically defined function whose inverse has a nice formula specifying its rule. You

may recall that the formula defining f−1 can be obtained by setting y = f(x) =
x

x− 2
,

interchanging x and y, and solving algebraically for y.

Exercise 2.7.1. Find the inverse of the function f : R−{−2} → R−{1} defined

by f(x) =
x− 1

x+ 2
.

2. PROPERTIES OF FUNCTIONS 117

Exercise 2.7.2. Find the inverse of the function f : R → (−∞, 1) defined by
f(x) = 1− e−x.

Theorem 2.7.1. If a function is a bijection, then its inverse is also a bijection.

Proof. Let f : A → B be a bijection and let f−1 : B → A be its inverse. To
show f−1 is a bijection we must show it is an injection and a surjection.

Let x1, x2 ∈ B be such that f−1(x1) = f−1(x2). Then by the definition of the
inverse we have x1 = f(f−1(x2)) = x2. This shows f−1 is injective.

We leave the proof that f−1 is surjective as an exercise for the reader. �

Exercise 2.7.3. Finish the proof of Theorem 2.7.1.

2.8. Inverse Image.

Definition 2.8.1. Let f : A → B and let S be a subset of B. Then the inverse
image of S under f is the set

f−1(S) = {x ∈ A|f(x) ∈ S}.
There is no requirement for f to be injective or surjective for this definition to hold.

Example 2.8.1. Let f : A → B, where A = {a, b, c, d} and B = {x, y, z} be
defined as follows

a // x

b // y

c // z

d

88

• f−1({z}) = {c, d}
• f−1({x, y}) = {a, b}

Discussion

We revisit the definition of the inverse image of a set to emphasize the difference
between the inverse image of a subset of the codomain and the inverse of a function.
The inverse image of a set is the set of all elements that map into that set. The
function does not have to be injective or surjective to find the inverse image of a set.
For example, the function f(n) = 1 with domain and codomain all natural numbers

2. PROPERTIES OF FUNCTIONS 118

would have the following inverse images: f−1({1}) = N and f−1({5, 6, 7, 8, 9}) = ∅.
This function does not have an inverse, however.

The context of the use of the notation f−1 usually indicates if the inverse image
or the inverse function is intended. If A is a subset of the codomain we would always
assume f−1(A) is the inverse image of A. When discussing a bijection the distinction
between the inverse image and inverse function is often blurred.

Exercise 2.8.1. Find an example of a function f : A → B and a set S ⊆ A
where f(S) 6= f(S).

Exercise 2.8.2. Let f : A → B be a function and let S ⊆ B. Prove f−1(S) =

f−1(S)

2.9. Composition.

Definition 2.9.1. Let f : A → B and g : B → C. The composition of g with
f , denoted g ◦ f , is the function from A to C defined by (g ◦ f)(x) = g(f(x)).

Example 2.9.1. Let A = {a, b, c, d}, B = {v, w, x, y}, and C = {r, s, t}; and let
f : A→ B and g : B → C by defined as follows

a

��

v v // r

b

88

w w // s

c // x x

88

t

d

AA

y y

88

Then the composition g ◦ f is as follows

a

&&

r

b

88

s

c

88

t

d

AA

Discussion

2. PROPERTIES OF FUNCTIONS 119

The composition of two functions is defined by following one function by another.
To define the composition g ◦ f we must have the range of f contained in the domain
of g.

2.10. Example 2.10.1.

Example 2.10.1. Prove that the composition of two injective functions is injective.

Proof. Let A,B, and C be sets and let f : A → B and g : B → C be two
injections.

Suppose x and y are elements of A such that (g ◦ f)(x) = (g ◦ f)(y). This means
g(f(x)) = g(f(y)). Since the codomain of f is B, f(x) ∈ B and f(y) ∈ B. Thus
we have two elements of B, f(x) and f(y), such that g(f(x)) = g(f(y)). Since g is
injective, we must have f(x) = f(y). But now we may use the fact that f is injective
to conclude x = y.

This shows that g ◦ f is an injection. �

Discussion

Sometimes we have to prove properties about functions without any specific for-
mula for the functions. In Example 2.10.1 we prove that the composition of two
injections is again an injection. We cannot use specific examples of function be-
cause that would not prove this more general statement. We have to use the tools
given by the assumptions, namely, that we know the two functions that make up the
composition are known to be injections.

Exercise 2.10.1. Prove the composition of two surjections is a surjection.

Theorem 2.10.1 (Corollary to Example 2.10.1 and Exercise 2.10.1). The compo-
sition of two bijections is a bijection.

Exercise 2.10.2. Prove or disprove: if the composition of two functions is an
injection then the two original functions must be injections too.

Exercise 2.10.3. Prove or disprove: if the composition of two functions is an
surjection then the two original functions must be surjections too.

3. RECURRENCE 120

3. Recurrence

3.1. Recursive Definitions. To construct a recursively defined function:

1. Initial Condition(s) (or basis): Prescribe initial value(s) of the function.
2. Recursion: Use a fixed procedure (rule) to compute the value of the function at

the integer n+ 1 using one or more values of the function for integers ≤ n.

To construct a recursively defined set:

1. Initial Condition(s) (or basis): Prescribe one or more elements of the set.
2. Recursion: Give a rule for generating elements of the set in terms of previously

prescribed elements.

Discussion

In computer programming evaluating a function or executing a procedure is often
accomplished by using a recursion. A recursive process is one in which one or more
initial stages of the process are specified, and the nth stage of the process is defined
in terms of previous stages, using some fixed procedure. In a computer program this
is usually accomplished by using a subroutine, such as a “For” loop, in which the
same procedure is repeated a specified number of times; that is, the procedure calls
itself.

Example 3.1.1. The function f(n) = 2n, where n is a natural number, can be
defined recursively as follows:

1. Initial Condition: f(0) = 1,

2. Recursion: f(n+ 1) = 2 · f(n), for n ≥ 0.

For any particular n, this procedure could be programmed by first initializing F = 1,
and then executing a loop “For i = 1 to n, 2 ∗ F = F .”

Here is how the definition gives us the first few powers of 2:

21 = 20+1 = 20 · 2 = 2

22 = 21+1 = 21 · 2 = 2 · 2 = 4

23 = 22+1 = 22 · 2 = 4 · 2 = 8

3. RECURRENCE 121

3.2. Recursive Definition of the Function f(n) = n!.

Example 3.2.1. The factorial function f(n) = n! is defined recursively as follows:

1. Initial Condition: f(0) = 1

2. Recursion: f(n+ 1) = (n+ 1)f(n)

Discussion

Starting with the initial condition, f(0) = 1, the recurrence relation, f(n + 1) =
(n+ 1)f(n), tells us how to build new values of f from old values. For example,

1! = f(1) = 1 · f(0) = 1,

2! = f(2) = 2 · f(1) = 2,

3! = f(3) = 3 · f(2) = 6, etc.

When a function f(n), such as the ones in the previous examples, is defined
recursively, the equation giving f(n + 1) in terms of previous values of f is called a
recurrence relation.

3.3. Recursive Definition of the Natural Numbers.

Definition 3.3.1. The set of natural numbers may be defined recursively as fol-
lows.

1. Initial Condition: 0 ∈ N

2. Recursion: If n ∈ N, then n+ 1 ∈ N.

Discussion

There are a number of ways of defining the set N of natural numbers recursively.
The simplest definition is given above. Here is another recursive definition for N.

Example 3.3.1. Suppose the set S is defined recursively as follows:

1. Initial Condition: 0, 1 ∈ S,
2. Recursion: If x, y ∈ S, then x+ y ∈ S.

3. RECURRENCE 122

Then S = N.

Notice that, in the recursive step, x and y don’t have to represent different num-
bers. Thus, having x = y = 1 ∈ S, we get 1 + 1 = 2 ∈ S. Then we get 1 + 2 = 3 ∈ S.
And so on.

It should be noted that there is an extremal clause in recursively defined sets. If
you cannot build a given element in a finite number of applications of the recursion
then it is not in the set built from the recursive definition. To prove an element is in
a recursively defined set, you must show that element can be built in a finite number
of steps.

Example 3.3.2. Prove that the set S recursively in Example 3.3.1 is equal to the
set N of natural numbers.

Proof. We will show that S = N by showing separately that S ⊆ N and N ⊆ S.

1. First we show N ⊆ S. Prove by induction that n ∈ S for every natural number
n ≥ 0.
(a) Basis Step. 0, 1 ∈ S by definition.
(b) Induction Step. Suppose n ∈ S, for some n ≥ 1. Then, by the recursion step,

n ∈ S and 1 ∈ S imply n+ 1 ∈ S.
Thus, by the first principle of mathematical induction, n ∈ S for every natural
number n ≥ 0.

2. Now we show S ⊆ N. This time we apply the second principle of mathematical
induction on n to show that if s ∈ S is produced by applying n steps (1 initial
condition and n− 1 recursive steps), then s ∈ N.
(a) Basis Step. After one step the only elements produced are 0 and 1, each of

which is in N.
(b) Induction Step. Suppose n ≥ 1 and assume any element in S produced by

applying n or fewer steps is also an element of N. Suppose s ∈ S is produced
by applying n+ 1 steps. Since n+ 1 ≥ 2, there must be two elements x and y
in S, such that s = x+y. Both x and y must have been produced by applying
fewer than n+1 steps, since s is produced by applying n+1 steps, and we use
one step to obtain s from x and y. By the induction hypothesis both x and y
are elements of N. Since the sum of two natural numbers is again a natural
number we have s ∈ N.

�

3.4. Proving Assertions About Recursively Defined Objects. Assertions
about recursively defined objects are usually proved by mathematical induction. Here
are three useful versions of induction. In particular, note the third version which we
introduce here.

3. RECURRENCE 123

Version 1. Second Principle of Induction
a. Basis Step: Prove the assertion for the initial conditions. (The assertion

may have to be verified for more than one particular value.)

b. Induction Step: Assume the assertion is true for integers ≤ n, and use
the recurrence relation to prove the assertion for the integer n+ 1.

Version 2. a. Basis Step: Prove the assertion for the initial conditions. (The assertion
may have to be verified for more than one particular value.)

b. Induction Step: Assume the assertion is true when the recursive defi-
nition has been applied less than or equal to n times for some integer
n ≥ 0, and use the recurrence relation to prove the assertion when the
recursive definition is applied n+ 1 times.

Version 3. Generalized or Structural Principle of Induction: Use to prove an assertion
about a set S defined recursively by using a set X given in the basis and
a set of rules using s1, s2, . . . , sk ∈ S for producing new members in the
recursive set.
a. Basis Step: Prove the assertion for every s ∈ X.

b. Induction Step: Let s1, s2, . . . , sk ∈ S be arbitrary and assume the
assertion for these elements (this is the induction hypothesis). Prove all
elements of S produced using the recursive definition and s1, s2, . . . , sk
satisfies the assertion.

Discussion

Example 3.4.1. Let S, a subset of N× N, be defined recursively by

1. Initial Condition: (0, 0) ∈ S
2. Recursion: If (m,n) ∈ S, then (m+ 2, n+ 3) ∈ S.

Prove that if (m,n) ∈ S, then m+ n is a multiple of 5.

Proof. We use the Generalized Principle of Induction.

1. Basis Step: Show the statement for (0, 0): 0 + 0 is a multiple of 5. Since 0 = 0 · 5
this is clear.

2. Inductive Step: Let (m,n) ∈ S and assume m + n is a multiple of 5. Show the
statement is true for (m + 2, n + 3). In other words, show (m + 2) + (n + 3) is a
multiple of 5.

(m+ 2) + (n+ 3) = (m+ n) + 5

We know m + n is a multiple of 5 and clearly 5 is a multiple of 5, so the sum
must also be a multiple of 5. This proves the induction step.

3. RECURRENCE 124

Therefore, by the first principle of mathematical induction if (m,n) ∈ S, then m+ n
is a multiple of 5. �

Exercise 3.4.1. Suppose the set S is defined recursively as follows:

1. 1 ∈ S,
2. If x ∈ S, then 2 · x ∈ S.

Prove that S = {2n|n ≥ 0}.

Exercise 3.4.2. Suppose the set S is defined recursively as follows:

1. 0, 1 ∈ S,
2. If x, y ∈ S, then x · y ∈ S.

What are the elements of S? Prove that your answer is correct.

Example 3.4.2. Suppose f : N→ R is define recursively by

1. Initial Condition: f(0) = 0

2. Recursion: f(n+ 1) = f(n) + (n+ 1), for n ≥ 0.

Then f(n) =
n(n+ 1)

2
for all n ≥ 0

Proof. 1. Basis Step (n = 0): f(0) = 0, by definition. On the other hand
0(0 + 1)

2
= 0. Thus, f(0) =

0(0 + 1)

2
.

2. Inductive Step: Suppose f(n) =
n(n+ 1)

2
for some n ≥ 0. We must prove

f(n+ 1) =
(n+ 1)((n+ 1) + 1)

2
.

f(n+ 1) = f(n) + (n+ 1) (recurrence relation)

=
n(n+ 1)

2
+ (n+ 1) (by the induction hypothesis)

= (n+ 1)

[
n

2
+ 1

]

= (n+ 1)

[
n+ 2

2

]

=
(n+ 1)((n+ 1) + 1)

2

3. RECURRENCE 125

Therefore, by the first principle of mathematical induction f(n) =
n(n+ 1)

2
for

all n ≥ 0. �

Exercise 3.4.3. Suppose f : N→ R is define recursively as follows:

1. f(0) = 0,
2. f(n+ 1) = f(n) + (2n+ 1), for n ≥ 0.

Prove that f(n) = n2 for all n ≥ 0.

3.5. Definition of fn.

Definition 3.5.1. Let f : A → A be a function. Then we define fn recursively
as follows

1. Initial Condition: f 1 = f

2. Recursion: fn+1 = f ◦ fn, for n ≥ 1.

Discussion

Example 3.5.1. Prove that if f is injective, then fn is injective for n ≥ 1.

Proof. Assume f is injective.

1. Basis Step: f 1 = f is injective by our assumption.

2. Inductive Step: Let n ≥ 1 and assume fn is injective. Prove fn+1 is injective.
Recall that to prove fn+1 is injective we must show ∀a, b ∈ A[(fn+1(a) =

fn+1(b))→ (a = b)]
Assume a, b ∈ A and fn+1(a) = fn+1(b).

fn+1(a) = fn+1(b) (recurrence relation)

(f ◦ fn)(a) = (f ◦ fn)(b) (recurrence relation)

f(fn(a)) = f(fn(b)) (by the definition of composition)

fn(a) = fn(b) (since f is injective)

a = b (by the induction hypothesis, fn is injective)

Therefore, by the first principle of mathematical induction fn is injective for all
positive integers.

�

3. RECURRENCE 126

Exercise 3.5.1. Prove that if f is surjective that fn is surjective.

3.6. Example 3.6.1.

Example 3.6.1. Given a real number a 6= 0, define an for all natural numbers, n,
inductively by

1. Initial Condition: a0 = 1
2. Recursion: a(n+1) = ana

Theorem 3.6.1. ∀m∀n[aman = am+n] where m,n are natural numbers.

Proof. Proof that (∀m)(∀n)[aman = am+n], where m,n are natural numbers. We
accomplish this by assuming m is an arbitrary natural number and proving ∀n[aman =
am+n] by induction on n.

1. Basis Step (n = 0): Show ama0 = am+0.
This follows directly from the initial condition of the definition: a0 = 1, there-

fore ama0 = am(1) = am = am+0.

2. Induction Step:
Induction hypothesis: Let n be a natural number and assume aman = an+m.

Prove aman+1 = am+(n+1).

aman+1 = amana by the recursive part of the definition: an+1 = ana

= am+na by the induction hypothesis

= a(m+n)+1 = a(m+(n+1)) by the recursive part of the definition

By induction, ∀n[aman = am+n].

Since m was an arbitrary natural number the statement is true for all natural numbers
m. �

Discussion

Here we see a recursive definition for the function f(n) = an, where n is a natural
number and a is an arbitrary nonzero real number followed by a proof of one of
the laws of exponents, am+n = aman. This proof uses both mathematical induction
and Universal Generalization. We fix m as some arbitrary natural number and then
proceed to use induction on n. We do not need to use induction on both m and n
simultaneously. When there are two different variables, this is a standard strategy to
try. There are circumstances, however, when this strategy doesn’t work so that you

3. RECURRENCE 127

would need to use induction on both of the variables (double induction). We will not
encounter these kinds of problems in this course, however.

3.7. Fibonacci Sequence.

Definition 3.7.1. The Fibonacci sequence may be defined recursively as follows:

1. Initial Conditions: F (0) = 0, F (1) = 1

2. Recursion: F (n+ 1) = F (n) + F (n− 1) for n ≥ 1

Discussion

The famous Fibonacci sequence is defined here using a recursively defined function.
The definition of the Fibonacci sequence requires two initial conditions. There are no
limits on the number of initial conditions on a recursively defined object – only that
there be a fixed finite number in each instance.

Example 3.7.1. Suppose F (n), n ≥ 0, denotes the Fibonacci sequence. Prove

that 1 <
F (n+ 1)

F (n)
< 2 for all n ≥ 3.

Proof. Let R(n) =
F (n+ 1)

F (n)
for n ≥ 1. We will prove by induction that

1 < R(n) < 2

for all n ≥ 3.

1. Basis Step (n = 3): R(3) =
F (4)

F (3)
=

3

2
, and 1 < 3

2
< 2.

3. RECURRENCE 128

2. Induction Step: Suppose 1 < R(n) < 2 for some n ≥ 3. We need to prove
1 < R(n+ 1) < 2.

R(n+ 1) =
F (n+ 2)

F (n+ 1)

=
F (n+ 1) + F (n)

F (n+ 1)
by the recursive definition of F (n)

= 1 +
F (n)

F (n+ 1)
or

R(n+ 1) = 1 +
1

R(n)

By the inductive hypothesis 1 < R(n) < 2; and so

1 >
1

R(n)
>

1

2
.

Thus,

2 > 1 +
1

R(n)
>

3

2
> 1,

or

1 < 1 +
1

R(n)
< 2.

Substituting from above, we have

1 < R(n+ 1) < 2.

By the first principle of mathematical induction, 1 <
F (n+ 1)

F (n)
< 2 for all n ≥ 3.

�

Example 3.7.2. (calculus required) Prove that lim
n→∞

F (n+ 1)

F (n)
=

1 +
√

5

2
, if the

limit exists.

Proof. Let R(n) =
F (n+ 1)

F (n)
as in Example 3.7.1. Then, from the induction step

in Example 3.7.1, we see that R(n + 1) = 1 +
1

R(n)
. Assume lim

n→∞

F (n+ 1)

F (n)
exists

and let L = lim
n→∞

F (n+ 1)

F (n)
= lim

n→∞
R(n). Notice that lim

n→∞
R(n) = lim

n→∞
R(n+ 1).

Therefore, L = lim
n→∞

(
1 +

1

R(n)

)
= 1 +

1

L
.

3. RECURRENCE 129

Since L is a real number, the equation

L = 1 +
1

L

is equivalent to

L2 − L− 1 = 0.

By the quadratic formula

L =
1±
√

5

2
.

Since L > 0 and since
√

5 > 1,

L =
1 +
√

5

2
.

�

Exercise 3.7.1. Prove that F (n) > (3
2
)n−1 for n ≥ 6. [Hint: Show that the

statement is true for n = 6 and 7 (basis step), and then show the induction step
works for n ≥ 7.]

Here is another “Fibonacci-like” sequence.

Example 3.7.3. Suppose F (n), n ≥ 0, is defined recursively as follows:

1. F (0) = 1 and F (1) = 2,
2. F (n+ 1) = F (n) + 2F (n− 1), for n ≥ 1.

Prove that F (n) = 2n for all n ≥ 0.

Proof. (Using the second principle of mathematical induction)

1. Basis Step (n = 0 and n = 1): F (0) = 1 = 20 and F (1) = 2 = 21.

2. Induction Step: Let n ≥ 1. Suppose F (k) = 2k for 0 ≤ k ≤ n. Then

F (n+ 1) = F (n) + 2F (n− 1)

= 2n + 2 · 2n−1

= 2n + 2n

= 2 · 2n

= 2n+1

Thus, by the second principle of mathematical induction, F (n) = 2n for all n ≥ 0. �

3. RECURRENCE 130

Remarks 3.7.1. (1) Here and in the previous exercise we see the slight vari-
ation in the basis step from the ones encountered in Module 3.3 Induction;
there may be more than one initial condition to verify before proceeding to
the induction step.

(2) Notice that in this example as well as in some of the other examples and
exercises, we have been asked to prove that a function defined recursively is
also given by a relatively simple formula. The problem of “solving” recurrence
relations for these nice formulas (so-called closed form) is an interesting
subject in its own right, but it will not be discussed in this course.

Exercise 3.7.2. Let f : N→ Z be the function defined recursively by

1. f(0) = 1 and f(1) = −4,
2. f(n) = −3f(n− 1) + 4f(n− 2), for n ≥ 2.

Prove f(n) = (−4)n

Exercise 3.7.3. Let f : N→ Z be the function defined recursively by

1. f(0) = 2 and f(1) = 7,
2. f(n) = f(n− 1) + 2f(n− 2), for n ≥ 2.

Prove f(n) = 3 · 2n − (−1)n

3.8. Strings.

Definition 3.8.1. Given a finite set of symbols, Σ, the set of strings, denoted Σ∗,
over Σ is defined recursively as follows:

1. Initial Condition: The empty string λ is in Σ∗.

2. Recursion: If w is a string in Σ∗ and a is a symbol in Σ, then wa is in Σ∗.

Discussion

The set Σ is usually called an alphabet, and strings in Σ∗ are called words in the
alphabet Σ. Strings (“words”) on a finite alphabet, Σ, are defined recursively using
right concatenation. In other words, every string of symbols from Σ can be built from
a smaller string by applying new letters to the right.

Remark 3.8.1. When a is a symbol from an alphabet, we use the notation an,
where n ∈ N, to represent a concatenated with itself n times. In particular, a0 is
understood to represent the empty string, λ.

3. RECURRENCE 131

Exercise 3.8.1. Suppose the alphabet Σ is the set {a, b, c, d}. Then Σ∗ is the set
of all words on Σ. Use right concatenation to build the bit string daabc starting with
the empty string, λ (use λa = a for any element, a, in Σ).

Exercise 3.8.2. Now take the same bit string, daabc, and build it using left con-
catenation. Notice that your steps are not the same; that is, concatenation is not
commutative. Regardless, we arrive at the same set of strings, Σ∗.

3.9. Bit Strings.

Example 3.9.1. The set S of all bit strings with no more than a single 1 can be
defined recursively as follows:

1. Initial Condition: λ, 1 ∈ S

2. Recursion: If w is a string in S, then so are 0w and w0.

Discussion

In this definition we must start with two objects in the set. Then we can build
all the bit strings that have at most one “1”. We can define various subsets of bit
strings using recursively defined sets.

Example 3.9.2. This example is an extension of example 3.9.1. Let the set S be
defined recursively by

Basis: λ, 1 ∈ S
Recursion: If w ∈ S then 0w ∈ S and w0 ∈ S.

In creating a set recursively, it can help to use a tree diagram to develop more of
an intuitive understanding of how this set is built. The following diagram shows how
the applying the above definition 4 times gives the elements in the diagram. Some key
ideas to keep in mind is that all strings in the tree and all strings that would be in
the tree if you kept going are in the set. When a string is repeated, that means there
is more than one way to get that element but there is no need to see what is produced
from it more than one time.

3. RECURRENCE 132

Initial Condition

Apply recursive
 step

l

0l=0 l0=0

1

01 10

00 00 001 010 010 100

000 000 0001 0010 0010 0100 0100 1000

Apply recursive
 step

Apply recursive
 step

equal

w 0w w w0 w 0w w w0

Prove S is the set of all bit strings with no more than one 1.

Proof. Let A denote the set of all bit strings with no more than one 1 in the
string. Then we need to show A = S.

First we will show A ⊆ S. Let a ∈ A. Then a is a bit string with either no 1’s or
it is a bit string with exactly one 1.

Case 1 Suppose a has no 1’s. Then a = 0n where n is some natural number. We
can build a using the recursive definition by starting with λ and applying the
recursive step n times. (If we apply the recursive step 0 times, we get λ).

Case 2 Suppose a has exactly on 1. Then a = 0n10m for some n,m ∈ N. We can build
a by starting with 1, which is given by the initial condition, and applying the
recursive step (w ∈ S)→ (0w ∈ S) n times and applying (w ∈ S)→ (w0 ∈ S)
m times.

This shows we can apply the recursive definition given for S finitely many times
to obtain any element of A. Therefore A ⊆ S.

Now we show S ⊆ A by general induction.

3. RECURRENCE 133

basis: The elements given by the basis (initial condition) of the defintion of S
are both in A since λ has no 1’s and 1 has one 1.

induction step: Let x ∈ S and assume x ∈ A. We need to show any elements
obtained by appling the recursive step one time will also be in A.

Notice we obtain 0x and x0 when we apply the recursive step one time
to x. Since x is in A we know the string x has either no ones or a single one.
0x and x0 do not add any more 1’s to the bit string, so they are also in A.

Thus by the principle of mathematical induction ∀x ∈ S(x ∈ A).

This completes the proof that S = A. �

Example 3.9.3. Here’s an example of proving a recursively defined set of bit
strings is the same as set of bit strings defined in a non-recursive manner:

Let A be the set of all bit strings of the form 0n1n, where n can be any natural num-
ber. Note that this is the same as A = {0n1n|n ∈ N} = {λ, 01, 0011, 000111, 00001111, ...}
and is slightly different from the set described in Exercise 3.9.4.

Now define B by the following recursive definition:

Basis: λ ∈ B
Recursive Step: If w ∈ B then 0w1 ∈ B

Prove that A = B.

Proof. First we prove A ⊆ B. Let a ∈ A. Then a = 0n1n for some n ∈ N. If
we use the recursive definition of B we see λ = 0010 by the basis step and we claim
that if we apply the recursive step n times to λ we will build to the element 0n1n.
This will demonstrate that we can apply the recursive definition to find a using a
finite number of steps. Thus a ∈ B. To prove the claim we use the first principle of
induction on the predicate P (n) =“If we apply the recursive step n times to λ we will
build to the element 0n1n.”

Exercise 3.9.1. Prove the above claim.

Now we need to prove B ⊆ A. We will do this using generalized induction, which
gives us a formal proof of this statement.

Basis: Notice the element, λ, created by the initial step (or basis step) in the
definition of B is also an element of A (λ = 0010).

Induction Step: Let x ∈ B be such that x ∈ A as well. Show that any
element of B obtained from x by applying the recursive step one time is also
an element of A.

3. RECURRENCE 134

If we apply the recursive step to x one time the only element we get 0x1.
Since x is an element of A we know x = 0n1n for some n ∈ N. So then
0x1 = 0(0n1n)1 = 0n+11n+1 which we see is also an element of A.

Thus by the principle of generalized induction ∀x ∈ B(x ∈ A).

This completes that proof that A = B. �

Exercise 3.9.2. What kinds of bit strings would we have if the initial condition
in Example 3.9.1 is changed to 1 ∈ S only? So the definition would be

1. Initial Condition: 1 ∈ S,

2. Recursion: If w is a string in S, then so are 0w and w0.

Exercise 3.9.3. What kinds of strings do we get from the following recursive
definition?

1. Initial Conditions: λ, 1 ∈ S,

2. Recursion: If w is a string in S, then so is 0w.

Exercise 3.9.4. Find a recursive definition for the set of bit strings T = {0r1s|r, s ∈
N}.

Exercise 3.9.5. Prove your answer for Exercise 3.9.4 is correct.

Exercise 3.9.6. Find a recursive definition for the set of all bit strings containing
no adjacent 1’s. (For example, 1001010 is allowed, but 0011010 is not.)

4. GROWTH OF FUNCTIONS 135

4. Growth of Functions

4.1. Growth of Functions. Given functions f and g, we wish to show how to
quantify the statement:

“g grows as fast as f”.

The growth of functions is directly related to the complexity of algorithms. We
are guided by the following principles.

• We only care about the behavior for “large” problems.
• We may ignore implementation details such as loop counter incrementation.

Discussion

When studying the complexity of an algorithm, we are concerned with the growth
in the number of operations required by the algorithm as the size of the problem
increases. In order to get a handle on its complexity, we first look for a function that
gives the number of operations in terms of the size of the problem, usually measured
by a positive integer n, to which the algorithm is applied. We then try to compare
values of this function, for large n, to the values of some known function, such as
a power function, exponential function, or logarithm function. Thus, the growth of
functions refers to the relative size of the values of two functions for large values of the
independent variable. This is one of the main areas in this course in which experience
with the concept of a limit from calculus will be of great help.

Before we begin, one comment concerning notation for logarithm functions is
in order. Most algebra and calculus texts use log x to denote log10 x (or, perhaps,
loge x), but in computer science base 2 is used more prevalently. So we shall use log x
to denote log2 x. As we shall see, in the context of this module it actually doesn’t

matter which base you use, since loga x = logb x
logb a

for any acceptable bases a and b.

Exercise 4.1.1. Prove that loga x = logb x
logb a

for arbitrary positive real numbers a

and b different from 1.

4.2. The Big-O Notation.

Definition 4.2.1. Let f and g be functions from the natural numbers to the real
numbers. Then g asymptotically dominates f , or

f is big-O of g

if there are positive constants C and k such that

|f(x)| ≤ C|g(x)| for x ≥ k.

4. GROWTH OF FUNCTIONS 136

If f is big-O of g, then we write

f(x) is O(g(x))
or

f ∈ O(g).

Theorem 4.2.1. If lim
x→∞

|f(x)|
|g(x)|

= L, where L ≥ 0, then f ∈ O(g).

Theorem 4.2.2. If lim
x→∞

|f(x)|
|g(x)|

=∞, then f is not O(g) (f 6∈ O(g)).

Discussion

The most basic concept concerning the growth of functions is big-O. The statement
that f is big-O of g expresses the fact that for large enough x, f will be bounded
above by some constant multiple of g. Theorem 4.2.1 gives a necessary condition for
f to be big-O of g in terms of limits. The two notions aren’t equivalent since there
are examples where the definition holds, but the limit fails to exist. For the functions
we will be dealing with, however, this will not happen.

When working the problems in the module you may find it helpful to use a graph-
ing calculator or other graphing tool to graph the functions involved. For example, if
you graph the functions x2 + 10 and 3x2, then you will see that x2 + 10 ≤ 3x2 when
x ≥ 3. (Actually, when x ≥

√
5.) This seems to imply that f(x) = x2 + 10 is big-O

of g(x) = x2. This is NOT a proof, but it can give you some ideas as to what to look
for. In particular, you wouldn’t try to show that f(x) ≤ 3g(x) for x ≥ 2. It isn’t
necessary that you find the best bound, k, for x, however, as long as you find one
that works. Also, there is nothing unique about the choice of C.

Example 4.2.1. Show that x2 + 10 is O(x2).

Proof 1 (using Definition of Big-O). Let C = 3 and k = 3. Then, if x ≥ 3,

3x2 = x2 + 2x2 ≥ x2 + 2 · 32 ≥ x2 + 10. �

Proof 2 (using Definition of Big-O). Let C = 2 and k = 4. Then, if x ≥ 4,

2x2 = x2 + x2 ≥ x2 + 42 ≥ x2 + 10. �

Proof 3 (using Theorem 4.2.1). lim
x→∞

x2 + 10

x2
= lim

x→∞

(
1 +

10

x2

)
= 1 + 0 = 1.

So, by Theorem 1, x2 + 10 ∈ O(x2). �

4. GROWTH OF FUNCTIONS 137

Exercise 4.2.1. Let a, b ∈ R+ − {1}. Prove loga x is O(logb x). Hint: recall
exercise 4.1.1.

4.3. Proofs of Theorems 4.2.1 and 4.2.2.

Proof of Theorem 4.2.1. Suppose lim
x→∞

|f(x)|
|g(x)|

= L, where L is a nonnegative

real number. Then, by the definition of limit, we can make
|f(x)|
|g(x)|

as close to L as we

wish by choosing x large enough. In particular, we can ensure that
|f(x)|
|g(x)|

is within

a distance 1 of L by choosing x ≥ k for some positive number k. That is, there is a
number k ≥ 0 such that if x ≥ k, then∣∣∣∣ |f(x)|

|g(x)|
− L

∣∣∣∣ ≤ 1.

In particular,

|f(x)|
|g(x)|

− L ≤ 1

|f(x)|
|g(x)|

≤ L+ 1

|f(x)| ≤ (L+ 1)|g(x)|
So, we can choose C = L+ 1. Thus f ∈ O(g). �

Proof of Theorem 4.2.2. Suppose lim
x→∞

|f(x)|
|g(x)|

=∞. This means that for every

positive number C, there is a positive number N such that

|f(x)|
|g(x)|

> C

if x ≥ N . Thus, for all positive numbers C and k there is an x ≥ k (take x greater
than the larger of k and N) such that

|f(x)|
|g(x)|

> C

or

|f(x)| > C|g(x)|.
Thus f 6∈ O(g). �

4. GROWTH OF FUNCTIONS 138

Discussion

How do you interpret the statement f 6∈ O(g)? That is, how do you negate the
definition? Let’s apply principles of logic from Module 2.3. The definition says:

f ∈ O(g) if and only if there exist constants C and k such that, for
all x, if x ≥ k, then |f(x)| ≤ C|g(x)|.

The negation would then read:

f 6∈ O(g) if and only if for all constants C and k, there exist x such
that x ≥ k and |f(x)| > C|g(x)|.

Example 4.3.1. Show that x2 is not O(x).

Proof 1 (using the Definition of big-O). As we have just seen, the definition
requires us to show that no matter how we choose positive constants C and k, there
will be a number x ≥ k such that x2 > Cx. So, suppose C and k are arbitrary
positive constants. Choose x so that x ≥ k and x > C. Then x2 = x · x > C · x. (We
don’t have to use the absolute value symbol, since x > 0.) �

Proof 2 (using Theorem 4.2.2). lim
x→∞

x2

x
= lim

x→∞
x = ∞. So, by Theorem

4.2.2, x2 6∈ O(x). �

While it is true that most of the functions f and g that measure complexity have
domain N, they are often defined on the set of all positive real numbers, and, as we
see, this is where the calculus can come in handy.

4.4. Example 4.4.1.

Example 4.4.1. Show that 2x3 + x2 − 3x+ 2 is O(x3).

Proof 1 (using the Definition of big-O). By the triangle inequality,

|2x3 + x2 − 3x+ 2| ≤ |2x3|+ |x2|+ |3x|+ 2

= 2|x3|+ |x2|+ 3|x|+ 2.

Now, if x ≥ 2, then x2 ≤ x3, x ≤ x3, and 2 ≤ x3.

Thus
|2x3|+ |x2|+ |3x|+ 2 ≤ 2|x3|+ |x3|+ 3|x3|+ |x3| = 7|x3|

4. GROWTH OF FUNCTIONS 139

Using these inequalities, C = 7, and k = 2, we see that f is O(x3). �

Proof 2 (using Theorem 4.2.2).

lim
x→∞

2x3 + x2 − 3x+ 2

x3

= lim
x→∞

2 + 1/x− 3/x2 + 2/x3

1
=

2

1

By Theorem 4.2.1, 2x3 + x2 − 3x+ 2 is O(x3).

�

Discussion

In the first proof in Example 4.4.1 we used the triangle inequality, which is proved
in the Appendix at the end of this module. We also need to use the fact |ab| = |a||b|.

Notice the strategy employed here. We did not try to decide what C and k were
until after using the triangle inequality. The first constant we dealt with was k. After
separating the function into the sum of absolute values we thought about what part
of this function would be the biggest for large values of x and then thought about
how large x needed to be in order for all the terms to be bounded by that largest
term. This led to the choice of k. In general, the constant C depends on the choice
of k and the two functions you are working with.

Exercise 4.4.1. Use the definition to show that 5x3 − 3x2 + 2x− 8 ∈ O(x3).

Exercise 4.4.2. Use Theorem 4.2.1 to show that 10x3 − 7x2 + 5 ∈ O(x3)

Exercise 4.4.3. Use Theorem 4.2.2 to show that x5 6∈ O(100x4).

4.5. Calculus Definition.

Definition 4.5.1. If f and g are such that

lim
n→∞

f(n)

g(n)
= 0

then we say f is little-o of g, written

f ∈ o(g).

As a corollary to Theorem 4.2.1, we have

Theorem 4.5.1. If f is o(g), then f is O(g).

4. GROWTH OF FUNCTIONS 140

Discussion

As Theorem 4.5.1 indicates, the little-o relation is stronger than big-O. Two of
the most important examples of this relation are

(1) loga x ∈ o(x), where a is a positive number different from 1, and
(2) xn ∈ o(ax) if a > 1.

These are most easily seen using a version of l’Hôpital’s rule from calculus:

l’Hôpital’s Rule. If lim
x→∞

f(x) = lim
x→∞

g(x) =∞, and if

lim
x→∞

f ′(x)

g′(x)
= L,

then

lim
x→∞

f(x)

g(x)
= L.

(f ′ and g′ denote the derivatives of f and g, respectively.)

Example 4.5.1. Show that loga x ∈ o(x), where a is a positive number different
from 1.

Proof. First observe that lim
x→∞

loga x = lim
x→∞

x = ∞. Recall that
d

dx
loga x =

1

x ln a
, where lnx = loge x. By l’Hôpital’s rule,

lim
x→∞

loga x

x
= lim

x→∞

1
x ln a

1
= 0.

�

Exercise 4.5.1. Show that (loga x)2 ∈ o(x).

Example 4.5.2. Show that, if a > 1, then x ∈ o(ax).

Proof. First observe that lim
x→∞

x = lim
x→∞

ax =∞. By l’Hôpital’s rule,

lim
x→∞

x

ax
= lim

x→∞

1

ax ln a
= 0,

since a > 1. �

Exercise 4.5.2. Show that, if a > 1, then x2 ∈ o(ax).

4. GROWTH OF FUNCTIONS 141

Exercise 4.5.3. Use mathematical induction to show that, if a > 1, then xn ∈
o(ax) for every positive integer n.

4.6. Basic Properties of Big-O. The following theorems and facts will be
helpful in determining big-O.

Theorem 4.6.1. A polynomial of degree n is O(xn).

Fact: Theorem 4.6.1. can be extended to functions with non-integral exponents (like
x1/2).

Theorem 4.6.2. If f1 is O(g1) and f2 is O(g2), then (f1+f2) is O(max{|g1|, |g2|}).

Corollary 4.6.2.1. If f1 and f2 are both O(g), then (f1 + f2) is O(g).

Theorem 4.6.3. If f1 is O(g1) and f2 is O(g2), then (f1f2) is O(g1g2).

Theorem 4.6.4. If f1 is O(f2) and f2 is O(f3), then f1 is O(f3).

Theorem 4.6.5. If f is O(g), then (af) is O(g) for any constant a.

Discussion

Use these theorems when working the homework problems for this module.

Example 4.6.1. Find the least integer n such that (x4 +5 log x)/(x3 +1) is O(xn)

Solution: First we consider x4

x3+1
. If you think back to calculus and consider which

part of this function “takes over” when x gets large, that provides the clue that this
function should be O(x). To see this, we take the following limit;

lim
x→∞

(x4)/(x3 + 1)

x
= lim

x→∞

x3

x3 + 1
= 1.

Since that limit is 1, we have verified x4

x3+1
is O(x). Theorem 4.2.2 can be used to

show that x4

x3+1
is not O(x0) = O(1):

lim
x→∞

(x4)/(x3 + 1)

1
= lim

x→∞

x

1 + 1/x3
=∞.

Now consider 5 log x
x3+1

. Since log x is O(x), 5 log x
x3+1

is O(5x
x3+1

), and, by taking a limit

as above, 5x
x3+1

is o(x), hence, O(x).

Since the original function is the sum of the two functions, each of which is O(x),
the sum (x4 + 5 log x)/(x3 + 1) is O(x), by Corollary 4.6.2.1.

4. GROWTH OF FUNCTIONS 142

4.7. Proof of Theorem 4.6.3.

Proof of Theorem 4.6.3. Suppose f1, f2, g1, g2 are all functions with domain
and codomain R such that f1 is O(g1) and f2 is O(g2).

Then by definition of big-O, there are positive constants C1, k1, C2, k2 such that

∀x ≥ k1[|f1(x)| ≤ C1|g1(x)|] and ∀x ≥ k2[|f2(x)| ≤ C2|g2(x)|].

Let k = max{k1, k2} and C = C1C2. Then if x ≥ k we have

|(f1f2)(x)| = |f1(x)| · |f2(x)|

≤ C1|g1(x) · C2|g2(x)|

= C1C2|(g1g2)(x)|

= C|(g1g2)(x)|

This shows f1f2 is O(g1g2). �

4.8. Example 4.8.1.

Example 4.8.1. Suppose there are two computer algorithms such that

• Algorithm 1 has complexity n2 − n+ 1, and
• Algorithm 2 has complexity n2/2 + 3n+ 2.

Then both are O(n2), but to indicate Algorithm 2 has a smaller leading coefficient,
and hence would be faster, we write

• Algorithm 1 has complexity n2 +O(n), and
• Algorithm 2 has complexity n2/2 +O(n).

Discussion

Example 4.8.1 illustrates the way in which the big-O notation may be used to
discuss complexity of algorithms.

4. GROWTH OF FUNCTIONS 143

4.9. Big-Omega.

Definition 4.9.1. f is big-Omega of g, written f ∈ Ω(g), if there are positive
constants C and k such that

|f(x)| ≥ C|g(x)| for x > k.

Big-Omega is very similar to big-O. Big-Ω notation is used to indicate a lower
bound on functions for large values of the independent variable. Notice that f is Ω(g)
if and only if g is O(f). Using this fact we see the properties for big-O give similar
properties for big-Ω.

Example 4.9.1. x is Ω(log x).

Example 4.9.2. 2x3 + x2 − 3x+ 2 is Ω(x3).

Proof using the definition of Big-Ω: Let x ≥ 3. Then x2 − 3x ≥ 0 and so
x2 − 3x+ 2 ≥ 0 as well. Thus

|2x3 + x2 − 3x+ 2| = 2x3 + x2 − 3x+ 2 ≥ 2x3.

By choosing C = 2 and k = 3 in the definition of big-Ω the above work shows
2x3 + x2 − 3x+ 2 is Ω(x3). �

Exercise 4.9.1. Let a, b ∈ R+ − {1}. Prove loga x is Ω(logb x).

4.10. Big-Theta.

Definition 4.10.1. f is big-Theta of g, written f ∈ Θ(g), if f is both O(g) and
Ω(g).

Discussion

The definition given for big-Θ is equivalent to the following:

Theorem 4.10.1. f is Θ(g) if and only if f is O(g) and g is O(f).

Exercise 4.10.1. Prove Theorem 4.10.1.

4. GROWTH OF FUNCTIONS 144

Example 4.10.1. (2x2 − 3)/(3x4 + x3 − 2x2 − 1) is Θ(x−2).

(2x2 − 3)/(3x4 + x3 − 2x2 − 1)

x−2
=

2x2 − 3

3x4 + x3 − 2x2 − 1
· x2

=
2x4 − 3x2

3x4 + x3 − 2x2 − 1

=
2− 3/x2

3 + 1/x− 2/x2 − 1/x4

lim
x→∞

(2x2 − 3)/(3x4 + x3 − 2x2 − 1)

x−2
=

2

3

You now will show through the following exercise that any two logarithm functions
have the same growth rate; hence, it doesn’t matter what (acceptable) base is used.

Exercise 4.10.2. If a and b are positive real numbers different from 1, show that
loga x ∈ Θ(logb x).

4.11. Summary. Suppose f and g are functions such that lim
x→∞

|f(x)|
|g(x)|

= L,

where 0 ≤ L ≤ ∞.

1. If L = 0, then f is o(g) (hence, O(g)), and g is Ω(f) (hence, not O(f)).
2. If L =∞, then f is Ω(g) (hence, not O(g)), and g is o(f) (hence, O(f)).
3. If 0 < L <∞, then f is Θ(g) (hence, O(g)), and g is Θ(f) (hence, O(f)).

4. GROWTH OF FUNCTIONS 145

4.12. Appendix. Proof of the Triangle Inequality. Recall the triangle in-
equality: for all real numbers a and b,

|a+ b| ≤ |a|+ |b|.

Proof. Recall from Module 1.2 that the absolute value function f(x) = |x| is
defined by

f(x) = |x| =
{

x, if x ≥ 0,

−x, if x < 0.

We first observe that for any real numbers x and y, if y ≥ 0, then |x| ≤ y if and
only if −y ≤ x ≤ y. To see this, look at two cases:

Case 1. x ≥ 0. Then |x| = x, and so |x| ≤ y if and only if −y ≤ 0 ≤ x ≤ y, or
−y ≤ x ≤ y.

Case 2. x < 0. Then |x| = −x, and so |x| ≤ y if and only if −y ≤ 0 ≤ −x ≤ y.
Multiplying through by −1 and reversing the inequalities, we get y ≥ x ≥ −y,
or −y ≤ x ≤ y.

We now prove the triangle inequality. For arbitrary real numbers a and b, apply
the above to x = a and y = |a|, and then to x = b and y = |b|, to get inequalities

−|a| ≤ a ≤ |a|
−|b| ≤ b ≤ |b|.

Then
−|a| − |b| ≤ a+ b ≤ |a|+ |b|

or
−(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|.

Now apply the assertion above to x = a+ b and y = |a|+ |b| to get:

|a+ b| ≤ |a|+ |b|.
�

CHAPTER 5

Number Theory

1. Integers and Division

1.1. Divisibility.

Definition 1.1.1. Given two integers a and b we say a divides b if there is an
integer c such that b = ac. If a divides b, we write a|b. If a does not divide b, we
write a 6 | b.

Discussion

Example 1.1.1. The number 6 is divisible by 3, 3|6, since 6 = 3 · 2.

Exercise 1.1.1. Let a, b, and c be integers with a 6= 0. Prove that if ab|ac, then
b|c.

Using this definition, we may define an integer to be even if it is divisible by 2
and odd if it is not divisible by 2. This concept is one of the simplest of properties of
numbers to define, yet it is among the most complicated of all mathematical ideas.
Keep in mind that we are talking about a very restricted notion of what it means for
one number to “divide” another: we can certainly divide 7 by 3 and get the rational
number 7

3
= 2.3333 · · · , but, since the result is not an integer, we say that 3 does not

divide 7, or 3 6 | 7. For this reason, you should avoid using fractions in any discussion
of integers and integer arithmetic.

1.2. Basic Properties of Divisibility.

Theorem 1.2.1. For all integers a, b, and c,

1. If a|b and a|c, then a|(b+ c).
2. If a|b, then a|(bc).
3. If a|b and b|c, then a|c.

Discussion

146

1. INTEGERS AND DIVISION 147

Theorem 1.2.1 states the most basic properties of division. Here is the proof of
part 3:

Proof of part 3. Assume a, b, and c are integers such that a|b and b|c. Then by
definition, there must be integers m and n such that b = am and c = bn. Thus

c = bn = (am)n = a(mn).

Since the product of two integers is again an integer, we have a|c. �

Exercise 1.2.1. Prove part 1 of Theorem 1.2.1.

Exercise 1.2.2. Prove part 2 of Theorem 1.2.1.

1.3. Theorem 1.3.1 - The Division Algorithm.

Theorem 1.3.1. (Division Algorithm) Given integers a and d, with d > 0, there
exists unique integers q and r, with 0 ≤ r < d, such that a = qd+ r.

Notation 1.3.1. We call a the dividend, d the divisor, q the quotient, and r
the remainder.

Discussion

The division algorithm is probably one of the first concepts you learned relative
to the operation of division. It is not actually an algorithm, but this is this theorem’s
traditional name. For example, if we divide 26 by 3, then we get a quotient of 8 and
remainder of 2. This can be expressed 26 = 3 · 8 + 2. It is a little trickier to see what
q and r should be if a < 0. For example, if we divide −26 is by 3, then the remainder
is not −2. We can, however, use the equation 26 = 3 · 8 + 2 to our advantage:

−26 = 3 · (−8)− 2 = [3 · (−8)− 3]− 2 + 3 = 3(−9) + 1

So dividing −26 by 3 gives a quotient of −9 and remainder 1. The condition 0 ≤ r < d
makes r and q unique for any given a and d.

1.4. Proof of Division Algorithm. Proof. Suppose a and d are integers, and
d > 0. We will use the well-ordering principle to obtain the quotient q and remainder
r. Since we can take q = a if d = 1, we shall assume that d > 1.

Let S be the set of all natural numbers of the form a−kd, where k is an integer.
In symbols

S = {a− kd|k ∈ Z and a− kd ≥ 0}.
If we can show that S is nonempty, then the well-ordering principle will give us a
least element of S, and this will be the remainder r we are looking for. There are two
cases.

1. INTEGERS AND DIVISION 148

Case 1: a ≥ 0. In this case, we can set k = 0 and get the element a − 0 · d = a ≥ 0
of S.

Case 2: a < 0. In this case, we can set k = a. Then a − kd = a − ad = a(1 − d).
Since a < 0 and d > 1, a(1− d) > 0; hence is an element of S.

Thus, S 6= ∅, and so S has a least element r = a − qd for some integer q. Thus,
a = qd+ r and r ≥ 0. We are left to show (i) r < d and (ii) q and r are unique.

(i) Suppose r ≥ d. Then r = d + r′, where 0 ≤ r′ < r. Then a = qd + r =
qd+ d+ r′ = (q + 1)d+ r′,
so that r′ = a− (q + 1)d is an element of S smaller than r. This contradicts the fact
that r is the least element of S. Thus, r < d.

(ii) Suppose integers q′ and r′ satisfy a = q′d+ r′ and 0 ≤ r′ < d. Without loss of
generality, we may assume r′ ≥ r, so that 0 ≤ r− r′ < d. Since a = q′d+ r′ = qd+ r,

r − r′ = d(q′ − q).
This means that d divides r − r′, which implies either r − r′ ≥ d or r − r′ = 0. But
but we know 0 ≤ r − r′ < d. Thus, r′ = r, which, in turn, implies q′ = q. That is, q
and r are unique.

1.5. Prime Numbers, Composites.

Definition 1.5.1. If p is an integer greater than 1, then p is a prime number
if the only divisors of p are 1 and p.

Definition 1.5.2. A positive integer greater than 1 that is not a prime number
is called composite.

Discussion

Prime numbers are the building blocks of arithmetic. At the moment there are
no efficient methods (algorithms) known that will determine whether a given integer
is prime or find its prime factors. This fact is the basis behind many of the cryp-
tosystems currently in use. One problem is that there is no known procedure that
will generate prime numbers, even recursively. In fact, there are many things about
prime numbers that we don’t know. For example, there is a conjecture, known as
Goldbach’s Conjecture, that there are infinitely many prime pairs, that is, consecu-
tive odd prime numbers, such as 5 and 7, or 41 and 43, which no one so far has been
able to prove or disprove. As the next theorem illustrates, it is possible, however, to
prove that there are infinitely many prime numbers. Its proof, attributed to Euclid,
is one of the most elegant in all of mathematics.

Theorem 1.5.1. There are infinitely many prime numbers.

1. INTEGERS AND DIVISION 149

Proof. We prove the theorem by contradiction. Suppose there are only finitely
many prime numbers, say, p1, p2, ..., pn. Let

N = p1p2 · · · pn + 1.

Then N is an integer greater than each of p1, p2, ..., pn, so N cannot be prime. In
Example 9, Module 3.3, we showed that N can be written as a product of prime
numbers; hence, some prime p divides N . We may assume, by reordering p1, p2, ..., pn,
if necessary, that p = p1. Thus N = p1a for some integer a. Substituting, we get

p1a = p1p2 · · · pn + 1

p1a− p1p2 · · · pn = 1

p1(a− p2 · · · pn) = 1.

Thus, a− p2 · · · pn is a positive integer. Since p1 is a prime number, p1 > 1, and so

p1(a− p2 · · · pn) > 1.

But this contradicts the equality above. �

1.6. Fundamental Theorem of Arithmetic.

Theorem 1.6.1. (Fundamental Theorem of Arithmetic) Every positive integer
greater than one can be written uniquely as a product of primes, where the prime
factors are written in nondecreasing order.

Discussion

We have already given part of the proof Theorem 1.6.1 in an example of Module
3.3 Induction. There we showed that every positive integer greater than 1 can be
written as a product of prime numbers. The uniqueness of the factors is important,
and the proof that they are unique, which requires a few additional ideas, will be
postponed until the next module.

The prime factorization of 140 is 2 · 2 · 5 · 7. You can see one reason why we do
not want 1 to be prime: There is no limit to the number of times 1 may be repeated
as a factor, and that would give us non-unique prime factorizations.

1.7. Factoring.

Theorem 1.7.1. If n is a composite integer, then n has a factor less than or equal
to
√
n.

1. INTEGERS AND DIVISION 150

Discussion

Theorem 1.7.1 can be helpful in narrowing down the list of possible prime factors
of a number. It was proved in an example of Module 3.2 Methods of Proof and
exploited in another example of that module. If the number 253 is composite, for
example, it must have a factor less than or equal to 15. Thus we need only check the
primes 2, 3, 5, 7, 11, and 13. It turns out 253 = 11 · 23.

1.8. Mersenne Primes.

Definition 1.8.1. A prime number of the form 2p−1, where p is a prime number,
is called a Mersenne prime.

Discussion

Mersenne primes are a special class of primes, which lend themselves to a nice
theoretical development. Not all primes are Mersenne, though, and not all numbers
of the form 2p − 1 are prime. For example, 2p − 1 is prime for p = 2, 3, 5, and 7, but
211− 1 = 2047 = 23 · 89, which is not prime. On the other hand, the primes 5 and 11
cannot be written in this form.

1.9. Greatest Common Divisor and Least Common Multiple.

Definitions 1.9.1. Given integers a and b

(1) The greatest common divisor of a and b, denoted GCD (a, b), is the
largest positive integer d such that d|a and d|b.

(2) The least common multiple of a and b, denoted LCM (a, b), is the smallest
positive integer m such that a|m and b|m.

(3) a and b are called relatively prime if GCD (a, b) = 1.
(4) The integers a1, a2, a3, . . . , an are called pairwise relatively prime if GCD(ai, aj) =

1 for 1 ≤ i < j ≤ n.
(5) The Euler φ function is the function φ : Z+ → N defined by φ(n) = the

number of positive integers less than n that are relatively prime to n.

Lemma 1.9.1. Suppose a and b are integers and m = LCM(a, b). If c is a positive
integer such that a|c and b|c, then m|c.

Proof. Suppose a|c and b|c, but m 6 | c. By the division algorithm there are
(unique) positive integers q and r such that c = mq + r and 0 ≤ r < m. Since m 6 | c,
r 6= 0; that is, r > 0. Write r = c − mq. Since a and b both divide c and m, a
and b both divide r. But this contradicts the fact that m is supposed to be the least
positive integer with this property. Thus m|c. �

1. INTEGERS AND DIVISION 151

Theorem 1.9.1. ab = GCD(a, b) · LCM(a, b).

Discussion

The proof of Theorem 1.9.1 will be discussed in the next module.

Example 1.9.1. Here are some examples to illustrate the definitions above.

(1) GCD(45, 60) = 15, since 45 = 15 · 3 and 60 = 15 · 4 and 15 is the largest
number that divides both 45 and 60.

(2) LCM(45, 60) = 180, since 180 = 45 ·4 = 60 ·3 and 180 is the smallest number
that both 45 and 60 divide.

(3) 45 and 60 are not relatively prime.
(4) 45 and 16 are relatively prime since GCD(45, 16) = 1.
(5) 4, 7, 13 and 55 are pairwise relatively prime.
(6) φ(15) = 8

If we are given the prime factorizations of two integers, then it is easy to find
their GCD and LCM. For example, 600 = 23 · 3 · 52 and 220 = 22 · 5 · 11 has greatest
common divisor 22 · 5 = 20 and least common multiple 23 · 3 · 52 · 11 = 6600. Since
prime factorizations can be difficult to find, however, this idea does not lead to an
efficient way to compute GCD’s. We will introduce an efficient algorithm in the next
module that does not involve knowledge about prime factorizations.

Exercise 1.9.1. Let F (n) denote the n-th term of the Fibonacci Sequence. Prove
using induction that GCD(F (n), F (n− 1)) = 1 for all integers n ≥ 2.

1.10. Modular Arithmetic.

Definition 1.10.1. Given integers a and m, with m > 0,
a mod m is defined to be the remainder when a is divided by m.

Definition 1.10.2. a ≡ b(mod m), read “a is congruent to b modulo (or mod)
m,” if
m|(a− b); that is, (a− b) mod m = 0.

Theorem 1.10.1. Given integers a, b, and m,

1. a ≡ b (mod m) if and only if a mod m = b mod m.
2. a ≡ b (mod m) if and only if a = b+ km for some integer k.
3. If a ≡ b (mod m) and c ≡ d (mod m) then

(a) a+ c ≡ b+ d (mod m)
(b) a · c ≡ b · d (mod m)

1. INTEGERS AND DIVISION 152

Discussion

The mod operation is derived from the Division Algorithm: If we divide the
integer a by the positive integer m, we get a unique quotient q and remainder r
satisfying a = mq + r and 0 ≤ r < m. The remainder r is defined to be the value of
a mod m. One of the notational aspects that may seem a little unusual is that we
write a+ b(mod m) for (a+ b)(mod m). Also, the symbol (mod m) may occasionally
be omitted when it is understood.

Example 1.10.1. Here are some examples.

(a) 12 mod 5 = 2
(b) 139 mod 5 = 4
(c) 1142 mod 5 = 2
(d) 1142 ≡ 12 ≡ 2(mod 5)
(e) 1142 + 139 ≡ 2 + 4 ≡ 6 ≡ 1(mod 5)
(f) 1142 · 139 ≡ 2 · 4 ≡ 8 ≡ 3(mod 5)

One of the differences to note between the concept of congruence modulo m verses
the mod operator is that an integer, k may be congruent to infinitely many other
integers modulo m, however, k modm is equal to one single integer. For example, 139
mod 5 = 4, but 139 is congruent to all the elements of {. . . ,−6,−1, 4, 9, 14, 19, . . . }.

Exercise 1.10.1. Given a positive integer m, prove that the assignment a 7→
a mod m defines a function f : Z→ Z. Is f one-to-one? onto? What is its range?

a 7→ a mod m is another way to write f(a) = a mod m.

Here is a proof of part 3b of Theorem 1.10.1:

Proof of 3b. Since a ≡ b(mod m) and c ≡ d(mod m), there must be integers s
and t such that b = a+ sm and d = c+ tm (part 2). Thus

bd = (a+ sm)(c+ tm)

= ac+ atm+ smc+ stm2

= ac+ (at+ sc+ stm)m

Since a, c, t, and s are all integers, at+ sc+ st is as well. Thus, by part 2,

ac ≡ bd(mod m).

�

Exercise 1.10.2. Prove part 3a of Theorem 1.10.1.

1. INTEGERS AND DIVISION 153

1.11. Applications of Modular Arithmetic.

1. Hashing Functions
2. Pseudorandom Number Generators
3. Cryptology

Discussion

There are many applications of modular arithmetic in computer science. One
such application is in the construction of pseudorandom number generators. Numbers
that seem to be somewhat random may be produced using the linear congruential
method. As you will see, it does not produce truly random numbers, but rather a
sequence of numbers that will eventually repeat.

To generate a sequence we choose a modulusm, multiplier a, and an increment
c. Then we start with a seed number x0 and then construct a sequence of numbers
recursively using the formula

xn+1 = (axn + c) mod m.

Example 1.11.1. Suppose we choose m = 11, a = 7, c = 3, and x0 = 1. Then
we get

x0 = 1

x1 = (7 · 1 + 3)mod 11 = 10

x2 = (7 · 10 + 3)mod 11 = 7

x3 = (7 · 7 + 3)mod 11 = 8

x4 = (7 · 8 + 3)mod 11 = 4

x5 = (7 · 4 + 3)mod 11 = 9

x6 = (7 · 9 + 3)mod 11 = 0

x7 = (7 · 0 + 3)mod 11 = 3

etc.

The sequence will be 1, 10, 7, 8, 4, 9, 0, 3, etc. If we wanted a “random” sequence
of bits, 0 and 1, we could then reduce each xn mod 2. In practice, large Mersenne
primes are often chosen for the modulus, and the repetition period for such sequences
can be made to be quite large.

1. INTEGERS AND DIVISION 154

Exercise 1.11.1. Prove that for a given modulus m, and arbitrary multiplier a,
increment c, and seed x0, the sequence x0, x1, x2, ... must eventually repeat.

2. INTEGERS AND ALGORITHMS 155

2. Integers and Algorithms

2.1. Euclidean Algorithm. Euclidean Algorithm. Suppose a and b are in-
tegers with a ≥ b > 0.

(1) Apply the division algorithm: a = bq + r, 0 ≤ r < b.
(2) Rename b as a and r as b and repeat until r = 0.

The last nonzero remainder is the greatest common divisor of a and b.

The Euclidean Algorithm depends upon the following lemma.

Lemma 2.1.1. If a = bq + r, then GCD(a, b) = GCD(b, r).

Proof. We will show that if a = bq + r, then an integer d is a common divisor
of a and b if, and only if, d is a common divisor of b and r.

Let d be a common divisor of a and b. Then d|a and d|b. Thus d|(a− bq), which
means d|r, since r = a− bq. Thus d is a common divisor of b and r.

Now suppose d is a common divisor of b and r. Then d|b and d|r. Thus d|(bq+ r),
so d|a. Therefore, d must be a common divisor of a and b.

Thus, the set of common divisors of a and b are the same as the set of common
divisors of b and r. It follows that d is the greatest common divisor of a and b if and
only if d is the greatest common divisor of b and r. �

Discussion

The fact that the Euclidean algorithm actually gives the greatest common divi-
sor of two integers follows from the division algorithm and the equality in Lemma
2.1.1. Applying the division algorithm repeatedly as indicated yields a sequence of
remainders r1 > r2 > · · · > rn > 0 = rn+1, where r1 < b. Lemma 2.1.1 says that

GCD(a, b) = GCD(b, r1) = GCD(r1, r2) = · · · = GCD(rn−1, rn).

But, since rn+1 = 0, rn divides rn−1, so that

GCD(rn−1, rn) = rn.

Thus, the last nonzero remainder is the greatest common divisor of a and b.

Example 2.1.1. Find GCD (1317, 56).

2. INTEGERS AND ALGORITHMS 156

1317 = 56(23) + 29

56 = 29(1) + 27

29 = 27(1) + 2

27 = 2(13) + 1

2 = 1(2) + 0

GCD (1317,56)=1

Example 2.1.1 shows how to apply the Euclidean algorithm. Notice that when
you proceed from one step to the next you make the new dividend the old divisor
(replace a with b) and the new divisor becomes the old remainder (replace b with
r). Recall that you can find the quotient q by dividing b into a on your calculator
and rounding down to the nearest integer. (That is, q = ba/bc.) You can then solve
for r. Alternatively, if your calculator has a mod operation, then r = mod(a, b)
and q = (a − r)/b. Since you only need to know the remainders to find the greatest
common divisor, you can proceed to find them recursively as follows:

Basis. r1 = amod b, r2 = bmod r1.

Recursion. rk+1 = rk−1 mod rk, for k ≥ 2. (Continue until rn+1 = 0 for some n.)

2.2. GCD’s and Linear Combinations.

Theorem 2.2.1. If d = GCD(a, b), then there are integers s and t such that

d = as+ bt.

Moreover, d is the smallest positive integer that can be expressed this way.

Discussion

Theorem 2.2.1 gives one of the most useful characterizations of the greatest com-
mon divisor of two integers. Given integers a and b, the expression as + bt, where s
and t are also integers, is called a linear combination of a and b.

Exercise 2.2.1. Prove that if a, b, s, t, and d are integers such that d|a and d|b,
then d|(as+ bt).

The Euclidean Algorithm can, in fact, be used to provide the representation of
the greatest common divisor of a and b as a linear combination of a and b. Here is
how it would work for the example in Example 2.1.1.

2. INTEGERS AND ALGORITHMS 157

Example 2.2.1. Express 1 = GCD(1317, 56) as a linear combination of 1317 and
56.

Solution: We work backwards using the equations derived by applying the Euclidean
algorithm in example 2.1.1, expressing each remainder as a linear combination of the
associated divisor and dividend:

1 = 27− 13 · 2 linear combination of 2 and 27

1 = 27− 13(29− 27 · 1) substitute 2 = 29− 27(1)

1 = 14 · 27− 13 · 29 linear combination of 27 and 29

1 = 14(56− 1 · 29)− 13 · 29 substitute 27 = 56− 1 · 29

1 = 14 · 56− 27 · 29 linear combination of 29 and 56

1 = 14 · 56− 27(1317− 23 · 56) substitute 29 = 1317− 23 · 56

1 = 635 · 56− 27 · 1317 linear combination of 56 and 1317

(The dividends, divisors, and remainders have been underlined.)

So GCD(1317, 56) = 1 = 1317(−27) + 56(635).

Theorem 2.2.1 can be proved by mathematical induction following the idea in the
preceding example.

Proof of Theorem 2.2.1. Suppose a and b are integers. We may assume a and
b are positive, since GCD(a, b) = GCD(±a,±b). The Euclidean algorithm uses the
division algorithm to produce a sequence of quotients and remainders as follows:

a = bq1 + r1

b = r1q2 + r2

r1 = r2q3 + r3
...

rn−2 = rn−1qn + rn

rn−1 = rnqn+1 + 0

where rn is the last nonzero remainder. We will use the second principle of mathe-
matical induction to prove that rk is a linear combination of a and b for 1 ≤ k ≤ n.

1. Basis Step (k = 1). r1 = a− bq1 = a(1) + b(−q1).
2. Induction Step. Suppose ri is a linear combination of a and b for 1 ≤ i ≤ k. For

1 ≤ k ≤ n we have
rk+1 = rk−1 − rkqk+1

2. INTEGERS AND ALGORITHMS 158

(where r0 = b when k = 1). By the inductive hypothesis rk−1 and rk are linear
combinations of a and b. (This works for k = 1, since r0 = b is trivially a linear
combination of a and b.) Write

rk−1 = as1 + bt1

and

rk = as2 + bt2

for integers s1, t1, s2, t2, and substitute into the equation above:

rk+1 = (as1 + bt1)− (as2 + bt2)qk+1 = a(s1 − s2qk+1) + b(t1 − t2qk+1).

Thus, rk+1 is a linear combination of a and b. By the second principle of math-
ematical induction, rn is a linear combination of a and b. But rn is the greatest
common divisor of a and b. This proves the first part of the theorem.

Next, we show that d is the smallest positive integer expressible as a linear combi-
nation of a and b. Suppose a positive integer c can be expressed as a linear combination
of a and b:

c = ax+ by

for integers x and y. Since d|a and d|b, then d|c, which implies d ≤ c. �

Here is an alternative proof of Theorem 2.2.1 that does not use the Euclidean
algorithm.

Second proof of Theorem 2.2.1. Let S be the set of all positive integers that
can be expressed as a linear combination of the positive integers a and b. Clearly
S 6= ∅, since a, b ∈ S. By the well-ordering principle S has a least element d. We will
prove by contradiction that d|a and d|b.

If d 6 | a, then use the division algorithm to get integers q and r such that

a = dq + r,

where 0 < r < d. Since both a and d are linear combinations of a and b, then
r = a − dq is also. But this means that r ∈ S, contradicting the fact that d is the
smallest member of S.

Similarly, one shows that d|b.

If c is a divisor of a and b, then c divides any linear combination of a and b; hence,
c|d. Thus, d = GCD(a, b). �

Exercise 2.2.2. Prove that if p is a prime number and n is an integer that is not
divisible by p, then there are integers s and t such that ps+ nt = 1. [First show that
GCD(p, n) = 1.]

2. INTEGERS AND ALGORITHMS 159

Exercise 2.2.3. Prove that if 1 is a linear combination of a and b, then GCD(a, b) =
1.

2.3. Uniqueness of Prime Factorization.

Lemma 2.3.1. If GCD(a, b) = 1 and a|bc, then a|c.

Proof. Assume GCD(a, b) = 1 and a|bc. Write 1 = as + bt for integers s and t.
Multiply both sides by c:

c = acs+ bct.

Since a|bc, a divides this linear combination

a(cs) + (bc)t = c

of a and bc.

�

Theorem 2.3.1. Suppose a and b are integers and p is a prime number. If p|ab,
then p|a or p|b.

Proof. We will prove the equivalent statement: if p|ab and p 6 | a, then p|b. (You
should convince yourself that the two propositional forms P → (Q ∨ R) and (P ∧
¬Q)→ R are equivalent.)

Suppose p|ab and p 6 | a. Then GCD(p, a) = 1. By the Lemma 1, p|b. �

Discussion

Theorem 2.3.1 is very useful in deciding how prime factors are distributed in a
product of two integers. For example, we gave an indirect proof in Module 3.2 that
if the product of two integers x and y is even, then either x is even or y is even. As
we hinted there, a direct proof is possible, and Theorem 2.3.1 provides just the right
information to make it work.

Exercise 2.3.1. Use Theorem 2.3.1 to give a direct proof that if the product of
two integers x and y is even, then either x is even or y is even.

Exercise 2.3.2. Use mathematical induction to prove the following generalization
of Theorem 2.3.1. Suppose a1, a2, ..., an are integers and p is a prime number. If
p|a1a2 · · · an, then p|ai for some i = 1, 2, ..., n. [Hint: The induction step has two
cases.]

Exercise 2.3.3. Use Lemma 2.3.1 to prove that if k, `, and m are positive integers
such that k|m, `|m, and k and ` are relatively prime, then the product k`|m.

2. INTEGERS AND ALGORITHMS 160

Exercise 2.3.4. Suppose a and b are positive integers, d = GCD(a, b), a = dk,
and b = d`. Prove that k and ` are relatively prime. [Hint: Show that 1 can be
expressed as a linear combination of k and `.]

We can now give a proof of Theorem 6 of Module 5.1 Integers and Division: If a
and b are positive integers, then ab = GCD(a, b) · LCM(a, b).

Proof of Theorem 6, Module 5.1. Let d = GCD(a, b). Write a = dk, b = d`,
where k and ` are positive integers, which, by Exercise 2.3.4, are relatively prime.
Then

ab = (dk)(d`) = d · (k`d) = GCD(a, b) · (k`d).

We will succeed once we show that k`d = LCM(a, b). We will prove this by contra-
diction.

Suppose m = LCM(a, b) and m < k`d. Observe that k`d = (dk)` = a` and
k`d = (d`)k = bk. That is, both a and b divide k`d; hence, their least common
multiple m does also.

Since k|a and `|b, k and ` both divide m; hence, by Exercise 2.3.3, the product
k`|m.

[Aside: We also know that d divides m, so it is tempting to assert
that k`d also divides m. But we can’t use Exercise 2.3.3 to conclude
this, since d may not be relatively prime to either k or `. Can you
give an example where d divides both k and `?]

Thus m = k`x for some positive integer x, and x < d, by hypothesis. Since m|k`d,
x|d. Write d = xy, where y is an integer > 1. Now:

a = dk = xyk|m = k`x, so y|`.

b = d` = xy`|m = k`x, so y|k.

This implies that k and ` are not relatively prime, since y > 1. Thus, the assump-
tion m < k`d is false, and so m = k`d. �

This generalization of Theorem 2.3.1 can be used to prove the uniqueness of prime
factorizations asserted in the Fundamental Theorem of Arithmetic (Module 5.1): If
n is a positive integer greater than 1, then n can be written uniquely as a product of
prime numbers where the factors appear in nondecreasing order.

2. INTEGERS AND ALGORITHMS 161

Proof of uniqueness of prime factorization. We have already shown that we
can write any integer n > 1 as a product

n = p1p2 · · · pk,
where each pi is prime. By reordering the factors, if necessary, we can always assume
that

p1 ≤ p2 ≤ · · · ≤ pk.

We will prove by induction on k that if an integer n > 1 has a factorization into k
primes, k ≥ 1, then the factorization is unique.

1. Basis Step (k = 1). In this case n = p1 is prime, and so it has no other factorization
into primes.

2. Induction Step. Assume that every integer that can be factored into k primes has
a unique factorization. Suppose

n = p1p2 · · · pkpk+1,

where each pi is prime and

p1 ≤ p2 ≤ · · · ≤ pk ≤ pk+1.

Suppose n has another prime factorization

n = q1q2 · · · q`,
where each qj is prime (possibly, ` 6= k + 1) and

q1 ≤ q2 ≤ · · · ≤ q`.

By the generalization of Theorem 2.3.1 in Exercise 2.3.2, since p1|n = q1q2 · · · q`,
then p1|qj for some j. But qj is also prime, so

p1 = qj ≥ q1.

On the other hand, since q1|p1p2 · · · pkpk+1, then q1|pi for some i, and since pi is
prime,

q1 = pi ≥ p1.

But if p1 ≥ q1 and q1 ≥ p1, then p1 = q1. Thus we can cancel the first factor from
both sides of the equation

p1p2 · · · pkpk+1 = q1q2 · · · q`
to get

p2 · · · pkpk+1 = q2 · · · q`.
The integer on the left-hand side of this equation has a prime factorization using
k primes. By the induction hypothesis, this factorization is unique. This means
that ` = k + 1 and

p2 = q2, p3 = q3, ... , pk+1 = qk+1.

Thus, pi = qi for 1 ≤ i ≤ k + 1, and the factorization of n is unique.

2. INTEGERS AND ALGORITHMS 162

By the first principle of mathematical induction, every integer greater than one
has a unique prime factorization. �

3. APPLICATIONS OF NUMBER THEORY 163

3. Applications of Number Theory

3.1. Representation of Integers.

Theorem 3.1.1. Given an integer b > 1, every positive integer n can be expresses
uniquely as

n = akb
k + ak−1b

k−1 + · · ·+ a1b+ a0,

where k ≥ 0, 0 ≤ a0, a1, a2, . . . , ak < b, and are all integers.

Definition 3.1.1. Base b expansion of n is (akak−1 · · · a1a0)b if the ai are as
described in Theorem 3.1.1.

Example 3.1.1. Here are examples of common expansions other than the more
familiar decimal expansion.

• Binary expansion is the base 2 expansion.
• Octal expansion is the base 8 expansion.
• Hexadecimal expansion is base 16 expansion. The symbols A through F

are used to represent 10 through 15 in the expansion.

Discussion

Theorem 3.1.1 asserts that each positive integer n can be expressed uniquely as
a linear combination of powers of a fixed integer b > 1. The coefficients in the
linear combination must be less than b and must be greater than or equal to zero.
These coefficients are, by definition, the digits of the base b expansion of n, n =
(akak−1 . . . a1a0)b.

3.2. Constructing Base b Expansion of n. Use the division algorithm to get
the base b expansion of n:

1. n = bq1 + a0, 0 ≤ a0 < b and q1 < n.
2. q1 = bq2 + a1, 0 ≤ a1 < b and q2 < q1.
3. q2 = bq3 + a2, 0 ≤ a2 < b and q3 < q2.
4. etc. until qi = 0.

Then n = (akak−1 . . . a1a0)b.

Example 3.2.1. Find the binary expansion of 42.

Solution: We can use the division algorithm to get the ai’s.

3. APPLICATIONS OF NUMBER THEORY 164

42 = 2(21) + 0

21 = 2(10) + 1

10 = 2(5) + 0

5 = 2(2) + 1

2 = 2(1) + 0

1 = 2(0) + 1

This gives us 42 = (1)(25) + (0)(24) + (1)(23) + (0)(22) + (1)(21) + 0. Thus the
binary expansion of 42 is (101010)2.

Example 3.2.2. Find the hexadecimal expansion of 42.

Solution: This time we use 16 for b.

42 = 16(2) + 10

2 = 16(0) + 2

So the hexadecimal expansion of 42 is (2A)16 (recall we use A = 10 in hexadecimal
notation).

Example 3.2.3. Find the decimal notation of the octal representation (1024)8.

(1024)8 = 1(83) + 0(82) + 2(81) + 4 = 532

3.3. Cancellation in Congruences.

Theorem 3.3.1. Suppose GCD(c,m) = 1 and ac ≡ bc(mod m). Then a ≡
b(mod m).

Proof. Suppose GCD(c,m) = 1 and
ac ≡ bc(mod m). (We may assume m > 1 so that c 6= 0.) Then

ac− bc = c(a− b) = km

for some integer k. This implies

c|km.
Since GCD(c,m) = 1, Lemma 2 from Module 5.2 asserts that if c|km, then

c|k.

Write k = cd for some integer d, and substitute for k in the equation above:

c(a− b) = km = (cd)m = c(dm).

3. APPLICATIONS OF NUMBER THEORY 165

Since the cancellation law holds for integers and c 6= 0, we can cancel c to get

a− b = dm.

Thus, a ≡ b(mod m). �

Discussion

Theorem 3.3.1 provides a criterion for being able to cancel when you have a
congruence. Notice that in order to perform the cancellation, the modulus m and the
factor to be cancelled must be relatively prime. Here is an example to illustrate why.

Example 3.3.1. 3 ·6 ≡ 1 ·6(mod 12), but 3 6≡ 1(mod 12). The reason cancellation
fails is that 6 and 12 are not relatively prime.

Example 3.3.2. 3 · 6 ≡ 8 · 6(mod 5). Here 6 and 5 are relatively prime and we
can easily check that 3 ≡ 8(mod 5).

3.4. Inverses mod m.

Definition 3.4.1. An integer a′ is a (multiplicative) inverse to a modulo m
if

aa′ ≡ 1(mod m).

Example 3.4.1. The inverse of 14 modulo 9 is 2, since 14 · 2 ≡ 28 ≡ 1(mod 9).
There is no inverse to 6 modulo 9, however.

In general, an “inverse” refers to something that “undoes” another thing leaving
something that is an “identity”.

• With regular multiplication of real numbers, the inverse of x is 1
x

since x(1
x
) =

1. Inverses do not necessarily exist if we look only at integers.
• With regular addition of real numbers, the inverse of x is −x since x+(−x) =

0,
• With matrices and matrix multiplication, the inverse of a matrix, A, is a

matrix A−1, such that AA−1 = A−1A = I, where I is the identity matrix.
Not all matrices have inverses.
• With functions and composition, the inverse of a function, f , is a function,
f−1, such that (f ◦ f−1)(x) = (f−1 ◦ f)(x) = x = identity(x). Not all
functions have inverses.
• Not all integers, even nonzero integers, have inverses modulo m. Moreover,

if an inverse does exist it is not unique. This last part is different from all the
other ones mentioned before! We shall see below, however, that if an integer
a has an inverse modulo m, then it has a unique inverse lying between 0 and
m.

3. APPLICATIONS OF NUMBER THEORY 166

3.5. Linear Congruence.

Definition 3.5.1. A linear congruence is a congruence of the form ax ≡
b(mod m), where a, b, and m are fixed integers and m > 0. One may solve for x
by finding an inverse of a modulo m, if an inverse exists.

Example 3.5.1. Solve the linear congruence
2x ≡ 7(mod 15) for x.

Solution: An inverse of 2 modulo 15 is 8. Thus

(8 · 2)x ≡ 8(7)(mod 15)

x ≡ 56(mod 15)

x ≡ 11(mod 15)

Discussion

Solving a linear congruence, ax ≡ b (mod m), is very similar to solving an ordi-
nary linear equation ax = b. We can solve for x in the linear equation by multiplying
through by the multiplicative inverse 1/a of a, provided a 6= 0. In a similar manner,
we can solve a linear congruence, ax ≡ b(mod m), provided a has a multiplicative
inverse a′ modulo m. Then x ≡ a′ax ≡ a′b(mod m). To get a canonical choice for x,
we would reduce a′b modulo m.

Caution. DO NOT express the solution to a linear congruence ax ≡ b(mod m) as
x = b

a
, as you would the solution to the linear equation ax = b. We have previously

cautioned against using fractional notation when doing integer arithmetic, but, in the
world of integers modulo m, they are expressly forbidden.

3.6. Criterion for Invertibility mod m.

Theorem 3.6.1. Suppose a and m are integers and m > 1. Then a has an inverse
modulo m if and only if GCD(a,m) = 1. Moreover, if GCD(a,m) = 1, then a has a
unique inverse, a′, with 0 ≤ a′ < m.

Proof. GCD(a,m) = 1 if and only if there are integers s and t such that 1 =
as + mt. This is true if and only if there is an integer s such that 1 ≡ as(mod m).
By definition, this is true if and only if a has an inverse, namely s, modulo m. �

Discussion

3. APPLICATIONS OF NUMBER THEORY 167

Theorem 3.6.1 provides us with the conditions required for inverses modulo m to
exist: For a to have an inverse modulo m, a and m must be relatively prime. The
proof of the “moreover” part is complete once you solve the following exercise.

Exercise 3.6.1. Prove that if ab ≡ 1(mod m) and b ≡ c(mod m), then ac ≡
1(mod m).

3.7. Example 3.7.1. We can use the Euclidean Algorithm and the division al-
gorithm to find the “unique” inverse of a modulo m.

Example 3.7.1. Find the inverse of 8 modulo 35.

1. Apply the Euclidean Algorithm.

35 = 4(8) + 3

8 = 2(3) + 2

3 = 1(2) + 1

2 = 2(1) + 0

2. Find the linear combination of 8 and 35 that equals 1, the GCD.

1 = 3− 1(2)

= [35− 4(8)]− 1[8− 2(3)]

= [35− 4(8)]− 1[8− 2[35− 4(8)]]

= 3(35)− 13(8)

3. This gives

−13(8) ≡ 1(mod 35),

so an inverse of 8 modulo 35 is −13.
4. To find the inverse between 0 and 35 use the division algorithm

−13 = −1(35) + 22.

The unique inverse of 8 modulo 35 between 0 and 35 is 22.
5. Check: 8 · 22 = 176 = 5 · 35 + 1 ≡ 1 (mod 35)

3.8. Fermat’s Little Theorem.

Theorem 3.8.1. If p is a prime that does not divide the integer a, then

ap−1 ≡ 1(mod p).

and

ap ≡ a(mod p).

3. APPLICATIONS OF NUMBER THEORY 168

Example 3.8.1. Find 5158 mod 11.

Solution: Since 158 = 15(10) + 8, we have

5158 = (515)10(58)

≡ 58(mod 11),

by Fermat’s little theorem, applied to a = 515 and p = 11.

Now,

58 = (52)4

= 254

≡ 34(mod 11)

= 81

≡ 4(mod 11).

.

Thus 5158 mod 11 = 4.

Discussion

The problem of determining whether a given integer is a prime may be very
difficult. This fact is both interesting mathematically and useful in coding theory.
Fermat’s little theorem provides some help in working with prime numbers and pro-
vides the basis for many probabilistic primality tests. We will not give a proof of
Fermat’s theorem, since it involves concepts from the theory of groups that would
take us too far afield. An elementary proof can be found in Introduction to Modern
Algebra, Fourth Edition, by McCoy and Janusz (Allyn and Bacon, 1987).

The converse of Fermat’s little theorem is not true. In particular, there are com-
posite numbers n such that

2n−1 ≡ 1(mod n).

These are called pseudoprimes. They are very rare, but 341 is a pseudoprime.

Fermat’s little theorem can be used to reduce the problem of finding the remainder
of a large power modulo a prime. In Example 3.8.1, we use the fact that 515 and 11
are relatively prime and Fermat’s little theorem to get (515)10 ≡ 1(mod 11), thereby
reducing 5158 to a smaller power of 5 modulo 11. One clearly has to be comfortable
with the laws of exponents to carry out an exercise such as this.

3. APPLICATIONS OF NUMBER THEORY 169

3.9. RSA System. The RSA system is a public key cryptosystem based on
modular exponentiation modulo the product of two large primes. This system, named
after the researchers who introduced it: Rivest, Shamir, and Adleman, is a public key
cryptosystem.

RSA Code

(1) Find p and q, large primes.
(2) Choose e so that e < pq and GCD(e, (p− 1)(q− 1)) = 1. e must be odd, but

not necessarily prime.
(3) Find d such that de ≡ 1(mod (p− 1)(q − 1)).
(4) Encryption function f(t) = te(mod pq).
(5) Decryption function f−1(c) = cd(mod pq).

The public keys are (p, q, e) and the private key is d.

Example 3.9.1. Here is the routine, using p = 61, q = 53, e = 17, and d = 2753.

1. The first prime number (destroy after computing e and d): p = 61
2. The second prime number (destroy after computing e and d): q = 53
3. Modulus (give this to others): pq = 3233
4. Public exponent (give this to others): e = 17
5. Private exponent (keep this secret): d = 2753
6. Your public key is (pq, e) = (3233, 17).
7. Your private key is d = 2753.
8. The encryption function is f(t) = (t17)(mod 3233).
9. The decryption function is : f−1(c) = (c2753)(mod 3233).

To encrypt the plaintext value 123, do this:

f(123) = (12317)(mod 3233) = 337587917446653715596592958817679803(mod 3233) =
855

To decrypt the ciphertext value 855, do this:

f−1(855) = (8552753)(mod 3233)

= (an incredibly huge number goes here) (mod 3233)

= 123

The large exponential expressions can be reduced modulo 3233 in a piecemeal
fashion, however, so that you don’t actually have to calculate these large numbers.

4. MATRICES 170

4. Matrices

4.1. Definitions.

Definition 4.1.1. A matrix is a rectangular array of numbers. A matrix with
m rows and n columns is said to have dimension m× n and may be represented as
follows:

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

 = [aij]

Definition 4.1.2. Matrices A and B are equal, A = B, if A and B have the
same dimensions and each entry of A is equal to the corresponding entry of B.

Discussion

Matrices have many applications in discrete mathematics. You have probably
encountered them in a precalculus course. We present the basic definitions associated
with matrices and matrix operations here as well as a few additional operations with
which you might not be familiar.

We often use capital letters to represent matrices and enclose the array of numbers

with brackets or parenthesis; e.g., A =

a b

c d

 or A =

a b

c d

. We do not use simply

straight lines in place of brackets when writing matrices because the notation

∣∣∣∣∣∣a b

c d

∣∣∣∣∣∣
has a special meaning in linear algebra. A = [aij] is a shorthand notation often used
when one wishes to specify how the elements are to be represented, where the first
subscript i denotes the row number and the subscript j denotes the column number
of the entry aij. Thus, if one writes a34, one is referring to the element in the 3rd
row and 4th column. This notation, however, does not indicate the dimensions of
the matrix. Using this notation, we can say that two m × n matrices A = [aij] and
B = [bij] are equal if and only if aij = bij for all i and j.

Example 4.1.1. The following matrix is a 1 × 3 matrix with a11 = 2, a12 = 3,
and a13 = −2. [

2 3 −2
]

4. MATRICES 171

Example 4.1.2. The following matrix is a 2× 3 matrix. 0 π −2

2 5 0

4.2. Matrix Arithmetic. Let α be a scalar, A = [aij] and B = [bij] be m × n

matrices, and C = [cij] a n× p matrix.

(1) Addition: A+B = [aij + bij]
(2) Subtraction: A−B = [aij − bij]
(3) Scalar Multiplication: αA = [αaij]

(4) Matrix Multiplication: AC =

[
n∑

k=1

aikckj

]

Discussion

Matrices may be added, subtracted, and multiplied, provided their dimensions
satisfy certain restrictions. To add or subtract two matrices, the matrices must have
the same dimensions.

Notice there are two types of multiplication. Scalar multiplication refers to the
product of a matrix times a scalar (real number). A scalar may be multiplied by a
matrix of any size. On the other hand, matrix multiplication refers to taking the
product of two matrices. The definition of matrix multiplication may not seem very
natural at first. It has a great many applications, however, some of which we shall
see. Notice that in order for the product AC to be defined, the number of columns in
A must equal the number of rows of C. Thus, it is possible for the product AC may
be defined, while CA is not. When multiplying two matrices, the order is important.
In general, AC is not necessarily the same as CA, even if both products AC and CA
are defined. In other words, matrix multiplication is not commutative.

4.3. Example 4.3.1.

Example 4.3.1. Suppose

A =

 1 −2 3

0 3 4

 , B =

 0 1 −2

3 −4 5

 , and C =

3 4 −6 0

0 −1 2 2

1 −2 3 4

4. MATRICES 172

Then

A+B =

 1 −1 1

3 −1 9

A−B =

 1 −3 5

−3 7 −1

3A =

 3 −6 9

0 9 12

AC =

 6 0 −1 8

4 −11 18 22

Let us break down the multiplication of A and C in Example 4.3.1 down to smaller

pieces.

[
1 −2 3

]
·

3

0

1

 =
[
3 + 0 + 3

]
= [6]

[
1 −2 3

]
3 4

0 −1

1 −2

 =
[

3 + 0 + 3 4 + 2− 6
]

=
[
6 0

]

[
1 −2 3

]
3 4 −6 0

0 −1 2 2

1 −2 3 4

 =
[

3 + 0 + 3 4 + 2− 6 −6− 4 + 9 0− 4 + 12
]

=
[

6 0 −1 8
]

Now compute the second row to get

AC =

 6 0 −1 8

4 −11 18 22

 .

4. MATRICES 173

4.4. Special Matrices.

1. A square matrix is a matrix with the same number of rows as columns.

2. A diagonal matrix is a square matrix whose entries off the main diagonal are
zero.

3. An upper triangular matrix is a matrix having all the entries below the main
diagonal equal to zero.

4. A lower triangular matrix is a matrix having the entries above the main diagonal
equal to zero.

5. The n × n identity matrix, I, is the n × n matrix with ones down the diagonal
and zeros elsewhere.

6. The inverse of a square matrix, A, is the matrix A−1, if it exists, such that
AA−1 = A−1A = I.

7. The transpose of a matrix A = [aij] is At = [aji].

8. A symmetric matrix is one that is equal to its transpose.

Discussion

Many matrices have special forms and special properties. Notice that, although
a diagonal matrix must be square, no such condition is put on upper and lower
triangular matrices.

The following matrix is a diagonal matrix (it is also upper and lower triangular).

2 0 0

0 −2 0

0 0 6

The following matrix is upper triangular.

−1 0 3 −2

0 1 2 5

0 0 −3 3

The next matrix is the transpose of the previous matrix. Notice that it is lower

triangular.

4. MATRICES 174

−1 0 0

0 1 0

3 2 −3

−2 5 3

The identity matrix is a special matrix that is the multiplicative identity for any

matrix multiplication. Another way to define the identity matrix is the square matrix
I = [aij] where aij = 0 if i 6= j and aii = 1. The n × n identity I has the property
that IA = A and AI = A, whenever either is defined. For example,

1 0

0 1

 ·
 3 −4 −2

2 7 0

 =

 3 −4 −2

2 7 0

The inverse of a matrix A is a special matrix A−1 such that AA−1 = A−1A = I. A

matrix must be square to define the inverse. Moreover, the inverse of a matrix does
not always exist.

Example 4.4.1. 2 1

1 1

 ·
 1 −1

−1 2

 =

1 0

0 1

so that 2 1

1 1

−1 =

 1 −1

−1 2

 .
The transpose of a matrix is the matrix obtained by interchanging the rows for

the columns. For example, the transpose of

A =

 2 3 −1

−2 5 6

 is At =

2 −2

3 5

−1 6

If the transpose is the same as the original matrix, then the matrix is called

symmetric. Notice a matrix must be square in order to be symmetric.

We will show here that matrix multiplication is distributive over matrix addition.

4. MATRICES 175

Let A = [aij] and B = [bij] be m × n matrices and let C = [cij] be an n × p
matrix. We use the definitions of addition and matrix multiplication and the dis-
tributive properties of the real numbers to show the distributive property of matrix
multiplication. Let i and j be integers with 1 ≤ i ≤ m and 1 ≤ j ≤ p. Then the
element in the i-th row and the j-th column in (A+B)C would be given by

n∑
k=1

(aik + bik)(ckj) =
n∑

k=1

(aikckj + bikckj)

=
n∑

k=1

aikckj +
n∑

k=1

bikckj

=
n∑

k=1

aikckj +
n∑

k=1

bikckj

This last part corresponds to the form the element in the i-th row and j-th column
of AC + BC. Thus the element in the i-th row and j-th column of (A + B)C is the
same as the corresponding element of AC + BC. Since i and j were arbitrary this
shows (A+B)C = AC +BC.

The proof that C(A+B) = CA+CB is similar. Notice that we must be careful,
though, of the order of the multiplication. Matrix multiplication is not commutative.

4.5. Boolean Arithmetic. If a and b are binary digits (0 or 1), then

a ∧ b =

{
1, if a = b = 1

0, otherwise.

a ∨ b =

{
0, if a = b = 0

1, otherwise.

Definitions 4.5.1. Let A and B be n×m matrices.

1. The meet of A and B: A ∧B = [aij ∧ bij]

2. The join of A and B: A ∨B = [aij ∨ bij]

Definition 4.5.1. Let A = [aij] be m× k and B = [bij] be k × n. The Boolean
product of A and B, A�B, is the m× n matrix C = [cij] defined by

cij = (ai1 ∧ b1j) ∨ (ai2 ∧ b2j) ∨ (ai3 ∧ b3j) ∨ · · · ∨ (aik ∧ bkj).

4. MATRICES 176

Discussion

Boolean operations on zero-one matrices is completely analogous to the standard
operations, except we use the Boolean operators ∧ and ∨ on the binary digits instead
of ordinary multiplication and addition, respectively.

4.6. Example 4.6.1.

Example 4.6.1. Let A =

1 1 0 1

0 1 1 0

 , B =

0 1 0 0

1 0 1 0

 , and C =

1 1 0

0 1 0

0 1 1

1 0 0

 .

Then

1. A ∧B =

0 1 0 0

0 0 1 0

2. A ∨B =

1 1 0 1

1 1 1 0

3. A� C =

1 1 0

0 1 1

Here are more details of the Boolean product in Example 4.6.1:

A� C =
[
(1∧1)∨(1∧0)∨(0∧0)∨(1∧1) (1∧1)∨(1∧1)∨(0∧1)∨(1∧0) (1∧0)∨(1∧0)∨(0∧1)∨(1∧0)
(0∧1)∨(1∧0)∨(1∧0)∨(0∧1) (0∧1)∨(1∧1)∨(1∧1)∨(0∧0) (0∧0)∨(1∧0)∨(1∧1)∨(0∧0)

]

=

1 ∨ 0 ∨ 0 ∨ 1 1 ∨ 1 ∨ 0 ∨ 0 0 ∨ 0 ∨ 0 ∨ 0

0 ∨ 0 ∨ 0 ∨ 0 0 ∨ 1 ∨ 1 ∨ 0 0 ∨ 0 ∨ 1 ∨ 0

Exercise 4.6.1.

A =

1 1 0 0

0 0 1 1

0 1 0 1

 B =

1 0 1 0

0 1 0 0

1 1 1 0

4. MATRICES 177

Find

(1) A ∨B
(2) A ∧B

Exercise 4.6.2.

A =

1 1 0

0 0 1

0 1 0

Find

(1) A� A
(2) A� A� A
(3) A� A� A� A

Exercise 4.6.3.

A =

1 1 0

0 0 1

0 1 0

Find �n

k=1A, the Boolean product of A with itself n times. Hint: Do exercise 4.6.2
first.

CHAPTER 6

Introduction to Graph Theory

1. Introduction to Graphs

1.1. Simple Graphs.

Definition 1.1.1. A simple graph (V,E) consists of a nonempty set represent-
ing vertices, V , and a set of unordered pairs of elements of V representing edges, E.
A simple graph has

• no arrows,
• no loops, and
• cannot have multiple edges joining vertices.

Discussion

Graphs offer a convenient way to represent various kinds of mathematical objects.
Essentially, any graph is made up of two sets, a set of vertices and a set of edges.
Depending on the particular situation we are trying to represent, however, we may
wish to impose restrictions on the type of edges we allow. For some problems we will
want the edges to be directed from one vertex to another; whereas, in others the edges
are undirected. We begin our discussion with undirected graphs.

The most basic graph is the simple graph as defined above. Since the edges of
a simple graph are undirected, they are represented by unordered pairs of vertices
rather than ordered pairs. For example, if V = {a, b, c}, then {a, b} = {b, a} would
represent the same edge.

Exercise 1.1.1. If a simple graph G has 5 vertices, what is the maximum number
of edges that G can have?

1.2. Examples.

Example 1.2.1. V = {v1, v2, v3, v4} E = {{v1v2}, {v1, v3}, {v2, v3}, {v2, v4}}
178

1. INTRODUCTION TO GRAPHS 179

v1 v2

v3
v4

Example 1.2.2. V = {a, b, c}, E = {{a, b}, {b, c}, {a, c}}
a b

c

1.3. Multigraphs. Definition: A multigraph is a set of vertices, V , a set of
edges, E, and a function

f : E → {{u, v} : u, v ∈ V and u 6= v}.

If e1, e2 ∈ E are such that f(e1) = f(e2), then we say e1 and e2 are multiple or
parallel edges.

Example 1.3.1. V = {a, b, c, d}, E = {e1, e2, . . . , e6}, f : E → {{u, v} : u, v ∈
V and u 6= v} is defined as follows.

e e1 e2 e3 e4 e5 e6

f(e) {a, c} {a, c} {a, b} {c, b} {b, d} {b, d}

1. INTRODUCTION TO GRAPHS 180

e1
e2

e3

e4
e5

e6

a b

c d

Discussion

In Example 1.3.1 e1 and e2 are parallel edges, but the edges e2 and e5 are not
called parallel edges.

Exercise 1.3.1. Find all the parallel edges Example 1.3.1.

Notice that a multigraph allows for multiple edges between a pair of vertices, but
does not allow for loops. In some applications it may be desirable to illustrate all
the connections between the vertices. Say for example, in a network there may be
multiple wires connecting the same units.

1.4. Pseudograph.

Definition 1.4.1. A pseudograph is a set of vertices, V , a set of edges, E, and
a function f : E → {{u, v} : u, v ∈ V }. If e ∈ E is such that f(e) = {u, u} = {u},
then we say e is a loop.

Example 1.4.1. V = {a, b, c, d}, E = {e1, e2, . . . , e8},

f : E → {{u, v} : u, v ∈ V }

is defined as follows.

e e1 e2 e3 e4 e5 e6 e7 e8

f(e) {a, c} {a, c} {a, b} {c, b} {b, d} {b, d} {a} {d}

1. INTRODUCTION TO GRAPHS 181

e1

e2

e3

e4
e5

e6

a

b

c
d

e7

e8

Discussion

The pseudograph adds the possibility of loops. For example, a diagnostic line may
be used in a network, which is a line connecting a computer to itself.

1.5. Directed Graph.

Definition 1.5.1. A directed graph (V,E) consists of a set of vertices, V , and
a set of directed edges, E. The elements of E are ordered pairs of vertices.

Example 1.5.1. V = {a, b, c, d},

E = {(a, c), (c, a), (a, b), (c, b), (b, d), (d, b), (a, a), (d, d)},

1. INTRODUCTION TO GRAPHS 182

e1

e2

e3

e4
e5

e6

a

b

c
d

e7

e8

Discussion

A directed graph, or digraph, allows loops and allows two edges joining the same
vertex, but going in the opposite direction. More than one edge going in the same
direction between vertices, however, is not allowed. A directed edge is defined by
an ordered pair rather than an unordered pair. That is, the ordered pair (a, b) is
different from the ordered pair (b, a), while the unordered pair {a, b} = {b, a}. Be
careful of the notation you use when writing an edge.

Exercise 1.5.1. If a directed graph G has 5 vertices, what is the maximum number
of (directed) edges of G?

1.6. Directed Multigraph.

Definition 1.6.1. A directed multigraph (V,E) consists of vertices, V , and
edges, E, and a function

f : E → V × V = {(u, v)|u, v ∈ V }.

The edges e1 and e2 are multiple edges if f(e1) = f(e2)

Example 1.6.1. V = {a, b, c, d}, E = {e1, e2, . . . , e10},

f : E → {(u, v) : u, v ∈ V }

is defined as follows.

e e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

f(e) (a, c) (c, a) (a, b) (c, b) (b, d) (d, b) (a, a) (d, d) (a, b) (b, d)

1. INTRODUCTION TO GRAPHS 183

e1

e2

e3

e4
e5

e6

a

b

c
d

e7

e8

e9

e10

Discussion

Notice the difference between a directed graph and a directed multigraph: a di-
rected graph allows more than one edge to connect the same two vertices as long as
they have opposite directions; whereas, no such restriction is placed on the edges of
a directed multigraph.

Exercise 1.6.1. Give all the multiple edges in Example 1.6.1.

1.7. Graph Isomorphism.

Definition 1.7.1. Let G1 = (V,E) and G2 = (U, F) be simple graphs. The graphs
G1 and G2 are isomorphic if there exists a bijection

f : V → U

such that for all v1, v2 ∈ V , v1 and v2 are adjacent in G1 if and only if f(v1) and
f(v2) are adjacent in G2.

Definition 1.7.2. If f is a bijection as described above, then f is called an iso-
morphism between G1 and G2, and we often write

f : G1 → G2.

Discussion

There are several notations that are used to represent an isomorphism. We will
use a common notation G1 ' G2 to mean that G1 is isomorphic to G2.

Trying to construct an isomorphism between graphs can be a very difficult problem
in general. If simple graphs G1 and G2 are isomorphic, then, clearly, they must have

1. INTRODUCTION TO GRAPHS 184

the same number of vertices. As the next exercise shows, G1 and G2 must also have
the same number of edges. Having the same number of vertices and edges,
however, is in no way sufficient for graphs G1 and G2 to be isomorphic.
Often to prove existence of an isomorphism between two graphs one must actually
construct the isomorphism.

Exercise 1.7.1. Prove that if simple graphs G1 and G2 are isomorphic, then G1

and G2 have the same number of edges.

Example 1.7.1. The graphs G1 and G2 below are isomorphic. The bijection is
defined by f(vi) = ui.

v1 v2

v4 v3
G1 G2

u2

u3

u1

u4

Example 1.7.1 illustrates a situation in which it is very easy to construct an
isomorphism. The graph G2 is merely an alteration of G1 obtained by moving one of
the edges so it goes around rather than crossing over another edge and relabeling its
vertices.

One way to visualize when two graphs are isomorphic is to imagine that all the
vertices are beads and each edge is represented by a sting with each end tied to the
beads that represents its endpoints. If you pick one or more beads up and place it in
another location without untying the strings, you obtain a graph that is isomorphic
to the original. In fact, if you can move the vertices to different positions keeping
the edges attached to go from one graph to another, the two graphs are isomorphic.
Edges are allowed to “pass through” each other, so a straight edge and a knotted
edge would be considered the same edge.

When two graphs are isomorphic, they share many of the important properties
of graphs. In many instances we do not differentiate between two graphs that are

1. INTRODUCTION TO GRAPHS 185

isomorphic. Until we study isomorphism in detail, we will not differentiate between
two isomorphic graphs. We will discuss graph isomorphisms further in Module 6.3.

Exercise 1.7.2. Construct a definition for “isomorphism” between

(a) two multigraphs.
(b) two pseudographs.
(c) two directed graphs.
(d) two directed multigraphs.

2. GRAPH TERMINOLOGY 186

2. Graph Terminology

2.1. Undirected Graphs.

Definitions 2.1.1. Suppose G = (V,E) is an undirected graph.

(1) Two vertices u, v ∈ V are adjacent or neighbors if there is an edge e
between u and v.
• The edge e connects u and v.
• The vertices u and v are endpoints of e.

(2) The degree of a vertex v, denoted deg(v), is the number of edges for which
it is an endpoint. A loop contributes twice in an undirected graph.
• If deg(v) = 0, then v is called isolated.
• If deg(v) = 1, then v is called pendant.

Example 2.1.1. V = {v1, v2, v3, v4} and E = {e1, e2, e3, e4}.

v1

v2

v3
v4

e1

e2

e3

e4

(1) v2 and v3 are adjacent.
(2) deg(v1) = 2
(3) deg(v2) = 2
(4) deg(v3) = 3
(5) deg(v4) = 1

Discussion

Notice that in computing the degree of a vertex in an undirected graph a loop
contributes two to the degree. In this example, none of the vertices is isolated, but
v4 is pendant. In particular, the vertex v1 is not isolated since its degree is 2.

2. GRAPH TERMINOLOGY 187

2.2. The Handshaking Theorem.

Theorem 2.2.1. (The Handshaking Theorem) Let G = (V,E) be an undi-
rected graph. Then

2|E| =
∑
v∈V

deg(v)

Proof. Each edge contributes twice to the sum of the degrees of all vertices. �

Discussion

Theorem 2.2.1 is one of the most basic and useful combinatorial formulas associ-
ated to a graph. It lets us conclude some facts about the numbers of vertices and the
possible degrees of the vertices. Notice the immediate corollary.

Corollary 2.2.1.1. The sum of the degrees of the vertices in any graph must be
an even number.

In other words, it is impossible to create a graph so that the sum of the degrees
of its vertices is odd (try it!).

2.3. Example 2.3.1.

Example 2.3.1. Suppose a graph has 5 vertices. Can each vertex have degree 3?
degree 4?

(1) The sum of the degrees of the vertices would be 3 ·5 if the graph has 5 vertices
of degree 3. This is an odd number, though, so this is not possible by the
handshaking Theorem.

(2) The sum of the degrees of the vertices if there are 5 vertices with degree 4 is
20. Since this is even it is possible for this to equal 2|E|.

Discussion

If the sum of the degrees of the vertices is an even number then the handshaking
theorem is not contradicted. In fact, you can create a graph with any even degree
you want if multiple edges are permitted. However, if you add more restrictions it
may not be possible. Here are two typical questions the handshaking theorem may
help you answer.

Exercise 2.3.1. Is it possible to have a graph S with 5 vertices, each with degree
4, and 8 edges?

2. GRAPH TERMINOLOGY 188

Exercise 2.3.2. A graph with 21 edges has 7 vertices of degree 1, three of degree
2, seven of degree 3, and the rest of degree 4. How many vertices does it have?

Theorem 2.3.1. Every graph has an even number of vertices of odd degree.

Proof. Let Vo be the set of vertices of odd degree, and let Ve be the set of vertices
of even degree. Since V = Vo ∪Ve and Vo ∩Ve = ∅, the handshaking theorem gives us

2|E| =
∑
v∈V

deg(v) =
∑
v∈Vo

deg(v) +
∑
v∈Ve

deg(v)

or ∑
v∈Vo

deg(v) = 2|E| −
∑
v∈Ve

deg(v).

Since the sum of any number of even integers is again an even integer, the right-
hand-side of this equations is an even integer. So the left-hand-side, which is the sum
of a collection of odd integers, must also be even. The only way this can happen,
however, is for there to be an even number of odd integers in the collection. That is,
the number of vertices in Vo must be even. �

Theorem 2.3.1 goes a bit further than our initial corollary of the handshaking
theorem. If you have difficulty with the last sentence of the proof, consider the
following facts:

• odd + odd = even
• odd + even = odd
• even + even = even

If we add up an odd number of odd numbers the previous facts will imply we get
an odd number. Thus to get an even number out of

∑
v∈Vo

deg(v) there must be an
even number of vertices in Vo (the set of vertices of odd degree).

While there must be an even number of vertices of odd degree, there is no restric-
tions on the parity (even or odd) of the number of vertices of even degree.

This theorem makes it easy to see, for example, that it is not possible to have a
graph with 3 vertices each of degree 1 and no other vertices of odd degree.

2.4. Directed Graphs.

Definitions 2.4.1. Let G = (V,E) be a directed graph.

(1) Let (u, v) be an edge in G. Then u is an initial vertex and is adjacent to
v. The vertex v is a terminal vertex and is adjacent from u.

(2) The in-degree of a vertex v, denoted deg−(v) is the number of edges which
terminate at v.

2. GRAPH TERMINOLOGY 189

(3) Similarly, the out-degree of v, denoted deg+(v), is the number of edges
which initiate at v.

2.5. The Handshaking Theorem for Directed Graphs.

Theorem 2.5.1. For any directed graph G = (V,E),

|E| =
∑
v∈V

deg−(v) =
∑
v∈V

deg+(v).

Discussion

When considering directed graphs we differentiate between the number of edges
going into a vertex verses the number of edges coming out from the vertex. These
numbers are given by the in-degree and the out-degree.

Notice that each edge contributes one to the in-degree of some vertex and one to
the out-degree of some vertex. This is essentially the proof of Theorem 2.5.1.

Exercise 2.5.1. Prove Theorem 2.5.1.

2.6. Underlying Undirected Graph.

Definition 2.6.1. If we take a directed graph and remove the arrows indicating
the direction we get the underlying undirected graph.

Discussion

There are applications in which you may start with a directed graph, but then later
find it useful to consider the corresponding undirected graph obtained by removing
the direction of the edges.

Notice that if you take a vertex, v, in a directed graph and add its in-degree and
out-degree, you get the degree of this vertex in the underlying undirected graph.

2.7. New Graphs from Old.

Definitions 2.7.1. 1. (W,F) is a subgraph of G = (V,E) if

W ⊆ V and F ⊆ E.

2. Given graphs G1 and G2, their union

G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

2. GRAPH TERMINOLOGY 190

3. Given graphs G1 and G2, their join, denoted by G1 ∗G2, is the graph consisting of
the union G1 ∪ G2 together with all possible edges connecting a vertex of G1 that
is not in G2 to a vertex of G2 that is not in G1.

Example 2.7.1. Suppose G has vertex set V = {a, b} and one edge e = {a, b}
connecting a and b, and H has a single vertex c and no edges. Then G∗H has vertex
set {a, b, c} and edges {a, b}, {a, c}, {b, c}.

Exercise 2.7.1. Find the union and join of the graphs G1 and G2 below.

a b

c d

e

G

a f b

e

c g d

1 G2

Exercise 2.7.2. Prove that the union of two simple graphs is a simple graph.

Exercise 2.7.3. Prove that the join of two simple graphs is a simple graph.

2.8. Complete Graphs.

Definition 2.8.1. The complete graph with n vertices, denoted Kn, is the
simple graph with exactly one edge between each pair of distinct vertices.

Discussion

There are a certain types of simple graphs that are important enough that they
are given special names. The first of these are the complete graphs. These are the
simple graphs that have the maximal number of edges for the given set of vertices.
For example, if we were using graphs to represent a local area network, a complete
graph would represent the maximum redundancy possible. In other words, each pair
of computers would be directly connected. It is easy to see that any two complete
graphs with n vertices are isomorphic, so that the symbol Kn is ambiguously used to
denote any such graph.

Complete graphs also arise when considering the question as to whether a graph
G is planar, that is, whether G can be drawn in a plane without having any two
edges intersect. The complete graphs K1, K2, K3, and K4 are planar graphs, but Kn

is not planar if n ≥ 5. Draw K4 without making the edges intersect, then try to draw
K5 without creating an unwanted intersection between edges. (Notice that Kn+1 can
be created from Kn by adding one new vertex and an edge from the new vertex to
each vertex of Kn.)

2. GRAPH TERMINOLOGY 191

Exercise 2.8.1. Prove that the complete graph Kn, n ≥ 1, is the join Kn−1 ∗G,
where G is a graph with one vertex and no edges.

2.9. Cycles.

Definition 2.9.1. A cycle with n vertices {v1, v2, ..., vn}, denoted by Cn, is a
simple graph with edges of the form {v1, v2}, {v2, v3}, {v3, v4}, . . . , {vn−1, vn}, {vn, v1}.

Discussion

Notice that a cycle must have at least 3 vertices. Here are examples of the first
three possibilities:

C C C
3 4 5

Local area networks that are configured this way are often called ring networks.

Notice that the following two graphs are isomorphic. Pay close attention to the
labels.

v1 v2

v4 v3

v1 v2

v3 v4

e1

e2

e3

e4

e1

e4

e2

e3

The point of the last illustration, is that sometimes you have to redraw the graph
to see the ring shape. It also demonstrates that a graph may be planar even though
this fact may not be evident from a given representation.

2.10. Wheels.

Definition 2.10.1. A wheel is a join Cn ∗ G, where Cn is a cycle and G is a
graph with one vertex and no edges. The wheel with n+ 1 vertices is denoted Wn.

2. GRAPH TERMINOLOGY 192

Discussion

Notice that a wheel is obtained by starting with a cycle and then adding one new
vertex and an edge from that vertex to each vertex of the cycle. Be careful! The
index on the notation Wn is actually one less that the number of vertices. The n
stands for the number of vertices in the cycle that we used to get the wheel.

2.11. n-Cubes.

Definition 2.11.1. The n-cube, denoted Qn, is the graph with 2n vertices rep-
resented by the vertices and edges of an n-dimensional cube.

These graphs can be constructed recursively as follows:

1. Initial Condition. A 0-cube is a graph with one vertex and no edges.

2. Recursion. Let Q1
n and Q2

n be two disjoint n-cubes, n ≥ 0, and let f : Q1
n → Q2

n be
an isomorphism. Qn+1 is the graph consisting of the union Q1

n ∪Q2
n, together with

all edges {v, f(v)} joining a vertex v in Q1
n with its corresponding vertex f(v) in

Q2
n.

Qn can also be represented as the graph whose vertices are the bit strings of length
n, having an edge between each pair of vertices that differ by one bit.

Discussion

The n-Cube is a common way to connect processors in parallel machines. Here
are the cubes Q3 and Q4.

4-cube3-cube

000 100

010

001

110

011 111

101

Exercise 2.11.1. Find all the subgraphs of Q1, and Q2.

Exercise 2.11.2. Label the vertices of Q4 appropriately, using bit strings of length
four.

2. GRAPH TERMINOLOGY 193

Exercise 2.11.3. Use your labeling of the vertices of Q4 from Exercise 2.11.2 to
identify two disjoint Q3’s, and an isomorphism between them, from which Q4 would
be obtained in the recursive description above.

Exercise 2.11.4. Prove that Qn+1 ⊆ Q1
n ∗ Q2

n, where Q1
n and Q2

n are disjoint
n-cubes, n ≥ 0.

Exercise 2.11.5. Prove that the 2-cube is not (isomorphic to) the join of two
1-cubes.

Exercise 2.11.6. Draw the graph Q5. [Hint: Abandon trying to use a ”cube”
shape. Put 00000 on the top of the page and 11111 on the bottom and look for an
organized manner to put the rest in between.]

2.12. Bipartite Graphs.

Definition 2.12.1. A simple graph G is bipartite if V can be partitioned into
two nonempty disjoint subsets V1 and V2 such that every edge connects a vertex in V1
and a vertex in V2.

Definition 2.12.2. A bipartite graph is complete if V can be partitioned into
two disjoint subsets V1 and V2 such that there is an edge from every vertex V1 to every
vertex in V2.

Km,n denotes the complete bipartite graph when m = |V1| and n = |V2|.

Discussion

The definition of a bipartite graph is not always consistent about the necessary
size of |V1| and |V2|. We will assume V1 and V2 must have at least one element each,
so we will not consider the graph consisting of a single vertex bipartite.

Note: There are no edges connecting vertices in V1 in a bipartite graph. Neither are
there edges connecting vertices in V2.

Exercise 2.12.1. How many edges are there in the graph Km,n?

Exercise 2.12.2. Prove that a complete bipartite graph Km,n is the join Gm ∗Gn

of graphs Gm and Gn, where Gm has m vertices and no edges, and Gn has n vertices
and no edges.

2.13. Examples.

Example 2.13.1. A star network is a K1,n bipartite graph.

2. GRAPH TERMINOLOGY 194

K1,8

Example 2.13.2. Ck, for k even, is a bipartite graph: Label the vertices {v1, v2, ..., vk}
cyclicly around Ck, and put the vertices with odd subscripts in V1 and the vertices with
even subscripts in V2.

(1) Suppose V1 is a set of airlines and V2 is a set of airports. Then the graph
with vertex set V = V1 ∪ V2, where there is an edge between a vertex of V1
and a vertex of V2 if the given airline serves the given airport, is bipartite.
If every airline in V1 serves every airport in V2, then the graph would be a
complete bipartite graph.

(2) Supplier, warehouse transportation models where an edge represents that a
given supplier sends inventory to a given warehouse are bipartite.

Exercise 2.13.1. Is the following graph bipartite?
b

a

c

d

e

Exercise 2.13.2. Prove that Qn is bipartite. [Hint: You don’t need mathematical
induction; use the bit string model for the vertex set.]

Bipartite graphs also arise when considering the question as to whether a graph is
planar. It is easy to see that the graphs K1,n and K2,n are planar for every n ≥ 1. The
graphsKm,n, however, are not planar if bothm and n are greater than 2. In particular,
K3,3 is not planar. (Try it!) A theorem, which we shall not prove, states that every
nonplanar graph contains (in some sense) a subgraph (see Slide 15) isomorphic to K5

or a subgraph isomorphic to K3,3.

Remark 2.13.1. The important properties of a graph do not depend on how it is
drawn. To see that two graphs, whose vertices have the same labels, are isomorphic,
check that vertices are connected by an edge in one graph if and only if they are also
connected by an edge in the other graph.

3. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 195

3. Representing Graphs and Graph Isomorphism

3.1. Adjacency Matrix.

Definition 3.1.1. The adjacency matrix, A = [aij], for a simple graph G =
(V,E), where V = {v1, v2, ..., vn}, is defined by

aij =

{
1 if {vi, vj} is an edge of G,

0 otherwise.

Discussion

We introduce some alternate representations, which are extensions of connection
matrices we have seen before, and learn to use them to help identify isomorphic
graphs.

Remarks Here are some properties of the adjacency matrix of an undirected graph.

1. The adjacency matrix is always symmetric.
2. The vertices must be ordered: and the adjacency matrix depends on the order

chosen.
3. An adjacency matrix can be defined for multigraphs by defining aij to be the

number of edges between vertices i and j.
4. If there is a natural order on the set of vertices we will use that order unless

otherwise indicated.

3.2. Example 3.2.1.

Example 3.2.1. An adjacency matrix for the graph

v1 v2

v3

v4v5

3. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 196

is the matrix

0 1 0 1 1

1 0 1 1 1

0 1 0 1 0

1 1 1 0 1

1 1 0 1 0

Discussion

To find this matrix we may use a table as follows. First we set up a table labeling
the rows and columns with the vertices.

v1 v2 v3 v4 v5

v1

v2

v3

v4

v5

Since there are edges from v1 to v2, v4, and v5, but no edge between v1 and itself
or v3, we fill in the first row and column as follows.

v1 v2 v3 v4 v5

v1 0 1 0 1 1

v2 1

v3 0

v4 1

v5 1

We continue in this manner to fill the table with 0’s and 1’s. The matrix may
then be read straight from the table.

Example 3.2.2. The adjacency matrix for the graph

3. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 197

1u 2u

3u

4u

5u

is the matrix

M =

0 0 1 1 1

0 0 1 0 1

1 1 0 1 1

1 0 1 0 1

1 1 1 1 0

3.3. Incidence Matrices.

Definition 3.3.1. The incidence matrix, A = [aij], for the undirected graph
G = (V,E) is defined by

aij =

{
1 if edge j is incident with vertex i

0 otherwise.

Discussion

Remarks:

(1) This method requires the edges and vertices to be labeled and depends on
the order in which they are written.

(2) Every column will have exactly two 1’s.
(3) As with adjacency matrices, if there is a natural order for the vertices and

edges that order will be used unless otherwise specified.

Example 3.3.1. The incidence matrix for the graph

3. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 198

v1 v2

v3

v4v5

e1

e2

e3

e4

e5 e6

e7

e8

is the matrix

1 0 0 0 1 0 0 1

1 1 0 0 0 1 1 0

0 1 1 0 0 0 0 0

0 0 1 1 0 1 0 1

0 0 0 1 1 0 1 0

Again you can use a table to get the matrix. List all the vertices as the labels for

the rows and all the edges for the labels of the columns.

3.4. Degree Sequence.

Definition 3.4.1. The degree sequence a graph G with n vertices is the se-
quence (d1, d2, ..., dn), where d1, d2, ..., dn are the degrees of the vertices of G and
d1 ≥ d2 ≥ · · · ≥ dn.

Note that a graph could conceivably have infinitely many vertices. If the vertices
are countable then the degree sequence would be an infinite sequence. If the vertices
are not countable, then this degree sequence would not be defined.

3.5. Graph Invariants.

Definition 3.5.1. We say a property of graphs is a graph invariant (or, just
invariant) if, whenever a graph G has the property, any graph isomorphic to G also
has the property.

Theorem 3.5.1. The following are invariants of a graph G:

3. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 199

(1) G has r vertices.
(2) G has s edges.
(3) G has degree sequence (d1, d2, ..., dn).
(4) G is a bipartite graph.
(5) G contains r complete graphs Kn (as a subgraphs).
(6) G contains r complete bipartite graphs Km,n.
(7) G contains r n-cycles.
(8) G contains r n-wheels.
(9) G contains r n-cubes.

Discussion

Recall from Module 6.1 Introduction to Graphs that two simple graphs G1 =
(V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection

f : V1 → V2

such that vertices u and v in V1 are adjacent in G1 if and only if f(u) and f(v) are
adjacent in G2. If there is such a function, we say f is an isomorphism and we write
G1 ' G2.

It is often easier to determine when two graphs are not isomorphic. This is some-
times made possible by comparing invariants of the two graphs to see if they are
different. The invariants in Theorem 3.5.1 may help us determine fairly quickly in
some examples that two graphs are not isomorphic.

3.6. Example 3.6.1.

Example 3.6.1. Show that the following two graphs are not isomorphic.

1 2

3 4

5 6

87

a b

c d

e f

g h

G G21

The two graphs have the same number of vertices, the same number of edges, and
same degree sequences (3, 3, 3, 3, 2, 2, 2, 2). Perhaps the easiest way to see that they

3. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 200

are not isomorphic is to observe that G2 has only two 4-cycles, whereas G1 has three
4-cycles. In fact, the four vertices of G1 of degree 3 lie in a 4-cycle in G1, but the
four vertices of G2 of degree 3 do not. Either of these two discrepancies is enough to
show that the graphs are not isomorphic.

Another way we could recognize the graphs above are not isomorphic is to consider
the adjacency relationships. Notice in G1 all the vertices of degree 3 are adjacent to
2 vertices of degree 3 and 1 of degree 2. However, in graph G2 all of the vertices
of degree 3 are adjacent to 1 vertex of degree 3 and 2 vertices of degree 3. This
discrepancy indicates the two graphs cannot be isomorphic.

Exercise 3.6.1. Show that the following two graphs are not isomorphic.

1 2

3 4

5 6

87

a b

c d

e f

g h

G G21

3.7. Example .

Example 3.7.1. Determine whether the graphs G1 and G2 are isomorphic.

v1 v2

v3

v4v5

1u 2u

3u

4u

5u

G2
G1

Solution: We go through the following checklist that might tell us immediately if the
two are not isomorphic.

3. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 201

• They have the same number of vertices, 5.
• They have the same number of edges, 8.
• They have the same degree sequence (4, 4, 3, 3, 2).

Since there is no obvious reason to think they are not isomorphic, we try to con-
struct an isomorphism, f . (Note that the above does not tell us there is an isomor-
phism, only that there might be one.)

The only vertex on each that have degree 2 are v3 and u2, so we must have f(v3) =
u2.

Now, since deg(v1) = deg(v5) = deg(u1) = deg(u4), we must have either

• f(v1) = u1 and f(v5) = u4, or
• f(v1) = u4 and f(v5) = u1.

It is possible only one choice would work or both choices may work (or neither
choice may work, which would tell us there is no isomorphism).

We try f(v1) = u1 and f(v5) = u4.

Similarly we have two choices with the remaining vertices and try f(v2) = u3 and
f(v4) = u5. This defines a bijection from the vertices of G1 to the vertices of G2. We
still need to check that adjacent vertices in G1 are mapped to adjacent vertices in G2.
To check this we will look at the adjacency matrices.

The adjacency matrix for G1 (when we list the vertices of G1 by v1, v2, v3, v4, v5)
is

A =

0 1 0 1 1

1 0 1 1 1

0 1 0 1 0

1 1 1 0 1

1 1 0 1 0

We create an adjacency matrix for G2, using the bijection f as follows: since
f(v1) = u1, f(v2) = u3, f(v3) = u2, f(v4) = u5, and f(v5) = u4, we rearrange
the order of the vertices of G2 to u1, u3, u2, u5, u4. With this ordering, the adjacency

3. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 202

matrix for G2 is

B =

0 1 0 1 1

1 0 1 1 1

0 1 0 1 0

1 1 1 0 1

1 1 0 1 0

Since A = B, adjacency is preserved under this bijection. Hence the graphs are
isomorphic.

Discussion

Notice that, trying to establish that the two graphs are isomorphic, it is not enough
to show that they have the same number of vertices, edges, and degree sequence. In
fact, if we knew they were isomorphic and we were asked to prove it, we would proceed
to trying to find a bijection that preserves adjacency. That is, the check list is not
necessary if you already know they are isomorphic. On the other hand, having found
a bijection between two graphs that doesn’t preserve adjacency doesn’t tell us the
graphs are not isomorphic, because some other bijection that would work. If we go
down this path, we would have to show that every bijection fails to preserve adjacency.

The advantage of the checklist is that it will give you a quick and easy way to
show two graphs are not isomorphic if some invariant of the graphs turn out to be
different. If you examine the logic, however, you will see that if two graphs have all
of the same invariants we have listed so far, we still wouldn’t have a proof that they
are isomorphic. Indeed, there is no known list of invariants that can be efficiently
checked to determine when two graphs are isomorphic. The best algorithms known to
date for determining graph isomorphism have exponential complexity (in the number
n of vertices).

Exercise 3.7.1. Determine whether the following two graphs are isomorphic.

3. REPRESENTING GRAPHS AND GRAPH ISOMORPHISM 203

1 2

3 4

a b

c d

G G21

5 6
e f

Exercise 3.7.2. How many different isomorphism (that is, bijections that pre-
serve adjacencies) are possible between the graphs in Example 3.7.1?

Exercise 3.7.3. There are 14 nonisomorphic pseudographs with 3 vertices and 3
edges. Draw all of them.

Exercise 3.7.4. How many nonisomorphic simple graphs with 6 vertices, 5 edges,
and no cycles are there. In other words, how many different simple graphs satisfying
the criteria that it have 6 vertices, 5 edges, and no cycles can be drawn so that no
two of the graphs are isomorphic?

3.8. Proof of Theorem 3.5.1 Part 3 for Finite Simple Graphs.

Proof. Let G1 and G2 be isomorphic finite simple graphs having degree se-
quences. By part 1 of Theorem 3.5.1 the degree sequences of G1 and G2 have the
same number of elements. Let f : V (G1) → V (G2) be an isomorphism and let
v ∈ V (G1). We claim degG1(v) = degG2(f(v)). If we show this, then f defines a
bijection between the vertices of G1 and G2 that maps vertices to vertices of the same
degree. This will imply the degree sequences are the same.

Proof of claim: Suppose degG1(v) = k. Then there are k vertices in G1 adjacent
to v, say u1, u2, . . . , uk. The isomorphism maps each of the vertices to k distinct
vertices adjacent to f(u) in G2 since the isomorphism is a bijection and preserves
adjacency. Thus degG2(f(u)) ≥ k. Suppose degG2(f(u)) > k. Then there would
be a vertex, wk+1 ∈ V (G2), not equal to any of the vertices f(u1), . . . , f(uk), and
adjacent to f(u). Since f is a bijection there is a vertex uk+1 in G1 that is not
equal to any of u1, . . . , uk such that f(uk+1) = wk+1. Since f preserves adjacency we
would have uk+1 and v are adjacent. But this contradicts that degG1(v) = k. Thus
degG2(f(u)) = k = degG1(u) �

Exercise 3.8.1. Prove the first 2 properties listed in Theorem 3.5.1 for finite
simple graphs using only the properties listed before each and the definition of iso-
morphism.

CHAPTER 7

Introduction to Relations

1. Relations and Their Properties

1.1. Definition of a Relation. Definition: A binary relation from a set A
to a set B is a subset

R ⊆ A×B.

If (a, b) ∈ R we say a is related to b by R.

A is the domain of R, and

B is the codomain of R.

If A = B, R is called a binary relation on the set A.

Notation:

• If (a, b) ∈ R, then we write aRb.

• If (a, b) 6∈ R, then we write a 6R b.

Discussion

Notice that a relation is simply a subset of A × B. If (a, b) ∈ R, where R is
some relation from A to B, we think of a as being assigned to b. In these senses
students often associate relations with functions. In fact, a function is a special case
of a relation as you will see in Example 1.2.4. Be warned, however, that a relation
may differ from a function in two possible ways. If R is an arbitrary relation from A
to B, then

• it is possible to have both (a, b) ∈ R and (a, b′) ∈ R, where b′ 6= b; that is,
an element in A could be related to any number of elements of B; or
• it is possible to have some element a in A that is not related to any element

in B at all.

204

1. RELATIONS AND THEIR PROPERTIES 205

Often the relations in our examples do have special properties, but be careful not to
assume that a given relation must have any of these properties.

1.2. Examples.

Example 1.2.1. Let A = {a, b, c} and B = {1, 2, 3, 4}, and let R1 = {(a, 1), (a, 2), (c, 4)}.

Example 1.2.2. Let R2 ⊂ N× N be defined by (m,n) ∈ R2 if and only if m|n.

Example 1.2.3. Let A be the set of all FSU students, and B the set of all courses
offered at FSU. Define R3 as a relation from A to B by (s, c) ∈ R3 if and only if s is
enrolled in c this term.

Discussion

There are many different types of examples of relations. The previous examples
give three very different types of examples. Let’s look a little more closely at these
examples.

Example 1.2.1. This is a completely abstract relation. There is no obvious reason
for a to be related to 1 and 2. It just is. This kind of relation, while not having any
obvious application, is often useful to demonstrate properties of relations.

Example 1.2.2. This relation is one you will see more frequently. The set R2 is
an infinite set, so it is impossible to list all the elements of R2, but here are some
elements of R2:

(2, 6), (4, 8), (5, 5), (5, 0), (6, 0), (6, 18), (2, 18).

Equivalently, we could also write

2R26, 4R28, 5R25, 5R20, 6R20, 6R218, 2R218.

Here are some elements of N× N that are not elements of R2:

(6, 2), (8, 4), (2, 5), (0, 5), (0, 6), (18, 6), (6, 8), (8, 6).

Example 1.2.3. Here is an element of R3: (you, MAD2104).

Example 1.2.4. Let A and B be sets and let f : A→ B be a function. The graph
of f , defined by graph(f) = {(x, f(x))|x ∈ A}, is a relation from A to B.

Notice the previous example illustrates that any function has a relation that is
associated with it. However, not all relations have functions associated with them.

Exercise 1.2.1. Suppose f : R→ R is defined by f(x) = bx/2c.

(1) Find 5 elements of the relation graph(f).

1. RELATIONS AND THEIR PROPERTIES 206

(2) Find 5 elements of R× R that are not in graph(f).

Exercise 1.2.2. Find a relation from R to R that cannot be represented as the
graph of a functions.

Exercise 1.2.3. Let n be a positive integer. How many binary relations are there
on a set A if |A| = n? [Hint: How many elements are there in |A× A|?]

1.3. Directed Graphs.

Definitions 1.3.1.
• A directed graph or a digraph D from A to B is a collection of vertices
V ⊆ A ∪B and a collection of edges R ⊆ A×B.
• If there is an ordered pair e = (x, y) in R then there is an arc or edge from
x to y in D.
• The elements x and y are called the initial and terminal vertices of the

edge e = (x, y), respectively.

Discussion

A digraph can be a useful device for representing a relation, especially if the
relation isn’t “too large” or complicated.

The digraph that represents R1 in Example 1.2.1 is:

a

b

c

1

2

3

4

Discussion

If R is a relation on a set A, we simplify the digraph D representing R by having
only one vertex for each a ∈ A. This results, however, in the possibility of having
loops, that is, edges from a vertex to itself, and having more than one edge joining
distinct vertices (but with opposite orientations).

1. RELATIONS AND THEIR PROPERTIES 207

A digraph for R2 in Example 1.2.2 would be difficult to illustrate (and impossible
to draw completely), since it would require infinitely many vertices and edges. We
could draw a digraph for some finite subset of R2. It is possible to indicate what the
graph of some infinite relations might look like, but this one would be particularly
difficult.

Example 1.3.1. Let R5 be the relation from {0, 1, 2, 3, 4, 5, 6} defined by mR5n if
and only if m ≡ n(mod 3). The digraph that represents R5 is

0

3 6

1

4

2

5

1.4. Inverse Relation.

Definition 1.4.1. Let R be a relation from A to B. Then R−1 = {(b, a)|(a, b) ∈
R} is a relation from B to A.

R−1 is called the inverse of the relation R.

Discussion

The inverse of a relation R is simply the relation obtained by reversing the ordered
pairs of R. The inverse relation is also called the converse relation.

Example 1.4.1. Recall Example 1.2.1 A = {a, b, c} and B = {1, 2, 3, 4} and
R1 = {(a, 1), (a, 2), (c, 4)}. Then R−1 = {(1, a), (2, a), (4, c)}.

Exercise 1.4.1. Recall Example 1.2.4. A and B are sets and f : A → B is a
function. The graph of f , graph(f) = {(x, f(x))|x ∈ A} is a relation from A to B.

(1) What is the inverse of this relation?
(2) Does f have to be invertible for the inverse of this relation to exist?
(3) If f is invertible, find the inverse of the relation graph(f) in terms of the

inverse function f−1.

1. RELATIONS AND THEIR PROPERTIES 208

1.5. Special Properties of Binary Relations.

Definitions 1.5.1. Let A be a set, and let R be a binary relation on A.

(1) R is reflexive if
∀x[(x ∈ A)→ ((x, x) ∈ R)].

(2) R is irreflexive if
∀x[(x ∈ A)→ ((x, x) 6∈ R)].

(3) R is symmetric if
∀x∀y[((x, y) ∈ R)→ ((y, x) ∈ R)].

(4) R is antisymmetric if
∀x∀y[([(x, y) ∈ R] ∧ [(y, x) ∈ R])→ (x = y)].

(5) R is asymmetric if
∀x∀y[((x, y) ∈ R)→ ((y, x) 6∈ R)].

(6) R is transitive if
∀x∀y∀z[([(x, y) ∈ R] ∧ [(y, z) ∈ R])→ ((x, z) ∈ R)].

Discussion

Study the definitions of the definitions of the properties given above. You must
know these properties, be able to recognize whether or not a relation has a particular
property, and be able to prove that a relation has or does not have a particular
property. Notice that the definitions of reflexive and irreflexive relations are not
complementary. In fact, a relation on a set may be neither reflexive nor irreflexive.
The same is true for the symmetric and antisymmetric properties, as well as the
symmetric and asymmetric properties. Some texts use the term antireflexive for
irreflexive.

Exercise 1.5.1. Before reading further, find a relation on the set {a, b, c} that is
neither

(a) reflexive nor irreflexive.
(b) symmetric nor antisymmetric.
(c) symmetric nor asymmetric.

1.6. Examples of Relations and Their Properties.

Example 1.6.1. Suppose A is the set of FSU students and R is the relation given
by aRb if students a and b have the same last name. This relation is. . .

• reflexive
• not irreflexive
• symmetric
• not antisymmetric

1. RELATIONS AND THEIR PROPERTIES 209

• not asymmetric
• transitive

Example 1.6.2. Suppose T is the relation on the set of integers given by xTy if
2x− y = 1. This relation is. . .

• not reflexive
• not irreflexive
• not symmetric
• antisymmetric
• not asymmetric
• not transitive

Example 1.6.3. Suppose A = {a, b, c, d} and R is the relation {(a, a)}. This
relation is. . .

• not reflexive
• not irreflexive
• symmetric
• antisymmetric
• not asymmetric
• transitive

Discussion

The examples above illustrate three rather different relations. Some of the rela-
tions have many of the properties defined on Section 1.5, whereas one has only one
of the property. It is entirely possible to create a relation with none of the properties
given in Section 1.5.

Exercise 1.6.1. Give an example of a relation that does not satisfy any property
given in Section 1.5.

1.7. Proving or Disproving Relations have a Property.

Example 1.7.1. Suppose T is the relation on the set of integers given by xTy if
2x− y = 1. This relation is

• not reflexive

Proof. 2 is an integer and 2 · 2 − 2 = 2 6= 1. This shows that ∀x[x ∈
Z→ (x, x) ∈ T] is not true. �

• not irreflexive

Proof. 1 is an integer and 2 · 1 − 1 = 1. This shows that ∀x[x ∈ Z →
(x, x) 6∈ T] is not true. �

1. RELATIONS AND THEIR PROPERTIES 210

• not symmetric

Proof. Both 2 and 3 are integers, 2 · 2 − 3 = 1, and 2 · 3 − 2 = 4 6= 1.
This shows 2R3, but 3 6R2; that is, ∀x∀y[(x, y) ∈ Z → (y, x) ∈ T] is not
true. �

• antisymmetric

Proof. Let m,n ∈ Z be such that (m,n) ∈ T and (n,m) ∈ T . By the
definition of T , this implies both equations 2m − n = 1 and 2n − m = 1
must hold. We may use the first equation to solve for n, n = 2m − 1, and
substitute this in for n in the second equation to get 2(2m− 1)−m = 1. We
may use this equation to solve for m and we find m = 1. Now solve for n
and we get n = 1.

This shows that the only integers, m and n, such that both equations
2m − n = 1 and 2n − m = 1 hold are m = n = 1. This shows that
∀m∀n[((m,n) ∈ T ∧ (n,m) ∈ T)→ m = n]. �

• not asymmetric

Proof. 1 is an integer such that (1, 1) ∈ T . Thus ∀x∀y[((x, y) ∈ T →
(b, a) 6∈ T] is not true (counterexample is a = b = 1). �

• not transitive

Proof. 2, 3, and 5 are integers such that (2, 3) ∈ T , (3, 5) ∈ T , but
(2, 5) 6∈ T . This shows ∀x∀y∀z[(x, y) ∈ T ∧ (y, z) ∈ T → (x, z) ∈ T] is not
true. �

Example 1.7.2. Recall Example 1.2.2: R2 ⊂ N × N was defined by (m,n) ∈ R2

if and only if m|n.

• reflexive

Proof. Since n|n for all integers, n, we have nR2n for every integer.
This shows R2 is reflexive. �

• not irreflexive

Proof. 1 is an integer and clearly 1R21. This shows R2 is not irreflexive.
(you could use any natural number to show R2 is not irreflexive). �

• not symmetric

Proof. 2 and 4 are natural numbers with 2|4, but 4 6 |2, so 2R24, but
4 6R22. This shows R2 is not reflexive. �

• antisymmetric

Proof. Let n,m ∈ N be such that nR2m and mR2n. By the definition
of R2 this implies n|m and m|n. Hence we must have m = n. This shows R2

is antisymmetric. �

1. RELATIONS AND THEIR PROPERTIES 211

• not asymmetric

Proof. Let m = n be any natural number. Then nR2m and mR2n,
which shows R2 is not asymmetric. (You may use a particular number to
show R2 is not asymmetric. �

• transitive

Proof. Let p, q, r ∈ N and assume pR2q and qR2r. By the definition of
R2 this means p|q and q|r. We have proven in Integers and Division that
this implies p|r, thus pR2r. This shows R2 is transitive. �

Discussion

When proving a relation, R, on a set A has a particular property, the property
must be shown to hold for all possible members of the set. For example, if you wish to
prove that a given relation, R, on A is reflexive, you must take an arbitrary element
x from A and show that xRx. Some properties, such as the symmetric property, are
defined using implications. For example, if you are asked to show that a relation, R,
on A is symmetric, you would suppose that x and y are arbitrary elements of A such
that xRy, and then try to prove that yRx. It is possible that a property defined by
an implication holds vacuously or trivially.

Exercise 1.7.1. Let R be the relation on the set of real numbers given by xRy if
and only if x < y. Prove R is antisymmetric.

When proving R does not have a property, it is enough to give a counterexample.
Recall ¬[∀x∀yP (x, y)]⇔ ∃x∃y¬P (x, y).

Exercise 1.7.2. Prove whether or not each of the properties in Section 1.5 holds
for the relation in Example 1.6.1.

Exercise 1.7.3. Prove whether or not each of the properties in Section 1.5 holds
for the relation in Example 1.6.3.

1.8. Combining Relations. Important Question: Suppose property P is one
of the properties listed in Section 1.5, and suppose R and S are relations on a set A,
each having property P . Then the following questions naturally arise.

(1) Does R (necessarily) have property P?
(2) Does R ∪ S have property P?
(3) Does R ∩ S have property P?
(4) Does R− S have property P?

1. RELATIONS AND THEIR PROPERTIES 212

1.9. Example of Combining Relations.

Example 1.9.1. Let R1 and R2 be transitive relations on a set A. Does it follow
that R1 ∪R2 is transitive?

Solution: No. Here is a counterexample:

A = {1, 2}, R1 = {(1, 2)}, R2 = {(2, 1)}

Therefore, R1 ∪R2 = {(1, 2), (2, 1)}

Notice that R1 and R2 are both transitive (vacuously, since there are no two ele-
ments satisfying the conditions of the property). However R1 ∪ R2 is not transitive.
If it were it would have to have (1, 1) and (2, 2) in R1 ∪R2.

Discussion

Example 1.9.1 gives a counterexample to show that the union of two transitive
relations is not necessarily transitive. Note that you could find an example of two
transitive relations whose union is transitive. However, the question asks if the given
property holds for two relations must it hold for the binary operation of the two
relations. This is a general question and to give the answer “yes” we must know it is
true for every possible pair of relations satisfying the property.

Here is another example:

Example 1.9.2. Suppose R and S are transitive relations on the set A. Is R ∩ S
transitive?

Solution: Yes.

Proof. Assume R and S are both transitive and let (a, b), (b, c) ∈ R ∩ S. Then
(a, b), (b, c) ∈ R and (a, b), (b, c) ∈ S. It is given that both R and S are transitive,
so (a, c) ∈ R and (a, c) ∈ S. Therefore (a, c) ∈ R ∩ S. This shows that for arbitrary
(a, b), (b, c) ∈ R ∩ S we have (a, c) ∈ R ∩ S. Thus R ∩ S is transitive. �

1.10. Composition.

Definitions 1.10.1.
(1) Let

• R1 be a relation from A to B, and
• R2 be a relation from B to C.

1. RELATIONS AND THEIR PROPERTIES 213

Then the composition of R1 with R2, denoted R2 ◦R1, is the relation from
A to C defined by the following property:

(x, z) ∈ R2 ◦R1 if and only if there is a y ∈ B such that (x, y) ∈ R1 and
(y, z) ∈ R2.

(2) Let R be a binary relation on A. Then Rn is defined recursively as follows:
Basis: R1 = R
Recurrence: Rn+1 = Rn ◦R, if n ≥ 1.

Discussion

The composition of two relations can be thought of as a generalization of the
composition of two functions, as the following exercise shows.

Exercise 1.10.1. Prove: If f : A → B and g : B → C are functions, then
graph(g ◦ f) = graph(g) ◦ graph(f).

Exercise 1.10.2. Prove the composition of relations is an associative operation.

Exercise 1.10.3. Let R be a relation on A. Prove Rn ◦ R = R ◦ Rn using the
previous exercise and induction.

Exercise 1.10.4. Prove an ordered pair (x, y) ∈ Rn if and only if, in the digraph
D of R, there is a directed path of length n from x to y.

Notice that if there is no element of B such that (a, b) ∈ R1 and (b, c) ∈ R2 for
some a ∈ A and c ∈ C, then the composition is empty.

1.11. Example of Composition.

Example 1.11.1. Let A = {a, b, c}, B = {1, 2, 3, 4}, and
C = {I, II, III, IV }.

• R1 = {(a, 4), (b, 1)}
• R2 = {(1, II), (1, IV), (2, I)}
• Then R2 ◦R1 = {(b, II), (b, IV)}

Discussion

It can help to consider the following type of diagram when discussing composition
of relations, such as the ones in Example 1.11.1 as shown here.

1. RELATIONS AND THEIR PROPERTIES 214

a

b

c

1

2

3

4

I

II

III

IV

Example 1.11.2. If R and S are transitive binary relations on A, is R ◦ S tran-
sitive?

Solution: No. Here is a counterexample: Let

R = {(1, 2), (3, 4)}, and S = {(2, 3), (4, 1)}.
Then both R and S are transitive (vacuously). However,

R ◦ S = {(2, 4), (4, 2)}
is not transitive. (Why?)

Example 1.11.3. Suppose R is the relation on Z defined by aRb if and only if
a|b. Then R2 = R.

Exercise 1.11.1. Let R be the relation on the set of real numbers given by xRy

if and only if
x

y
= 2.

(1) Describe the relation R2.
(2) Describe the relation Rn.

Exercise 1.11.2. Let P be a property given below and let R and S be relations
on A satisfying property P . When does the relation obtained by combining R and S
using the operation given satisfy property P?

(1) P is the reflexive property.
(a) R ∪ S
(b) R ∩ S
(c) R⊕ S
(d) R− S
(e) R ◦ S
(f) R−1

(g) Rn

(2) P is the symmetric property.

1. RELATIONS AND THEIR PROPERTIES 215

(a) R ∪ S
(b) R ∩ S
(c) R⊕ S
(d) R− S
(e) R ◦ S
(f) R−1

(g) Rn

(3) P is the transitive property.
(a) R ∪ S
(b) R ∩ S
(c) R⊕ S
(d) R− S
(e) R ◦ S
(f) R−1

(g) Rn

1.12. Characterization of Transitive Relations.

Theorem 1.12.1. Let R be a binary relation on a set A. R is transitive if and
only if Rn ⊆ R, for n ≥ 1.

Proof. To prove (R transitive)→ (Rn ⊆ R) we assume R is transitive and prove
Rn ⊆ R for n ≥ 1 by induction.

Basis Step, n = 1. R1 = R, so this is obviously true.

Induction Step. Prove Rn ⊆ R→ Rn+1 ⊆ R.

Assume Rn ⊆ R for some n ≥ 1. Suppose (x, y) ∈ Rn+1. By definition Rn+1 =
Rn ◦R, so there must be some a ∈ A such that (x, a) ∈ R and (a, y) ∈ Rn. However,
by the induction hypothesis Rn ⊆ R, so (a, y) ∈ R. R is transitive, though, so
(x, a), (a, y) ∈ R implies (x, y) ∈ R. Since (x, y) was an arbitrary element of Rn+1,
this shows Rn+1 ⊆ R.

Now we must show the other direction : Rn ⊆ R, for n ≥ 1, implies R is transitive.
We prove this directly.

Assume (x, y), (y, z) ∈ R. But by the definition of composition, this implies
(x, z) ∈ R2. But R2 ⊆ R, so (x, z) ∈ R. This shows R is transitive.

�

Discussion

1. RELATIONS AND THEIR PROPERTIES 216

Theorem 1.12.1 gives an important theorem characterizing the transitivity rela-
tion. Notice that, since the statement of the theorem was a property that was to be
proven for all positive integers, induction was a natural choice for the proof.

Exercise 1.12.1. Prove that a relation R on a set A is transitive if and only if
R2 ⊆ R. [Hint: Examine not only the statement, but the proof of Theorem 1.12.1.]

