2.18:

Claim: There is a nonempty perfect set E which contains no rational numbers.

Proof. Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ be an enumeration of the rational numbers. Pick irrational numbers $a_{0,1}<b_{0,1}<x_{0}$ with $b_{0,1}-a_{0,1}<1$ and let $E_{0}=$ $\left[a_{0,1}, b_{0,1}\right]$.

Suppose $E_{0} \supset E_{1} \supset \ldots \supset E_{n}$ have been constructed and that each

$$
E_{j}=\bigcup_{k=1}^{2^{j}}\left[a_{j, k}, b_{j, k}\right]
$$

where :
(i) For fixed j the intervals $\left[a_{j, k}, b_{j, k}\right], k=1, \ldots, 2^{j}$ are pairwise disjoint
(ii) The endpoints $a_{j, k}, b_{j, k}$ are irrational
(iii) Each $b_{j, k}-a_{j, k}<2^{-j}$
(iv) $x_{j} \notin E_{j}$.

Set

$$
E_{n+1}=\bigcup_{k=1}^{2^{j}}\left[a_{j, k}, b_{j, k}\right] \backslash I_{k}
$$

where $I_{k}=\left(c_{k}, d_{k}\right)$ and
(1) c_{k} and d_{k} are irrational with $a_{j, k}<c_{k}<d_{k}<b_{j, k}$
(2) $c_{k}-a_{j, k}<\min \left(2^{-(n+1)},\left|x_{n+1}-a_{j, k}\right|\right)$
(3) $b_{j, k}-d_{k}<\min \left(2^{-(n+1)},\left|x_{n+1}-b_{j, k}\right|\right)$.

One can check that E_{n+1} is then a union of intervals which satisfy (i)-(iv).

Letting

$$
E=\bigcap_{n=1}^{\infty} E_{n}
$$

we have that E is closed and nonempty (intersection of nested sequence of nonempty compact sets). Furthermore E is perfect since the endpoints $a_{j, k}, b_{j, k}$ are all in E and from (iii) you can check that every point in E is a limit point of the set of endpoints (see for example Rudin's discussion of the middle-thirds Cantor set).

Finally, E has empty intersection with the rationals by (iv).

