
7. Rotations

This lecture is a more formal discussion of orthogonal transformations, the or-
thogonal group O(3), and especially the orientation preserving ones, SO(3), the
rotations.

A matrix is defined to be orthogonal if the entries are real and

(1) A′A = I.

Condition (1) says that the gram matrix of the sequence of vectors formed by the
columns of A is the identity, so the columns are an orthonormal frame.

Condition (1) also shows that A is a rigid motion. A matrix satisfying (1)
preserves the dot product since

Av ·Aw = (Av)
′
Aw = v′A′Aw

= v′Iw = v′w = v ·w.

Thus the dot product of two vectors is the same before and after an orthogonal
transformation. Lengths and angles are also preserved, since they can be written
in terms of dot products.

Orthogonal transformations have determinant ±1 since by (1) and properties of
determinant,

(detA)2 = det(A′) detA

= det(A′A)

= det I = 1.

7.1. The rotation group. If we think of an orthogonal matrix A as a frame

A = (v1,v2,v3),

then the determinant is the scalar triple product

v1 · (v2 × v3).

The frame is right handed if the triple product is 1 and left handed if it is -1. The
frame is the image of the right handed standard frame

(e1, e2, e3) = I

under the rotation given by left multiplication by A. Thus A preserves orientation if
the determinant is 1. The rotation group, denoted SO(3), consists of all orthogonal
transformations with determinant 1.

In two dimensions, every rotation is of the form

(2) R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Note that

R(θ)R(φ) = R(θ + φ) = R(φ)R(θ),

so that rotations in two dimension commute. Rotations in dimension 3 do not
commute.

Matrices for rotation about coordinate axes have a form related to the 2 dimen-
sional rotation matrices:
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Rotation about the x axis

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


Rotation about the y axis

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


Rotation about the z axis

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

The rotations Rz(θ), are exactly the ones that leave the vector e3 = (0, 0, 1)′

fixed and can be identified with rotation in the xy plane. Similarly for Rx and Ry.
The rotations Rx(θ) commute,

Rx(θ)Rx(φ) = Rx(θ + φ)

= Rx(φ)Rx(θ).

Similarly rotations Ry(θ) commute and rotations Rz(θ) commute. In general, how-
ever, rotations in three dimensions do not commute. For example,

Rx(π)Rz(π/2) =

 0 −1 0
−1 0 0
0 0 −1


but

Rz(π/2)Rx(π) =

 0 1 0
1 0 0
0 0 −1

 .

Since SO(3) is a group we can get other rotations by multiplying together
rotations of the form Rx, Ry, and Rz. It can be shown that any rotation A can be
written as a product of three rotations about the y and z axes,

(3) A = Rz(α)Ry(γ)Rz(δ).

The angles α, γ, δ are called Euler angles for the rotation A.

7.2. Rotations and cross products. Rotations are orthogonal transformations
which preserve orientation. This is equivalent to the fact that they preserve the
vector cross product:

(4) A(v ×w) = Av ×Aw,

for all A in SO(3) and v and w in R3. Recall the right hand rule in the definition
of the cross product (fig 1). The cross product is defined in terms of lengths and
angles and right-handedness, all of which remain unchanged after rotation.



3

Figure 1. The geometric definition of the cross product. The
direction of v×w is determined by the right hand rule. The fingers
of the right hand should point from v to w and the thumb in the
direction of the cross-product. The length of the cross product is
|v||w| sin θ .

7.3. Complex form of a rotation. In dimension 2 it is convenient to use complex
numbers to write rotations. Rotation by an angle θ is given by

(5) ζ → eiθζ

where ζ = x + iy. A similar method works in three dimensions for rotation about
the z axis. First perform a change of coordinates. Write

ζ =
1√
2

(x+ iy)

so that x = 1√
2
(ζ + ζ̄) and y = −i√

2
(ζ − ζ̄).

Expressing the rotation Rz(θ) in terms of the new coordinates ζ and we have in
addition to (5), ζ̄ → e−iθ ζ̄ and z → z.

To express this in matrix form let

(6) X =

 x
y
z

 Z =

 ζ
ζ̄
z


and define the matrices

(7) D(θ) =

 eiθ 0 0
0 e−iθ 0
0 0 1

 B =

 1√
2

1√
2

0
−i√
2

i√
2

0

0 0 1


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The eigenvalues of Rz(θ) are the diagonal entries of D(θ) and corresponding eigen-
vectors are given by columns of B. In matrix form,

(8) Rz(θ)B = BD(θ).

Note that B is self-adjoint,

(9) B∗B = I.

This means the eigenvectors are normalized: their hermitian length is 1 and they
are hermitian orthogonal.

Now X = BZ and so B is a frame with complex vectors and Z gives the coordi-
nates of the vector X in the frame B.

Rotation an angle θ about the z axis is given in the new coordinates by Z →
D(θ)Z. So using the coordinates (ζ, ζ̄, z) in 3D space, the matrix for rotation about
the z axis is diagonal.

7.3.1. Hermitian geometry. The use of vectors and matrices with complex entries
can be explained using some definitions from hermitian geometry.

For vectors v and w, the hermitian inner product is defined by

〈v,w〉 = v∗w.

If v and w are real vectors the hermitian inner product is the same as the dot
product. Two vectors are hermitian orthogonal if their hermitian inner product is
0. The length ‖v‖ of a vector v is defined by

‖v‖2 = 〈v,v〉.

For real vectors, this is the same as the usual definition.
A square matrix A is said to be unitary if

A∗A = I.

If the entries of A are real then unitary is the same as orthogonal. The matrix A∗A
is the gram matrix of hermitian inner products of the vectors forming the columns
of A.

Note that in equation (7) the matrices B and D(θ) are unitary and since X =
BZ, the vectors X and Z have the same length.

The following is left as an exercise:
If v and w are eigenvectors of a unitary matrix corresponding to distinct eigen-

values then v∗w = 0.

7.4. Eigenvalues of a rotation. By choosing the correct coordinate frame, any
rotation has the matrix form D(θ). This follows from the fact that

Theorem: The eigenvalues of a rotation are of the form

(10) eiθ, e−iθ, 1

for some angle θ. There are corresponding eigenvectors of the form

(11) (v, v̄,u)

where u is a vector with real coordinates and where (v, v̄,u) is unitary with deter-
minant 1.

It follows that θ is the angle of rotation and the eigenvector u corresponding to
the eigenvalue 1 is along the axis of the rotation.
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First we show that the eigenvalues of an orthogonal matrix have absolute value
1.

To see this, suppose

(12) Av = λv

for a non-zero vector v. Taking the adjoint,

v∗A∗ = λv∗.

Since A is real, A∗ = A′, and multiplying (12) and (7.4) and using the fact that
A′A = I get

v∗v = |λ|2v∗v

and hence

|λ|2 = 1.

Since A is real, if λ is an eigenvalue, so is λ̄ and if v is an eigenvector corre-
sponding to λ, then v̄ is an eigenvector corresponding to λ̄. It follows that the
eigenvalues of an orthogonal matrix A are

±1 λ λ̄

where λ = eiθ. The determinant of A is the product of the eigenvalues, so for
a rotation matrix the first eigenvalue above is 1. There is a real eigenvector u
corresponding to the eigenvalue 1. This is left as an exercise.

Now we show that (v, v̄,u) can be chosen to be unitary. If eiθ 6= ±1 then the
eigenvalues eiθ, e−iθ are distinct and v and v̄ are orthogonal. Dividing the vectors
v and u by their length normalizes so that (v, v̄,u) is unitary. If the determinant
of (v, v̄,u) is −1 then replace θ by −θ and exchange v and v̄. Now the determinant
is 1.

If eiθ = ±1, the eigenvalues eiθ, e−iθ are not distinct, but the result holds. This
is left as an exercise.

Note that the result of the theorem can be written

(13) AF = FD(θ) F = (v, v̄,u) F∗F = I detF = 1

where D(θ) is as in (7).

7.4.1. Axis and angle of rotation. A vector u which is an eigenvector corresponding
to the eigenvalue 1 is called an axis direction for A. The vector u is fixed by A
since Au = u. The angle θ is called the angle of rotation about u. Write

(14) A = R (u, θ)

indicating that the rotation is an angle θ counterclockwise about an axis in the
direction u. The angle is not unique since

(15) R (u, θ) = R (−u,−θ)

but the absolute value of the angle is uniquely determined. The axis line, but not
the direction of the line, is uniquely determined.
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7.5. Properties of rotations. A few of the main properties of rotations are sum-
marized here. In what follows, u is a unit vector and v and w are real vectors, and
A is a rotation,

(16) R (u, θ) = R (−u,−θ)

(17) Av ·Aw = v ·w

(18) Av ×Aw = A(v ×w)

(19) u · (R (u, θ)v − v) = 0

(20) AR (u, θ)A−1 = R (Au, θ)

R (u, θ)v = cos θ (v − (u · v)u)(21)

+ sin θ u× v + (u · v)u

The identities (16), (17) and (18) were shown above.
Proof of (19). Let A = R (u, θ). Since Au = u,

u · (Av − v) = u ·Av − u · v
= Au ·Av − u · v
= 0.

The last equality follows from (17). �
Proof of (20). Check that the eigenvalues of the matrices on either side of the

equation are eiθ, e−iθ, 1 corresponding to eigenvectors Av,Av̄,Au. �
Proof of (21). Multiplying both sides of the equation by a rotation A and using

(17), (18), and (20) gives

R (Au, θ)Av = cos θ (Av − (Au ·Av)Au)

so without loss of generality assume u = e3 in eqrefrotvect. Now check that the
equation holds for v = e1 and v = e2.

The formula can also be seen geometrically. The vector v is written as the sum
of its projection onto u and onto the plane perpendicular to u,

v = (v · u)u + (v − (u · v)u).

The projection onto u is left fixed and the projection onto the plane perpendicular
to u is rotated an angle θ in the plane. �

Equation (21) gives a way to compute the matrix R (u, θ) for a unit vector u. If
u = (a, b, c)

′
write

(22) Su =

 0 −c b
c 0 −a
−b a 0


Note that for any vector v, Sv = u× v. Now (21) shows that

R (u, θ) = cos θ I + (1− cos θ)uu′ + sin θ Su
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7.6. Shortcuts. We can find the axis of rotation of A by finding the eigenvector
corresponding to the eigenvalue 1. There is a shortcut for finding the axis if the
angle of rotation is not π. The matrix S = A − A′ is easily seen to be skew
symmetric, i. e., S′ = −S. So S must be of the form (22) If the vector u = (a, b, c)

′

is not zero, it is parallel to the axis of rotation of A.
There is also a shortcut for finding the angle θ of rotation. Recall that the trace

of a matrix is the sum of the diagonal elements. We have

trace(A) = 1 + 2 cos θ

so we can solve for cos θ from the trace of A. See the homework exercise for
explanation of why these shortcuts work.
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