2.4 \#44 (Lusin's Theorem) If $f:[a, b] \rightarrow \mathbb{C}$ is Lebesgue measurable and $\epsilon>0$, there is a compact set $E \subset[a, b]$ such that $\mu\left(E^{c}\right)<\epsilon$ and $\left.f\right|_{E}$ is continuous (Hint: Use Egoroff's theorem and Theorem 2.26)
Proof. First, note that

$$
[a, b]=\bigcup_{n \in \mathbb{N}}\{|f| \leq n\}
$$

and so, by continuity from below, we can find an n_{0} such that letting $E_{1}=\left\{|f| \leq n_{0}\right\}$ we have $m\left(E_{1}^{c}\right)<\epsilon / 3$. Setting \tilde{f} equal to f on E_{1} and 0 on E_{1}^{c} we then have \tilde{f} integrable on $[a, b]$ (since it is measurable, bounded, and $[a, b]$ has finite measure).

Since \tilde{f} is integrable, Theorem 2.26 gives a sequence $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ of continuous functions on $[a, b]$ such that $\phi_{n} \rightarrow \tilde{f}$ in L^{1}. Then by Theorem 2.30 there is a subsequence $\left\{\phi_{n_{j}}\right\}_{j=1}^{\infty}$ such that $\phi_{n_{j}} \rightarrow \tilde{f}$ pointwise a.e.. By Egoroff's theorem there is a set $E_{2} \subset E_{1}$ with $m\left(E_{2}^{c}\right)<\frac{2 \epsilon}{3}$ such that $\phi_{n_{j}} \rightarrow \tilde{f}$ uniformly on E_{2}. Then by Theorem 1.18 there is a set compact set $E_{3} \subset E_{2}$ with $m\left(E_{3}^{c}\right)<\epsilon$. Since $f=\tilde{f}$ on E_{3}, it is the uniform limit of continuous functions and hence continuous on E_{3}.
$2.3 \#$ 38b Suppose $f_{n} \rightarrow f, g_{n} \rightarrow g$ in measure and $\mu(X)<\infty$. Show that $f_{n} g_{n} \rightarrow f g$ in measure.

Proof. Let $\epsilon, \eta>0$. We need to find an N such that for all $n \geq N$

$$
\mu\left(\left\{\left|f_{n} g_{n}-f g\right| \geq \epsilon\right\}\right) \leq \eta
$$

Since

$$
X=\bigcup_{M \in \mathbb{N}}\{|f| \leq M\}
$$

and $\mu(X)<\infty$ we can find an M_{1} so that, letting $E_{1}=\left\{|f| \leq M_{1}\right\}$, we have $\mu\left(E_{1}\right) \leq \eta / 10$. We define E_{2} and M_{2} analogously, but with g in place of f.

Since $g_{n} \rightarrow g$ in measure, we can find an N_{1} so that for $n \geq N_{1}$, $\mu\left(\left\{\left|g_{n}-g\right| \geq \epsilon /\left(2 M_{1}\right)\right\}\right) \leq \eta / 10$ and an N_{2} so that for $n \geq N_{2}$, $\mu\left(\left\{\left|g_{n}-g\right| \geq M_{2}\right\}\right) \leq \eta / 10$. Since $f_{n} \rightarrow f$ in measure, we can find an N_{3} so that for $n \geq N_{3}, \mu\left(\left\{\left|f_{n}-f\right| \geq \epsilon /\left(4 M_{2}\right)\right\}\right)$.

Note that

$$
\left|f_{n} g_{n}-f g\right| \leq|f| \cdot\left|g_{n}-g\right|+\left|g_{n}\right| \cdot\left|f_{n}-f\right|
$$

and that if $x \notin E_{2}$ and $\left|g_{n}(x)-g(x)\right| \leq M_{2}$ then $\left|g_{n}\right| \leq 2 M_{2}$. So

$$
\left\{\left|f_{n} g_{n}-f g\right| \geq \epsilon\right\} \subset F_{n}
$$

where
$F_{n}=E_{1} \cup E_{2} \cup\left\{\left|g_{n}-g\right| \geq \epsilon /\left(2 M_{1}\right)\right\} \cup\left\{\left|g_{n}-g\right| \geq M_{2}\right\} \cup\left\{\left|f_{n}-f\right| \geq \epsilon /\left(4 M_{2}\right)\right\}$
But, if $n \geq \max \left(N_{1}, N_{2}, N_{3}\right)$ then $\mu\left(F_{n}\right) \leq 5 \eta / 10$ as desired.

