ALGEBRA QUALIFYING EXAM

AUGUST 24, 2001 — 1:00–5:00 PM

Please attempt all six problems.

(1) Let G be a group with normal subgroups of order 3, resp. 5. Show that G has an element of order 15.

(2) Let G be an abelian group.
 (i) Prove that if G is finitely generated, then $G/2G$ is a finite group.
 (ii) Give an example showing that G is not necessarily finitely generated even if $G/2G$ is a finite group.

(3) Let R be a commutative ring with 1, and let a be an ideal of $R[x]$. Let n be the smallest degree of a nonzero element in a, and assume that a contains a monic polynomial of degree n. Prove that a is principal.

(4) (i) Prove that if a, b, and c are elements of a finite field F, and $c = ab$, then at least one of a, b, or c is a square.
 (ii) Is this fact still necessarily true over an infinite field? (proof or counterexample)

(5) Let M be a module over the commutative unitary ring R, and let N be a submodule of M.
 (i) Prove that if N and M/N are finitely generated, then so is M.
 (ii) Prove or disprove the converse of (i).

(6) Let $\mathbb{Z}[x]$ be the ring of polynomials in the indeterminate x over the ring \mathbb{Z} of integers. Let D be the subset of $\mathbb{Z}[x]$ consisting of all polynomials with coefficient of x equal to 0. You may assume without proof that D is an integral domain.
 (i) Prove that D is not a UFD.
 (ii) Prove that the ideal (x^2, x^3) is prime, but not maximal, in D.