Proposition 0.1. Suppose that $E \in \mathcal{L}$ and $s \in \mathbb{R}$. Then $E+s \in \mathcal{L}$ and

$$
\begin{equation*}
m(E+s)=m(E) \tag{1}
\end{equation*}
$$

Proof. We first establish some notation for sums. Recall that if $E \subset \mathbb{R}$ and $s \in \mathbb{R}$ we write $E+s:=\{x+s: x \in E\}$. Then, if \mathcal{M} is a set of sets we may write $\mathcal{M}+x:=\{E+x: E \in \mathcal{M}\}$ and if \mathfrak{M} is a set of sets of sets we may write $\mathfrak{M}+x:=\{\mathcal{M}+x: \mathcal{M} \in \mathfrak{M}\}$.

We begin by observing that the Borel sets are translation invariant, i.e.

$$
\mathcal{B}_{\mathbb{R}}+x=\mathcal{B} .
$$

Let \mathfrak{M} denote the set of all σ-algebras on \mathbb{R} which contain the collection \mathcal{O} of open subsets of \mathbb{R}, so that

$$
\mathcal{B}_{\mathbb{R}}=\bigcap_{\mathcal{M} \in \mathfrak{M}} \mathcal{M}
$$

Then

$$
\mathcal{B}_{\mathbb{R}}+x=\bigcap_{\mathcal{M} \in \mathfrak{M}}(\mathcal{M}+x)=\bigcap_{\mathcal{M} \in(\mathfrak{M}+x)} \mathcal{M}
$$

so it will suffice to show that $\mathfrak{M}+x=\mathfrak{M}$. To see this, first note that for each $\mathcal{M} \in \mathfrak{M}+x, \mathcal{M}$ is a σ-algebra since the complement of the translate is the translate of the complement and the union of the translates is the translate of the union. Next, note that each $\mathcal{M} \in \mathfrak{M}+x$ contains $\mathcal{O}+x=\mathcal{O}$. Thus, $\mathfrak{M}+x \subset \mathfrak{M}$. By the same reasoning $\mathfrak{M}=(\mathfrak{M}+x)-x \subset \mathfrak{M}+x$ and so $\mathfrak{M}+x=\mathfrak{M}$.

Letting

$$
m_{s}(E):=m(E+s)
$$

we have, from the previous paragraph, that the domain of m_{s} contains $\mathcal{B}_{\mathbb{R}}$. Since "disjointness is invariant under translations", it is easy to check that $m_{s}(E)$ is in fact a measure on $\mathcal{B}_{\mathbb{R}}$. Given $a, b \in \mathbb{R}$ we have

$$
\begin{aligned}
m_{s}((a, b])=m((a, b]+s)=m((a+s, b+s]) & =(b+s)-(a+s) \\
& =b-a=m((a, b])
\end{aligned}
$$

where the last and third to last identities follow from Proposition 1.13 in the book. From the finite additivity of m_{s} and m, we then have that m_{s} and m agree on the algebra \mathcal{A} of finite disjoint unions of h-intervals. By the uniqueness part of Theorem 1.14 and the fact that (m, \mathcal{A}) is σ-finite, we then have that m_{s} and m agree on $\mathcal{B}_{\mathbb{R}}$.

Now we can see that the domain of m_{s} includes all of \mathcal{L}. Indeed, for each $E \in \mathcal{L}$, we have (since the measurable sets are the completion of $\left.\mathcal{B}_{\mathbb{R}}\right)$ that $E=F \cup N$ where $F \in \mathcal{B}_{\mathbb{R}}, N \subset N^{\prime}, N^{\prime} \in \mathcal{B}_{\mathbb{R}}$ and $m\left(N^{\prime}\right)=0$. Then $E+s=(F+s) \cup(N+s)$, and $(F+s),\left(N^{\prime}+s\right) \in \mathcal{B}_{\mathbb{R}}+s=\mathcal{B}_{\mathbb{R}}$ and $m\left(N^{\prime}+s\right)=m_{s}\left(N^{\prime}\right)=m\left(N^{\prime}\right)=0$ (thanks to the previous paragraph), and so we may conclude that $E+s \in \mathcal{L}$.

Finally, to see that m_{s} and m agree on \mathcal{L}, it suffices by Theorem 1.9 (since m and m_{s} agree on $\mathcal{B}_{\mathbb{R}}$ and m is the unique extension of $\left(m, \mathcal{B}_{\mathbb{R}}\right)$ to a measure on \mathcal{L}) to note that, as in the third paragraph, m_{s} is a measure on \mathcal{L}.

