4. Orthogonal Transformations and Rotations

A matrix is defined to be orthogonal if the entries are real and

\[A' A = I. \]

Condition (1) says that the gram matrix of the sequence of vectors formed by the columns of \(A \) is the identity, so the columns are an orthonormal frame. An orthogonal matrix defines an orthogonal transformation by mutiplying column vectors on the left.

Condition (1) also shows that \(A \) is a rigid motion preserving angles and distances. A matrix satisfying (1) preserves the dot product; the dot product of two vectors is the same before and after an orthogonal transformation. This can be written as

\[A v \cdot A w = v \cdot w \]

for all vectors \(v \) and \(w \). This is true by the definition (1) of orthogonal matrix since

\[A v \cdot A w = (A v)' A w = v' A' A w \]
\[= v' I w = v' w = v \cdot w. \]

Thus lengths and angles are preserved, since they can be written in terms of dot products.

The orthogonal transformation are a group since we can multiply two of them and get an orthogonal transformation. This is because if \(A \) and \(B \) are orthogonal, then \(A' A = I \) and \(B' B = I \). So

\[(AB)' AB = B' A' A B = I, \]

showing that \(AB \) is also orthogonal. Likewise we can take the inverse of an orthogonal transformation to get an orthogonal transformation.

Orthogonal transformations have determinant 1 or \(-1\) since by (1) and properties of determinant,

\[(\det A)^2 = \det(A') \det A \]
\[= \det(A' A) \]
\[= \det I = 1. \]

4.1. The rotation group. Orthogonal transformations with determinant 1 are called rotations, since they have a fixed axis. This is discussed in more detail below. The rotations also form a group.

If we think of an orthogonal matrix \(A \) as a frame

\[A = (v_1, v_2, v_3), \]

then the determinant is the scalar triple product

\[v_1 \cdot (v_2 \times v_3). \]

The frame is right handed if the triple product is 1 and left handed if it is -1. The frame is the image of the right handed standard frame

\[(e_1, e_2, e_3) = I \]

under the transformation \(A \). Thus \(A \) preserves orientation (right-handedness) if the determinant is 1.
4.1.1. Rotations and cross products. Rotations are orthogonal transformations which preserve orientation. This is equivalent to the fact that they preserve the vector cross product:

\[\mathbf{A}(\mathbf{v} \times \mathbf{w}) = \mathbf{A}\mathbf{v} \times \mathbf{A}\mathbf{w}, \]

for all rotations \(\mathbf{A} \) and vectors \(\mathbf{v} \) and \(\mathbf{w} \). Recall the right hand rule in the definition of the cross product (fig. 1). The cross product is defined in terms of lengths and angles and right-handedness, all of which remain unchanged after rotation.

![Figure 1](image)

Figure 1. The geometric definition of the cross product. The direction of \(\mathbf{v} \times \mathbf{w} \) is determined by the right hand rule. The fingers of the right hand should point from \(\mathbf{v} \) to \(\mathbf{w} \) and the thumb in the direction of the cross-product. The length of the cross product is \(|\mathbf{v}||\mathbf{w}| \sin \theta \).

4.1.2. Two dimensions. In two dimensions, every rotation is of the form

\[\mathbf{R}(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}. \]

Note that

\[\mathbf{R}(\theta)\mathbf{R}(\phi) = \mathbf{R}(\theta + \phi) = \mathbf{R}(\phi)\mathbf{R}(\theta), \]

so that rotations in two dimension commute.

4.1.3. Three dimensions. In three dimensions, matrices for rotation about coordinate axes have a form related to the 2 dimensional rotation matrices:

Rotation about the x axis

\[\mathbf{R}_x(\theta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}. \]
Rotation about the y axis
\[
R_y(\theta) = \begin{pmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix}
\]

Rotation about the z axis
\[
R_z(\theta) = \begin{pmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

All rotations are counterclockwise about the axis indicated in the subscript. The rotations $R_x(\theta)$, are exactly the ones that leave the vector $e_3 = (0, 0, 1)'$ fixed and can be identified with rotation in the xy plane. Similarly for R_y and R_z.

The rotations $R_x(\theta)$ commute,
\[
R_x(\theta)R_x(\phi) = R_x(\theta + \phi) = R_x(\phi)R_x(\theta).
\]

Similarly rotations $R_y(\theta)$ commute and rotations $R_z(\theta)$ commute. In general, however, rotations in three dimensions do not commute. For example,
\[
R_x(\pi)R_z(\pi/2) = \begin{pmatrix}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

but
\[
R_z(\pi/2)R_x(\pi) = \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

Since rotations form a group we can get other rotations by multiplying together rotations of the form R_x, R_y, and R_z. It can be shown that any rotation A can be written as a product of three rotations about the y and z axes,
\[
A = R_z(\alpha)R_y(\gamma)R_x(\delta).
\]
The angles α, γ, δ are called Euler angles for the rotation A.

The proof that any rotation A can be written as above in terms of Euler angles relies on a simple fact. Any unit vector u can be written in terms of spherical coordinates as
\[
u = \begin{pmatrix}
\sin \phi \cos \theta \\
\sin \phi \sin \theta \\
\cos \phi
\end{pmatrix},
\]
and u can be obtained from e_3 by two rotations
\[
u = R_z(\theta)R_y(\phi)e_3.
\]

4.2. Complex form of a rotation. In dimension 2 it is convenient to use complex numbers to write rotations. Rotation by an angle θ is given by
\[
\zeta \to e^{i\theta} \zeta
\]
where $\zeta = x + iy$. Writing $\bar{\zeta} = x - iy$ the rotation
\[
\begin{pmatrix}
x \\
y
\end{pmatrix} \to \begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix} \begin{pmatrix}
x \\
y
\end{pmatrix}
\]
is transformed into
\[
\begin{pmatrix}
\zeta \\
\bar{\zeta}
\end{pmatrix} \rightarrow \begin{pmatrix} e^{i\theta} & 0 \\
0 & e^{-i\theta}
\end{pmatrix} \begin{pmatrix}
\zeta \\
\bar{\zeta}
\end{pmatrix}
\]
which is convenient because the matrix is diagonal. The elements on the diagonal are eigenvalues of
\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{pmatrix}.
\]
A similar method works in three dimensions for rotation about the z axis. First perform a change of coordinates. Letting $\zeta = x + iy$ the transformation
\[
\begin{pmatrix} x \\
y \\
z
\end{pmatrix} \rightarrow \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix} x \\
y \\
z
\end{pmatrix}
\]
becomes
\[
\begin{pmatrix}
\zeta \\
\bar{\zeta} \\
z
\end{pmatrix} \rightarrow \begin{pmatrix} e^{i\theta} & 0 & 0 \\
0 & e^{-i\theta} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
\zeta \\
\bar{\zeta} \\
z
\end{pmatrix}
\]
transforming the matrix for the rotation into a diagonal matrix. The diagonal entries are the eigenvalues of $R_z(\theta)$.

4.3. Eigenvalues of a rotation. First we show that the eigenvalues of an orthogonal matrix have absolute value 1.

To see this, suppose
\begin{equation}
Av = \lambda v
\end{equation}
for a non-zero vector v. Taking the adjoint,
\begin{equation}
v^*A^* = \bar{\lambda}v^*
\end{equation}
Since A is real, $A^* = A'$, and multiplying (8) and (9) and using the fact that $A'A = I$ get
\[v^*v = |\lambda|^2 v^*v\]
and hence
\[|\lambda|^2 = 1,
\]
and thus all eigenvalues have absolute value 1.

If λ is an eigenvalue of A,
\[Av = \lambda v
\]
for some non-zero vector v. Taking conjugate of both sides,
\[\bar{A}v = \bar{\lambda}v.
\]
Since A is real, $\bar{A} = A$ so $\bar{\lambda}$ is an eigenvector corresponding to eigenvector \bar{v}. It follows that the eigenvalues of an orthogonal matrix A are
\[\pm 1, \quad \lambda, \quad \bar{\lambda},
\]
where $\lambda = e^{i\theta}$. The determinant of A is the product of the eigenvalues, so for a rotation matrix the first eigenvalue above is 1. There is a real eigenvector u corresponding to the eigenvalue 1. This is left as an exercise. The line though this vector u is called the axis of the rotation.

By dividing by the length, we may suppose that u above is a unit vector. As in (6) write $u = Be_3$ where B is a rotation. Since u is left fixed by A,
\[ABe_3 = Be_3.
\]
Thus $B^{-1}AB$ leaves e_3 fixed and so

$$B^{-1}AB = R_z(\theta)$$

for some angle θ.

We have shown that every rotation is conjugate to a rotation about the z axis. In other words, every rotation A can be written in the form $A = BR_z(\theta)B'$ for a rotation B and some angle θ. This is just a way of saying that by an orientation preserving change of variables we can take the z axis e_3 along the axis of the rotation A. Since A and $R_z(\theta)$ are conjugate, they have the same eigenvalues, so the eigenvalues of A are $1, e^{i\theta}, e^{-i\theta}$, where θ is the angle of rotation. The vector u is called the axis of the rotation.

If a rotation A can be written

$$A = BR_z(\theta)B'$$

where $Be_3 = u$ then we write

$$A = R(u, \theta).$$

We can check that $BR_z(\theta)B'$ is the same for any choice of rotation B with $Be_3 = u$, so $R(u, \theta)$ is uniquely defined.

4.4. Properties of rotations. A few of the main properties of rotations are summarized here. In what follows, u is a unit vector and v and w are real vectors, and A is a rotation,

(10) $R(u, \theta) = R(-u, -\theta)$

(11) $Av \cdot Aw = v \cdot w$

(12) $Av \times Aw = A(v \times w)$

(13) $u \cdot (R(u, \theta)v - v) = 0$

(14) $AR(u, \theta)A^{-1} = R(Au, \theta)$

(15) $R(u, \theta)v = \cos \theta(v - (u \cdot v)u) + \sin \theta u \times v + (u \cdot v)u$

We can write (15) in a different form. If $u = (a, b, c)'$ write

$$S_u = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$$

Then

(16) $R(u, \theta) = \cos \theta I + (1 - \cos \theta)uu' + \sin \theta S_u$

The identities (11) and (12) were shown above. The proof (13) and (14) is left as an exercise.

Here is a proof of (15). The idea is to change variables so that u becomes e_3 and then the formula becomes obvious. Let A be a rotation such that $u = Ae_3$ and let $w = Av$. Using (14) and applying A to both sides of the equation, it becomes

$$R(e_3, \theta)w = \cos \theta(w - (e_3 \cdot w)e_3) + \sin \theta(e_3 \times w) + (e_3 \cdot w)e_3.$$
Writing \(w = (x, y, z)' \) the equation becomes
\[
R(e_3, \theta)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \cos \theta \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} + \sin \theta \begin{pmatrix} -y \\ x \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix},
\]
which is clear from the definition of \(R(e_3, \theta) \).

Here is an example of (16). Let \(u = \frac{1}{\sqrt{3}}(1, 1, 1)' \) and \(\theta = \frac{2\pi}{3} \). Then \(\cos \theta = -\frac{1}{2} \) and \(\sin \theta = \frac{\sqrt{3}}{2} \). Also
\[
S_u = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}, \quad u'u = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.
\]

Then (16) gives
\[
R(u, \theta) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.
\]

We see that the rotation permutes the three coordinate axes.