$1.3 \# 11$ Let $\mathcal{A} \subset 2^{X}$ be an algebra, \mathcal{A}_{σ} the collection of countable unions of sets in \mathcal{A}, and $\mathcal{A}_{\sigma \delta}$ the collection of countable intersections of sets in \mathcal{A}_{σ}. Let μ_{0} be a premeasure on \mathcal{A} and μ^{*} the induced outer measure.
(a) For any $E \subset X$ and $\epsilon>0$ there exists $A \in A_{\sigma}$ with $E \subset A$ and $\mu^{*}(A) \leq \mu^{*}(E)+\epsilon$
(b) If $\mu^{*}(E)<\infty$, then E is μ^{*}-measurable if and only if there exists $B \in A_{\sigma \delta}$ with $E \subset B$ and $\mu^{*}(B \backslash E)=0$
(c) If μ_{0} is σ-finite, then the restriction $\mu^{*}(E)<\infty$ in (b) is superfluous.

Proof. For (a), let $E \subset X$ and $\epsilon>0$. Since the infimum in the definition of $\mu^{*}(E)$ is the greatest lower bound for

$$
\begin{equation*}
\left\{\sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right):\left\{A_{j}\right\}_{j=1}^{\infty} \subset \mathcal{A}, \text { and } E \subset \bigcup_{j=1}^{\infty} A_{j}\right\} \tag{1}
\end{equation*}
$$

we have that $\mu^{*}(E)+\epsilon$ is not a lower bound, and so there is a sequence $\left\{A_{j}\right\}_{j=1}^{\infty} \subset \mathcal{A}$ with $E \subset \bigcup_{j=1}^{\infty} A_{j}$ and $\sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)<\mu^{*}(E)+\epsilon$. By Proposition 1.13, we have $\mu^{*}\left(A_{j}\right)=\mu_{0}\left(A_{j}\right)$ for each j, and so by countable subadditivity $\mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leq \mu^{*}(E)+\epsilon$ as desired.

For the "if" direction of (b), first suppose that $E \subset X$ (allowing the possibility that $\left.\mu^{*}(E)=\infty\right)$ is such that there is a $B \in A_{\sigma \delta}$ with $E \subset B$ and $\mu^{*}(B \backslash E)=0$. Letting \mathcal{M} denote the σ-algebra of μ^{*}-measurable sets, we have $\mathcal{A} \subset \mathcal{M}$ by Proposition 1.13. Thus (since \mathcal{M} is closed under countable unions and intersections) $\mathcal{A}_{\sigma \delta} \subset M$ and so $B \in \mathcal{M}$. Next observe (as in the end of the proof of Carathéodory's theorem) that for every $F \subset X$

$$
\mu^{*}(F \cap(B \backslash E))+\mu^{*}\left(F \cap(B \backslash E)^{c}\right) \leq \mu^{*}(B \backslash E)+\mu^{*}(F)=\mu^{*}(F)
$$

and so $B \backslash E \in \mathcal{M}$ (above we used the monotonicity of μ^{*} twice). Finally, since $E=B \backslash(B \backslash E)$ and the latter two sets are in \mathcal{M}, we also have that $E \in \mathcal{M}$.

For the "only if" direction of (b), suppose that $E \subset X$ is μ^{*}-measurable with $\mu^{*}(E)<\infty$. By part (a), we can find, for each $n \in \mathbb{N}$, a $B_{n} \in \mathcal{A}_{\sigma}$ with $E \subset B_{n}$ and $\mu^{*}\left(B_{n}\right) \leq \mu^{*}(E)+\frac{1}{n}$. Letting $B=\bigcap_{j=1}^{\infty} B_{n}$, we have $E \subset B, B \in \mathcal{A}_{\sigma \delta}$, and (by two applications of monotonicity) $\mu^{*}(B)=\mu^{*}(E)$. Since E is μ^{*}-measurable

$$
\mu^{*}(E)=\mu^{*}(B)=\mu^{*}(B \backslash E)+\mu^{*}(B \cap E)=\mu^{*}(B \backslash E)+\mu^{*}(E)
$$

and since $\mu^{*}(E)<\infty$ we may subtract to see that $\mu^{*}(B \backslash E)=0$.
Finally, we consider the "only if" direction of (b) with an assumption of σ-finiteness for μ_{0} replacing the requirement that $\mu^{*}(E)<\infty$. By σ finiteness, we may choose $\left\{D_{l}\right\}_{l=1}^{\infty} \subset \mathcal{A}$ with $X \subset \bigcup_{l=1}^{\infty} D_{l}$ and $\mu_{0}\left(D_{l}\right)=$ $\mu^{*}\left(D_{l}\right)<\infty$ for each l. After applying the"disjointification trick", we may assume that the D_{l} 's are pairwise disjoint. For each l, n, apply part
(a) to find $B_{l, n} \in \mathcal{A}_{\sigma}$ with $\left(E \cap D_{l}\right) \subset B_{l, n}$ and $\mu^{*}\left(B_{l, n}\right) \leq \mu^{*}\left(E \cap D_{l}\right)+\frac{1}{n}$. After possibly intersecting $B_{l, n}$ with D_{l}, we may further assume that $B_{l, n} \subset D_{l}$ (note that after this intersection, $B_{l, n}$ is still an \mathcal{A}_{σ} set). Let $B=\bigcap_{n=1}^{\infty} \bigcup_{l=1}^{\infty} B_{l, n}$ so that $E \subset B \in \mathcal{A}_{\sigma \delta}$. For each l,

$$
B \cap D_{l}=\cap_{n=1}^{\infty} B_{l, n}
$$

and, as in the previous paragraph, $\mu^{*}\left(B \cap D_{l}\right)=\mu^{*}\left(E \cap D_{l}\right)$. Since $\mu^{*}\left(E \cap D_{l}\right)<\infty$, we have $\mu^{*}\left(\left(B \cap D_{l}\right) \backslash\left(E \cap D_{l}\right)\right)=0$. Then $\mu^{*}(B \backslash E)=\mu^{*}\left(\bigcup_{l=1}^{\infty}\left(B \cap D_{l}\right) \backslash\left(E \cap D_{l}\right)\right)=\sum_{l=1}^{\infty} \mu^{*}\left(\left(B \cap D_{l}\right) \backslash\left(E \cap D_{l}\right)\right)=0$

