Proposition 0.1. Suppose that $E \in \mathcal{L}$ and $s \in \mathbb{R}$. Then $E + s \in \mathcal{L}$ and

(1)
$$m(E+s) = m(E)$$

Proof. We first establish some notation for sums. Recall that if $E \subset \mathbb{R}$ and $s \in \mathbb{R}$ we write $E + s := \{x + s : x \in E\}$. Then, if \mathcal{M} is a set of sets we may write $\mathcal{M} + x := \{E + x : E \in \mathcal{M}\}$ and if \mathfrak{M} is a set of sets of sets we may write $\mathfrak{M} + x := \{\mathcal{M} + x : E \in \mathcal{M}\}$ and if \mathfrak{M} is a set of sets.

We begin by observing that the Borel sets are translation invariant, i.e.

$$\mathcal{B}_{\mathbb{R}} + x = \mathcal{B}.$$

Let \mathfrak{M} denote the set of all σ -algebras on \mathbb{R} which contain the collection \mathcal{O} of open subsets of \mathbb{R} , so that

$$\mathcal{B}_{\mathbb{R}} = \bigcap_{\mathcal{M} \in \mathfrak{M}} \mathcal{M}.$$

Then

$$\mathcal{B}_{\mathbb{R}} + x = \bigcap_{\mathcal{M} \in \mathfrak{M}} (\mathcal{M} + x) = \bigcap_{\mathcal{M} \in (\mathfrak{M} + x)} \mathcal{M}$$

so it will suffice to show that $\mathfrak{M} + x = \mathfrak{M}$. To see this, first note that for each $\mathcal{M} \in \mathfrak{M} + x$, \mathcal{M} is a σ -algebra since the complement of the translate is the translate of the complement and the union of the translates is the translate of the union. Next, note that each $\mathcal{M} \in \mathfrak{M} + x$ contains $\mathcal{O} + x = \mathcal{O}$. Thus, $\mathfrak{M} + x \subset \mathfrak{M}$. By the same reasoning $\mathfrak{M} = (\mathfrak{M} + x) - x \subset \mathfrak{M} + x$ and so $\mathfrak{M} + x = \mathfrak{M}$.

Letting

$$m_s(E) := m(E+s)$$

we have, from the previous paragraph, that the domain of m_s contains $\mathcal{B}_{\mathbb{R}}$. Since "disjointness is invariant under translations", it is easy to check that $m_s(E)$ is in fact a measure on $\mathcal{B}_{\mathbb{R}}$. Given $a, b \in \mathbb{R}$ we have

$$m_s((a,b]) = m((a,b]+s) = m((a+s,b+s]) = (b+s) - (a+s)$$
$$= b - a = m((a,b])$$

where the last and third to last identities follow from Proposition 1.13 in the book. From the finite additivity of m_s and m, we then have that m_s and m agree on the algebra \mathcal{A} of finite disjoint unions of h-intervals. By the uniqueness part of Theorem 1.14 and the fact that (m, \mathcal{A}) is σ -finite, we then have that m_s and m agree on $\mathcal{B}_{\mathbb{R}}$.

Now we can see that the domain of m_s includes all of \mathcal{L} . Indeed, for each $E \in \mathcal{L}$, we have (since the measurable sets are the completion of $\mathcal{B}_{\mathbb{R}}$) that $E = F \cup N$ where $F \in \mathcal{B}_{\mathbb{R}}$, $N \subset N'$, $N' \in \mathcal{B}_{\mathbb{R}}$ and m(N') = 0. Then $E + s = (F + s) \cup (N + s)$, and (F + s), $(N' + s) \in \mathcal{B}_{\mathbb{R}} + s = \mathcal{B}_{\mathbb{R}}$ and $m(N' + s) = m_s(N') = m(N') = 0$ (thanks to the previous paragraph), and so we may conclude that $E + s \in \mathcal{L}$. Finally, to see that m_s and m agree on \mathcal{L} , it suffices by Theorem 1.9 (since m and m_s agree on $\mathcal{B}_{\mathbb{R}}$ and m is the unique extension of $(m, \mathcal{B}_{\mathbb{R}})$ to a measure on \mathcal{L}) to note that, as in the third paragraph, m_s is a measure on \mathcal{L} .