
MAD 3105 PRACTICE TEST 2 SOLUTIONS

1. Let R be the relation defined below. Determine which properties, reflexive, ir-
reflexive, symmetric, antisymmetric, transitive, the relation satisfies. Prove each
answer.
(a) R is the relation on a set of all people given by two people a and b are such

that (a, b) ∈ R if and only if a and b are enrolled in the same course at FSU.
reflexive: Yes. Each person is in the same class with themselves.
irreflexive: No. See the previous.
symmetric: Yes, if a and b are enrolled in the same course, then b and a

are enrolled in the same course.
antisymmetric: No. Choose any two different people enrolled in this

course. This provides a counterexample.
transitive: No. Person a and b may be enrolled in one course, and person

c may be enrolled in a course with b, but different from the first course.
This situation provides a counterexample.

(b) R is the relation on {a, b, c}, R = {(a, b), (b, a), (b, b), (c, c)}
reflexive: No. (a, a) is not in R.
irreflexive: No. (b, b) is in R.
symmetric: Yes. For each pair (x, y) ∈ R you can check that the pair

(y, x) ∈ R.
antisymmetric: No. (a, b), (b, a) ∈ R and a 6= b.
transitive: No. (a, b), (b, a) ∈ R, but (a, a) 6∈ R.

(c) R is the relation on the set of positive integers given by mRn if and only if
gcd(m,n) > 1.

reflexive: No. gcd(1, 1) = 1 6> 1, so (1, 1) 6∈ R.
irreflexive: No. gcd(2, 2) = 2 > 1, so (2, 2) ∈ R.
symmetric: Yes. gcd(m, n) = gdc(n,m), so if gcd(m, n) > 1 then gcd(n, m) >

1.
antisymmetric: No. gcd(4, 2) = gcd(2, 4) = 2 > 1 so (2, 4), (4, 2) ∈ R.

But 2 6= 4.
transitive: No. gcd(2, 6) = 2 > 1 and gcd(6, 3) = 3 > 1, so (2, 6), (6, 3) ∈

R. But gcd(2, 3) = 1 6> 1 so (2, 3) 6∈ R.
(d) R is the relation on the set of positive real numbers given by xRy if and only

if x/y is a rational number.
reflexive: Yes. For every positive real number x, x/x = 1 which is ratio-

nal. So (x, x) ∈ R for every x ∈ R+.
irreflexive: No. See previous.
symmetric: Yes. Since the reciprocal of a rational number is rational we

have x/y ∈ Q implies y/x ∈ Q. Thus (x, y) ∈ R implies (y, x) ∈ R.
1
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antisymmetric: No. Consider for example, 2/3, 3/2 ∈ Q but 2 6= 3.
transitive: Yes. Assume (x, y), (y, z) ∈ R. Then x/y, y/z ∈ Q. Now,

x/z = (x/y) · (y/z). Since the product of 2 rational numbers is rational
(see text p. 75 problem 26), we have x/z ∈ Q. Thus (x, z) ∈ R.

(e) Let f : R → R be the function f(x) = bxc. Define the relation R on the set
of real numbers by R = graph(f).

reflexive: No. Consider, for example, 1.5 ∈ R, but (1.5, 1.5) 6∈ R since
f(1.5) equals 1 not 1.5.

irreflexive: No. f(1) = 1, so (1, 1) ∈ R.
symmetric: No. f(1.5) = 1 but f(1) = 1 6= 1.5, so (1.5, 1) ∈ R, but

(1, 1.5) 6∈ R.
antisymmetric: Yes. Notice that if (x, y), (y, x) ∈ R, then both x and

y are in the range. The range of this function is the set of integers,
so both x and y are integers. But the floor function maps integers to
themselves, so y = f(x) = x.

transitive: Yes. Suppose (x, y), (y, z) ∈ R. Then f(x) = y and f(y) = z.
Notice this means y is in the range and so is an integer. Thus z =
f(y) = y. Now this tells us (x, z) = (x, y) which we know is in R.

(f) Let f : R → R be the function f(x) = bxc. Define the relation R on the set
of real numbers by aRb iff f(a) = f(b).

reflexive: Yes. For any real number, x, we have f(x) = f(x), so (x, x) ∈
R.

irreflexive: No. See previous.
symmetric: Yes. For any pair of real numbers, x and y, if (x, y) ∈ R

then f(x) = f(y). But equality is symmetric, so f(y) = f(x) and so
(y, x) ∈ R.

antisymmetric: No. Take, for example, (1.5, 1), (1, 1.5) ∈ R but 1.5 6= 1.
transitive: Yes. For any real numbers, x, y, and z, if (x, y), (y, z) ∈

R then f(x) = f(y) and f(y) = f(z). This implies f(x) = f(z) by
substitution, so (x, z) ∈ R.

2. Let R be the relation R = {(a, c), (b, b), (b, c), (c, a)} and S the relation S =
{(a, a), (a, b), (b, c), (c, a)} is a relation on A = {a, b, c}.
(a) R2 = {(a, a), (b, a), (b, b), (b, c), (c, c)}.
(b) S ◦R = {(a, a), (b, a), (b, c), (c, a), (c, b)}.
(c) R−1 = {(c, a), (b, b), (c, b), (a, c)}

3. The matrix below is the matrix for a relation.


0 1 0 0
0 1 1 0
1 0 1 1
0 1 1 0


(a) The relation does not satisfy any of the properties.
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(b) 
0 0 1 0
1 1 0 1
0 1 1 1
0 0 1 0


(c) 

0 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1


(d) 

1 1 0 0
0 1 1 0
1 0 1 1
0 1 1 1


(e) 

0 1 1 0
1 1 1 1
1 1 1 1
0 1 1 0


(f) 

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


4. Suppose R is a relation on A. Using composition is associative and mathematical

induction, prove that Rn ◦R = R ◦Rn .
Basis: R1 ◦R = R ◦R = R ◦R1 is clear.
Induction Step: Let k ∈ Z+ and assume Rk ◦ R = R ◦ Rk. Prove Rk+1 ◦ R =

R ◦Rk+1.
Rk+1 ◦R = (Rk ◦R) ◦R by the definition of Rk+1

= (R ◦Rk) ◦R by the induction hypothesis
= R ◦ (Rk ◦R) since composition is associative
= R ◦Rk+1 by the definition of Rk+1.

5. This is Theorem 1 on page 479 in the text.
6. Let A be a set and let R and S be relations on A. If R and S satisfy the property

given, does the relation given have to satisfy the same property? Prove or disprove
each answer.
(a) R ∪ S is reflexive: Let a ∈ A. Since R is reflexive, (a, a) ∈ R. Thus (a, a) ∈

R ∪ S which shows R ∪ S is reflexive.
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(b) R−1 is reflexive. Let a ∈ A. Since R is reflexive, (a, a) ∈ R. Thus (a, a) is
also in R since reversing the order of the elements in this ordered pair gives
you the same ordered pair back.

(c) Let (x, y) ∈ t(R). Recall t(R) = ∪∞k=1R
k, so (x, y) ∈ Rk for some integer k.

We claim Rk is symmetric for all positive integers k. If this is true, then we
have (y, x) ∈ Rk ⊆ t(R) which proves t(R) is symmetric.
Now we show Rk is symmetric if R is by induction on k.

Basis: R1 = R. Since R is symmetric, this is clear.
Induction Step: Let k be a positive integer and assume Rk is symmetric.

Prove Rk+1 is symmetric. Let (a, b) ∈ Rk+1 = R ◦ Rk. Then there is
a c ∈ A such that (a, c) ∈ Rk and (c, b) ∈ R. Since R and Rk are
symmetric, (c, a) ∈ Rk and (b, c) ∈ R. Thus (b, a) ∈ Rk ◦ R = Rk+1.
Therefore Rk+1 is symmetric.

(d) R◦S is not necessarily symmetric: Consider the case where A = {a, b, c}, R =
{(a, b), (b, a)}, and S = {(b, c), (c, b)}. Then (c, a) ∈ R ◦ S, but (a, c) 6∈ R ◦ S.

(e) R ⊕ S is not necessarily antisymmetric: Let A = {a, b}. The relations R =
{(a, b)} and S = {(b, a)} are antisymmetric, but R⊕S = {(a, b), (b, a)} is not
antisymmetric. (to disprove the property must hold true, a counter example
is sufficient. An example does not prove a property must hold for all possible
relations.)

(f) Rn for any positive integer n is not necessarily antisymmetric: Let A =
{a, b, c, d} and let R = {(a, b), (b, c), (c, d), (d, a)}. Then R is antisymmetric
(vacuously). R2 = {(a, c), (c, a), (b, d), (d, b)} which is not antisymmetric.

(g) r(R) is transitive: Let (x, y), (y, z) ∈ r(R) = ∆ ∪ R. Then x = y or y = z
or (x, y), (y, z) ∈ R. If x = y then (x, z) = (y, z) ∈ r(R). If y = z then
(x, y) = (x, z) ∈ r(R). If (x, y), (y, z) ∈ R then (x, z) ∈ R ⊆ r(R) since R is
transitive. This shows r(R) is transitive.

(h) R−1 is transitive: Let a, b, c ∈ A be such that (a, b), (b, c) ∈ R−1. Then
(b, a), (c, b) ∈ R. Since R is transitive, (c, a) ∈ R. Thus (a, c) ∈ R−1 which
shows R−1 is transitive if R is.

7. Proof. (x, y) ∈ (R2 ◦R1)
−1

⇔ (y, x) ∈ (R2 ◦R1)
⇔ ∃t ∈ T (y, t) ∈ R1 and (t, x) ∈ R2

⇔ ∃t ∈ T (t, y) ∈ R−1
1 and (x, t) ∈ R−1

2

⇔ (x, y) ∈ (R−1
1 ◦R−1

2 )
This shows (R2 ◦R1)

−1 = R−1
1 ◦R−1

2 . �
8. Let A = {1, 2, 3, 4, 5} and let R1 be the relation give by (n,m) ∈ R1 iff n ≡

m(mod 3).
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(a) 
1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
1 0 0 1 0
0 1 0 0 1


(b) Draw 5 vertices and label them 1, 2, 3, 4, 5. Add a directed loop to each

vertex. Add a directed edge from 1 to 4 and from 4 to 1. Add a directed edge
from 2 to 5 and from 5 to 2.

9. True or false, prove or disprove: If R and S are relations on A, then
(a) True: (R ∩ S) ∪∆ = (R ∪∆) ∩ (S ∪∆), where ∆ = {(a, a)|a ∈ A}.
(b) False: ∆ 6⊆ r(R)− r(S) since ∆ ⊆ r(S)
(c) True: (R∪S)−1 = R−1∪S−1, so (R∪S)∪ (R∪S)−1 = (R∪R−1)∪ (S ∪S−1).
(d) False: Consider A = {a, b} and R = {(a, b)}. Then s(R) = {(a, b), (b, a)},

s(R)2 = {(a, a), (b, b)}, R2 = ∅, and s(R2) = ∅.
(e) True: To prove we need to show ∪∞n=1(R

−1)n = (∪∞n=1R
n)−1. We will use the

property: (R−1)n = (Rn)−1 for any positive integer n, which we prove below.
(x, y) ∈ ∪∞n=1(R

−1)n

⇔ (x, y) ∈ (R−1)n for some positive integer n
⇔ (x, y) ∈ (Rn)−1 for some positive integer n
⇔ (y, x) ∈ (Rn) for some positive integer n
⇔ (y, x) ∈ ∪∞n=1(R

n)
⇔ (x, y) ∈ (∪∞n=1(R

n))−1

Proof that (R−1)n = (Rn)−1 for any positive integer n, by induction on n:
Basis: Clearly (R−1)1 = (R1)−1, since S1 = S for any relation S.
Induction Hypothesis: Let n be a positive integer and assume (R−1)n =

(Rn)−1.
Induction Step: Prove (R−1)n+1 = (Rn+1)−1

(x, y) ∈ (R−1)n+1

⇔ ∃c ∈ A with (x, c) ∈ (R−1)n and (c, y) ∈ R−1

⇔ ∃c ∈ A with (x, c) ∈ (Rn)−1 and (c, y) ∈ R−1,
by the induction hypothesis

⇔ ∃c ∈ A with (c, x) ∈ (Rn) and (y, c) ∈ R
⇔ (y, x) ∈ (Rn+1)
⇔ (x, y) ∈ (Rn+1)−1

(f) False: ∪∞n=1(R ◦ S)n is not necessarily equal to (∪∞n=1R
n) ◦ (∪∞n=1S

n). This is
easier to see if you write out the union using ellipses.

10. Let R be the relation on the set of all integers given by nRm if and only if nm < 0.
(a) (m, n) ∈ r(R) if and only if nm < 0 or m = n.
(b) (m, n) ∈ s(R) if and only if nm < 0.
(c) (m, n) ∈ t(R) if and only if m 6= 0 and n 6= 0. (there are other equivalent

ways to define this set)
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11. Let A be a set and let R and S be relations on A. If R and S satisfy the property
given, does the relation given have to satisfy the same property? Prove or disprove
each answer.
(a) R − S is not an equivalence relation: Since both R and S are reflexive, they

both contain ∆ = {(a, a)|a ∈ A}, so R − S does not contain ∆ and so is not
reflexive.

(b) Rn for any positive integer n is an equivalence relation: Proof by induction
on n.

Basis: R1 is an equivalence relation by our original assumption.
Induction Hypothesis: Let n be a positive integer and assume Rn is an

equivalence relation.
Induction Step: Prove Rn+1 is an equivalence relation.

Reflexive: Let a ∈ A. Since R and Rn are reflexive, (a, a) ∈ R and
(a, a) ∈ Rn. Thus (a, a) ∈ Rn+1 = Rn ◦R.

Symmetric: Let a, b ∈ A be such that (a, b) ∈ Rn+1 = Rn ◦R. Then
there is a t ∈ A such that (a, t) ∈ R and (t, b) ∈ Rn. Now, since
both R and Rn are symmetric, (t, a) ∈ R and (b, t) ∈ Rn. Thus
(b, a) ∈ R ◦Rn = Rn+1.

Transitive: Let a, b, c ∈ A be such that (a, b), (b, c) ∈ Rn+1 = Rn◦R.
Then there are s, t ∈ A such that (a, s), (b, t) ∈ R and (s, b), (t, c) ∈
Rn. Since R is transitive, Rn ⊆ R, so (s, b) ∈ R. Since R is
transitive and (a, s), (s, b), (b, t) ∈ R, we get (a, t) ∈ R. Thus since
(a, t) ∈ R and (t, c) ∈ Rn we find (a, c) ∈ Rn ◦R = Rn+1.

(c) R ◦S is not necessarily a partial order. This is not necessarily antisymmetric,
nor transitive. Counterexample: Define R on the set of integers by ≤ and
define S on the set of integers by ≥. Then R ◦ S is not antisymmetric.

(d) R ⊕ S is not a Partial Order: Since both R and S are partial orders, ∆ =
{(a, a)|a ∈ A}, is contained in both R and S. Thus R ⊕ S does not contain
∆, and so R⊕ S cannot be reflexive.

12. Which of the following relations are equivalence relations, which are partial orders,
and which are neither? For the relations that are equivalence relations find the
equivalence classes. For the ones that are neither equivalence relations nor partial
orders name the property(ies) that fails.
(a) The relation R on the set of Computer Science majors at FSU where aRb iff

a and b are currently enrolled in the same course.
This relation is not necessarily transitive, so not an equivalence relation nor
a partial order.

(b) The relation R on the set of integers where (m, n) ∈ R if and only if mn ≡
2(mod 2).
Neither: Not reflexive nor transitive.

(c) The relation R on the set of ordered pairs of integers where (a, b)R(c, d) iff
a = c or b = d
Neither: Not transitive
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(d) Let f : R → R be the function defined by f(x) = dxe. Define the relation R
on R by (x, y) ∈ R if and only if f(x) = f(y).
Equivalence Relation: Equivalence classes are of the form (n, n + 1] where
n ∈ Z

(e) The relation R on the set of all subsets of {1, 2, 3, 4} where SRT means S ⊆ T
Partial Order

(f) The relation R on the set of positive integers where (m, n) ∈ R if and only if
gcd(m, n) = max{m, n}.
Equivalence Relation. The equvalence classes are of the form [m] = {m},
since the only integer related to m using this relation is m.

(g) Let G = (V, E) be a simple graph. Let R be the relation on V consisting of
pairs of vertices (u, v) such that there is a path from u to v or such that u = v.
Equivalence Relation. The equivalence class of a vertex v consists of all the
vertices (including v) in the same component as v.

(h) The relation R on the set of ordered pairs Z+×Z+ of positive integers defined
by

(a, b)R(c, d) ⇔ a + d = b + c.

Equivalence Relation. [(a, b)] = {(c, d)|a− b = c− d}
13. Let R be the relation on the set of ordered pairs of positive integers such that

(a, b)R(c, d) if and only if ad = bc.
(a) Prove R is an equivalence relation.

Proof. Reflexive: Let (a, b) ∈ Z+×Z+. Since ab = ba, we have (a, b)R(a, b).
Symmetric: Let (a, b)R(c, d). Then ad = bc. But this implies cb = da so

(c, d)R(a, b).
Transitive: Let (a, b)R(c, d) and (c, d)R(e, f). Then ad = bc and cf = de.

If we take the first equation and multiply through by f we get adf = bcf .
Then using the second equation we substitute for cf to get adf = bde.
Thus d(af − be) = 0. Since the integers are all positive we know d 6= 0
and so af = be. Therefore (a, b)R(e, f).

�

(b) Find the equivalence class of (a, b) where (a, b) ∈ Z+×Z+: [(a, b)] = {(c, d)|ad =
bc} = {(c, d)| the rational numbers a/b and c/d are equal }.

14. This is example 3.2.1 in Equivalence Relations
15. Suppose A = {2, 4, 5, 6, 7, 10, 18, 20, 24, 25} and R is the partial order relation

(x, y) ∈ R iff x|y.
(a) Draw the Hasse diagram for the relation.

2 5

4 10 256

18 24 20

7
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(b) Find all minimal elements.
2, 5, and 7

(c) Find all maximal elements.
7, 18, 24, 20, and 25

(d) Find all upper bounds for {6}.
6, 18, and 24

(e) Find all lower bounds for {6}.
6 and 2

(f) Find the least upper bound for {6}.
6

(g) Find the greatest lower bound for {6}.
6

(h) Find the least element.
none

(i) Find the greatest element.
none

(j) Is this a lattice?
no

16. Suppose A = {2, 3, 4, 5} has the usual “less than or equal” order on integers. Find
each of the following for the case where R is the lexicographic partial order relation
on A× A and where R is the product partial order relation on A× A.

Lexicographic Order: (a) Draw the Hasse diagram for the relation.

(2,2)

(2,3)

(2,4)

(2,5)

(3,2)

(3,3)

(3,4)

(3,5)

(4,2)

(4,3)

(4,4)

(4,5)

(5,2)

(5,3)

(5,4)

(5,5)

(b) Find all minimal elements.
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(2, 2)
(c) Find all maximal elements.

(5, 5)
(d) Find all upper bounds for {(2, 3), (3, 2)}.

(3, 2), (3, 3), (3, 4), (3, 5), (4, 2), (4, 3), (4, 4), (4, 5), (5, 2), (5, 3), (5, 4), (5, 5)
(e) Find all lower bounds for {(2, 3), (3, 2)}.

(2, 3), (2, 2)
(f) Find the least upper bound for {(2, 3), (3, 2)}.

(3, 2)
(g) Find the greatest lower bound for {(2, 3), (3, 2)}.

(2, 3)
(h) Find the least element.

(2, 2)
(i) Find the greatest element.

(5, 5)
(j) Is this a lattice?

Yes.
Product Order: (a) Draw the Hasse diagram for the relation.

(2,2)

(2,3)

(2,4)

(2,5)

(3,2)

(3,3)

(3,4)

(3,5)

(4,2)

(4,3)

(4,4)

(4,5)

(5,2)

(5,3)

(5,4)

(5,5)

(b) Find all minimal elements.
(2, 2)

(c) Find all maximal elements.
(5, 5)

(d) Find all upper bounds for {(2, 3), (3, 2)}.
(3, 3), (3, 4), (3, 5), (4, 3), (4, 4), (4, 5), (5, 3), (5, 4), (5, 5)

(e) Find all lower bounds for {(2, 3), (3, 2)}.
(2, 2)

(f) Find the least upper bound for {(2, 3), (3, 2)}.
(3, 3)
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(g) Find the greatest lower bound for {(2, 3), (3, 2)}.
(2, 2)

(h) Find the least element.
(2, 2)

(i) Find the greatest element.
(5, 5)

(j) Is this a lattice?
Yes

17. Carefully prove the following relations are partial orders.
(a) Recall the product order: Let (A1,�1) and (A2,�2) be posets. Define the

relation � on A1 × A2 by (a1, a2) � (b1, b2) if and only if a1 �1 b1 and
a2 �2 b2. Prove the product order is a partial order.

Proof. Reflexive: Let (a, b) ∈ A1×A2. Since �1 and �2 are partial order,
a �1 a and b �2 b. Therefore (a, b) � (a, b).

Antisymmetric: Let (a1, a2), (b1, b2) ∈ A1 × A2 and assume (a1, a2) �
(b1, b2) and (b1, b2) � (a1, a2). Then a1 �1 b1, a2 �2 b2, b1 �2 a1, and
b2 �2 a2. Since both �1 and �2 are partial orders, a1 = b1 and a2 = b2.
This shows (a1, a2) = (b1, b2).

Transitive: (a1, a2), (b1, b2), (c1, c2) ∈ A1 × A2 and assume (a1, a2) �
(b1, b2) and (b1, b2) � (c1, c2). Then a1 �1 b1, b1 �1 c1, a2 �2 b2 and
b2 �2 c2. Since both �1 and �2 are partial orders, a1 �1 c1 and a2 �2 c2.
This shows (a1, a2) � (c1, c2).

�

(b) Let (B,�B) be a poset and let A be a set. Recall the set FUN(A, B) defined
to be the set of all functions with domain A and codomain B. Prove the
relation �F on FUN(A, B) defined by f �F g iff f(t) �B g(t) ∀t ∈ A is a
partial order.

reflexive: Let f ∈ FUN(A, B). Since �B is a partial order f(x) �B f(x)
for all x ∈ A. Thus f �F f .

antisymmetric: Let f, g ∈ FUN(A, B) be such that f �F g and g �F f .
Then
∀x ∈ A(f(x) �B g(x)) and ∀x ∈ A(g(x) �B f(x)) by the definition of
�F

⇒ ∀x ∈ A[(f(x) �B g(x)) and (g(x) �B f(x))]
⇒ ∀x ∈ Af(x) = g(x) since �B is a partial order
⇒ f = g by the definition of function equality

transitive: Let f, g, h ∈ FUN(A, B) be such that f �F g and g �F h.
⇒ ∀x ∈ A(f(x) �B g(x)) and ∀x ∈ A(g(x) �B h(x)) by the definition
of �F

⇒ ∀x ∈ A[(f(x) �B g(x)) and (g(x) �B h(x))]
⇒ ∀x ∈ A[f(x) �B h(x)] since �B is a partial order
⇒ f �F h by the definition of �F .
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(c) reflexive: Let (a, b) ∈ A × B. Since �A is a partial order a �A a. Thus
(a, b) �L (a, b).

antisymmetric: Suppose (a, b) �L (c, d) and (c, d) �L (a, b).
Then a �A c and c �A a by the definition of �L. Since �A is a partial
order this gives us a = c. Then b �B d and d �B b by the definition
of �L. Thus b = d since �B is a partial order. Thus we now have
(a, b) = (c, d).

transitive: Let (a, b) �L (c, d) and (c, d) �L (e, f). Then a �A c and
c �A e. Since �A is a partial order we get a �A e.
If a 6= e. Then (a, b) �L (e, f) by the definition of �L.
Suppose a = e. Then c must equal a and e as well and so b �B d and
d �B f . Since �B is a partial order we have b �B f .
This shows (a, b) �L (e, f).

18. Suppose (A,�) is a poset such that every nonempty subset of A has a least element.
Let x, y ∈ A. Then {x, y} has a least element which must be x or y. Thus x � y
or y � x. This shows A is a total order.

19. This is Theorem 4.19.1 in Partial Orderings.


