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2. Integers and Algorithms

2.1. Euclidean Algorithm. Euclidean Algorithm. Suppose a and b are in-
tegers with a > b > 0.

(1) Apply the division algorithm: a = bg+r, 0 < r < b.
(2) Rename b as a and r as b and repeat until r = 0.

The last nonzero remainder is the greatest common divisor of a and b.

The Euclidean Algorithm depends upon the following lemma.
LEMMA 2.1.1. If a = bq + r, then GCD(a,b) = GCD(b,r).

Proor. We will show that if a = bg + r, then an integer d is a common divisor
of a and b if, and only if, d is a common divisor of b and r.

Let d be a common divisor of a and b. Then d|a and d|b. Thus d|(a — bg), which
means d|r, since r = a — bg. Thus d is a common divisor of b and 7.

Now suppose d is a common divisor of b and r. Then d|b and d|r. Thus d|(bq+7),
so d|a. Therefore, d must be a common divisor of a and b.

Thus, the set of common divisors of @ and b are the same as the set of common
divisors of b and r. It follows that d is the greatest common divisor of a and b if and
only if d is the greatest common divisor of b and 7. OJ

Discussion

The fact that the Euclidean algorithm actually gives the greatest common divi-
sor of two integers follows from the division algorithm and the equality in Lemma
2.1.1. Applying the division algorithm repeatedly as indicated yields a sequence of
remainders r; > 19 > -+ > 1, >0 =1r,41, where r; < b. Lemma 2.1.1 says that

GCD(a,b) = GCD(b, 1) = GCD(r1,73) = - -+ = GCD(ry—1,75,).
But, since 7,1 = 0, r, divides r,_1, so that
GCD(rp_1,7) = Tn-
Thus, the last nonzero remainder is the greatest common divisor of a and b.

ExAMPLE 2.1.1. Find GCD (1517, 56).



2. INTEGERS AND ALGORITHMS 156

1317 = 56(23) + 29
56 = 29(1) + 27
20 =27(1) +2
27 =2(13) + 1

2 =1(2)+0

GCD (1317,56)=1

Example 2.1.1 shows how to apply the Euclidean algorithm. Notice that when
you proceed from one step to the next you make the new dividend the old divisor
(replace a with b) and the new divisor becomes the old remainder (replace b with
r). Recall that you can find the quotient ¢ by dividing b into a on your calculator
and rounding down to the nearest integer. (That is, ¢ = |a/b].) You can then solve
for r. Alternatively, if your calculator has a mod operation, then r = mod(a,b)
and ¢ = (a — r)/b. Since you only need to know the remainders to find the greatest
common divisor, you can proceed to find them recursively as follows:

Basis. r1 = amod b, o = bmod ry.

Recursion. ri 1 = 11 mod 7y, for k£ > 2. (Continue until r,,,1 = 0 for some n. )

2.2. GCD’s and Linear Combinations.
THEOREM 2.2.1. If d = GCD(a,b), then there are integers s and t such that
d = as + bt.

Moreover, d is the smallest positive integer that can be expressed this way.

Discussion

Theorem 2.2.1 gives one of the most useful characterizations of the greatest com-
mon divisor of two integers. Given integers a and b, the expression as + bt, where s
and t are also integers, is called a linear combination of a and b.

EXERCISE 2.2.1. Prove that if a,b,s,t, and d are integers such that d|a and d|b,
then d|(as + bt).

The Euclidean Algorithm can, in fact, be used to provide the representation of
the greatest common divisor of @ and b as a linear combination of a and b. Here is
how it would work for the example in Example 2.1.1.
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EXAMPLE 2.2.1. Express 1 = GCD(1317,56) as a linear combination of 1317 and
56.

Solution: We work backwards using the equations derived by applying the Fuclidean
algorithm in example 2.1.1, expressing each remainder as a linear combination of the
associated divisor and dividend:

1 =27-13-2 linear combination of 2 and 27

1 =27-13(29 —-27-1) substitute 2 = 29 — 27(1)

1 =14-27—-13-29 linear combination of 27 and 29

1 =14(56 —1-29) —13-29 substitute 27 = 56 — 1 - 29

1 =14-56—27-29 linear combination of 29 and 56

1 =14-56 —27(1317 — 23 - 56) substitute 29 = 1317 — 23 - 56

1 =635-56—27-1317 linear combination of 56 and 1317

(The dividends, divisors, and remainders have been underlined.)
So GCD(1317,56) = 1 = 1317(—27) 4 56(635).

Theorem 2.2.1 can be proved by mathematical induction following the idea in the
preceding example.

Proof of Theorem 2.2.1. Suppose a and b are integers. We may assume a and
b are positive, since GCD(a,b) = GCD(%a, +b). The Euclidean algorithm uses the
division algorithm to produce a sequence of quotients and remainders as follows:

a =bg +r
b =riqg+ 1o
Ty =Tq3+ T3
Tn—2 = Tp-14n + 7y,
Tn—1 = TnGnt1 +0

where 7, is the last nonzero remainder. We will use the second principle of mathe-
matical induction to prove that r; is a linear combination of a and b for 1 < k < n.

1. Basis Step (k=1). 11 =a —bg1 = a(1) + b(—q1).
2. Induction Step. Suppose 7; is a linear combination of a and b for 1 < ¢ < k. For
1 <k <n we have

Tk+1 = Tk—1 — Tkqk+1
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(where rg = b when k£ = 1). By the inductive hypothesis ry_; and 7 are linear
combinations of @ and b. (This works for & = 1, since rg = b is trivially a linear
combination of a and b.) Write

TL,_1 = as; + btl
and
rL = asSq + bty

for integers s1,tq, s9, t2, and substitute into the equation above:

Tht1 = (as1 + bty) — (asy + bta)qry1 = a(s1 — Saqr+1) + b(t — togit1).

Thus, rgy1 is a linear combination of a and b. By the second principle of math-
ematical induction, 7, is a linear combination of @ and b. But r, is the greatest
common divisor of @ and b. This proves the first part of the theorem.

Next, we show that d is the smallest positive integer expressible as a linear combi-
nation of @ and b. Suppose a positive integer ¢ can be expressed as a linear combination
of a and b:

c=axr+ by
for integers = and y. Since d|a and d|b, then d|c, which implies d < c. O

Here is an alternative proof of Theorem 2.2.1 that does not use the Euclidean
algorithm.

Second proof of Theorem 2.2.1. Let S be the set of all positive integers that
can be expressed as a linear combination of the positive integers a and b. Clearly
S # (), since a,b € S. By the well-ordering principle S has a least element d. We will
prove by contradiction that d|a and d|b.

If d fa, then use the division algorithm to get integers ¢ and r such that
a=dq+r,

where 0 < r < d. Since both a and d are linear combinations of a and b, then
r = a — dq is also. But this means that r € S, contradicting the fact that d is the
smallest member of S.

Similarly, one shows that d|b.

If ¢ is a divisor of a and b, then ¢ divides any linear combination of @ and b; hence,

cld. Thus, d = GCD(a,b). O

EXERCISE 2.2.2. Prove that if p s a prime number and n is an integer that is not
divisible by p, then there are integers s and t such that ps +nt = 1. [First show that
GCD(p,n) =1.]
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EXERCISE 2.2.3. Prove that if 1 is a linear combination of a and b, then GCD(a,b) =

2.3. Uniqueness of Prime Factorization.

LEmMA 2.3.1. If GCD(a,b) =1 and albc, then alc.

PROOF. Assume GCD(a,b) = 1 and albc. Write 1 = as + bt for integers s and ¢.
Multiply both sides by c:
¢ = acs + bet.

Since albc, a divides this linear combination
a(es) + (be)t = ¢

of a and be.

U

THEOREM 2.3.1. Suppose a and b are integers and p is a prime number. If p|ab,
then pla or plb.

PrOOF. We will prove the equivalent statement: if p|ab and p [ a, then p|b. (You
should convince yourself that the two propositional forms P — (Q V R) and (P A
—(Q)) — R are equivalent.)

Suppose plab and p fa. Then GCD(p,a) = 1. By the Lemma 1, plb. O

Discussion

Theorem 2.3.1 is very useful in deciding how prime factors are distributed in a
product of two integers. For example, we gave an indirect proof in Module 3.2 that
if the product of two integers x and y is even, then either z is even or y is even. As
we hinted there, a direct proof is possible, and Theorem 2.3.1 provides just the right
information to make it work.

EXERCISE 2.3.1. Use Theorem 2.3.1 to give a direct proof that if the product of
two integers x and y is even, then either x is even or y is even.

EXERCISE 2.3.2. Use mathematical induction to prove the following generalization
of Theorem 2.3.1. Suppose aq,as,...,a, are integers and p is a prime number. If
plaias - - - ay,, then pla; for some i = 1,2,...,n. [Hint: The induction step has two
cases.|

EXERCISE 2.3.3. Use Lemma 2.53.1 to prove that if k, £, and m are positive integers
such that klm, €|m, and k and ¢ are relatively prime, then the product kf|m.
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EXERCISE 2.3.4. Suppose a and b are positive integers, d = GCD(a,b), a = dk,
and b = dl. Prove that k and (¢ are relatively prime. [Hint: Show that 1 can be
expressed as a linear combination of k and £.]

We can now give a proof of Theorem 6 of Module 5.1 Integers and Division: If a
and b are positive integers, then ab = GCD(a, b) - LCM(a, b).

Proof of Theorem 6, Module 5.1. Let d = GCD(a,b). Write a = dk, b = d/,
where k£ and ¢ are positive integers, which, by Exercise 2.3.4, are relatively prime.
Then

ab = (dk)(d¢) = d - (ktd) = GCD(a, b) - (ktd).

We will succeed once we show that kfd = LCM(a,b). We will prove this by contra-
diction.

Suppose m = LCM(a,b) and m < kfd. Observe that kld = (dk){ = al and
ktd = (dl)k = bk. That is, both a and b divide kfd; hence, their least common

multiple m does also.

Since k|a and £|b, k and ¢ both divide m; hence, by Exercise 2.3.3, the product
klim.

[Aside: We also know that d divides m, so it is tempting to assert
that k4d also divides m. But we can’t use Exercise 2.3.3 to conclude
this, since d may not be relatively prime to either k or ¢. Can you
give an example where d divides both k and ¢7]

Thus m = klx for some positive integer z, and x < d, by hypothesis. Since m|k/d,
x|d. Write d = xy, where y is an integer > 1. Now:

a = dk = xyk|m = klz, so y|L.
b=dl = zyllm = klx, so ylk.

This implies that k£ and ¢ are not relatively prime, since y > 1. Thus, the assump-
tion m < kfd is false, and so m = kld. O

This generalization of Theorem 2.3.1 can be used to prove the uniqueness of prime
factorizations asserted in the Fundamental Theorem of Arithmetic (Module 5.1): If
n is a positive integer greater than 1, then n can be written uniquely as a product of
prime numbers where the factors appear in nondecreasing order.
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Proof of uniqueness of prime factorization. We have already shown that we
can write any integer n > 1 as a product
n=pip2 - Pk,

where each p; is prime. By reordering the factors, if necessary, we can always assume
that

p1<p2 <0 < pg.
We will prove by induction on k that if an integer n > 1 has a factorization into k
primes, k > 1, then the factorization is unique.

1. Basis Step (k = 1). In this case n = p; is prime, and so it has no other factorization
into primes.

2. Induction Step. Assume that every integer that can be factored into k primes has
a unique factorization. Suppose
n = PpiP2 - ** PkPk+1;

where each p; is prime and

P1<p2 < - <pp < Piy1-

Suppose n has another prime factorization

n = q1q2 " - gy,
where each ¢; is prime (possibly, ¢ # k + 1) and
G <q << q.
By the generalization of Theorem 2.3.1 in Exercise 2.3.2, since pi|n = ¢1¢2 - - - qv,
then p;|g; for some j. But g; is also prime, so
P1=q; = qi-
On the other hand, since ¢1|pips - - - prPr+1, then ¢|p; for some i, and since p; is
prime,
q1 = pi = P1-
But if p; > ¢; and ¢; > py, then p; = ¢;. Thus we can cancel the first factor from
both sides of the equation
P1D2 - - PkPk+1 = G192 - qe
to get
P2 PkPk+1 = G2 - qe.
The integer on the left-hand side of this equation has a prime factorization using
k primes. By the induction hypothesis, this factorization is unique. This means
that / =k + 1 and
P2 = 42, P3 = (43, -+ Pk+1 = qk+1-

Thus, p; = ¢; for 1 <17 < k+ 1, and the factorization of n is unique.
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By the first principle of mathematical induction, every integer greater than one
has a unique prime factorization. ([l



