3.2 #14 If ν is an arbitrary signed measure and μ is a σ -finite measure on $(\mathcal{X}, \mathcal{M})$ such that $\nu \ll \mu$, there exists an extended μ -integrable function $f : \mathcal{X} \to [-\infty, \infty]$ such that $d\nu = f d\mu$. Hints:

- (1) It suffices to assume that μ is finite and ν is positive
- (2) With these assumptions, there exists $E \in \mathcal{M}$ that is σ -finite for ν such that $\mu(E) \ge \mu(F)$ for all sets F that are σ -finite for ν
- (3) The Radon-Nikodym theorem applies on E. If $F \cap E = \emptyset$, then either $\nu(F) = \mu(F) = 0$ or $\mu(F) > 0$ and $\nu(F) = \infty$

Proof. 1.)Let $\nu = \nu^+ - \nu^-$ be the Jordan decomposition for ν . By Exercise 8 we have that ν^+ and $\nu^- \ll \mu$. Thus, by applying the result for positive measures we have $d\nu = f^+dm - f^-dm$. It follows from the definition of signed measures that either ν^+ or ν^- is finite, and so we must have either f^+ or f^- integrable, and so $f := f^+ - f^-$ is extended-integrable, so fdm makes sense and is equal to $d\nu$.

Henceforth, assume we are working with positive ν .

Since μ is σ -finite, there is a countable cover $\{E_j\}_j \subset \mathcal{M}$ for \mathcal{X} with $\mu(E_j) < \infty$ for every j. After the disjointification trick, we may assume that the E_j are pairwise disjoint. Let μ_j be the restriction of μ to E_j (i.e. $\mu_j(E) := \mu(E \cap E_j)$ for $E \in \mathcal{M}$) and let ν_j be the restriction of ν to E_j . Clearly $\nu_j \ll \mu_j$. So, by the theorem for finite measures, we have $dv_j = f_j dm_j$ and hence (since the f_j are positive, no problem integrating the infinite sums) letting $f = \sum_j f_j$ we have (by disjointness of the E_j) $d\nu = f dm$.

Henceforth assume that μ is finite.

2.) Let $\alpha = \sup\{\mu(F) : F \text{ is } \sigma - \text{finite for } \nu\}$, and choose a sequence of ν - σ -finite sets F_j with $\alpha = \lim_{j \to \infty} \mu(F_j)$. Letting $E = \bigcup_j F_j$ we have $E \sigma$ -finite for ν and $\mu(E) = \alpha$ (by positivity of μ).

3.) Suppose $F \cap E = \emptyset$. If $\mu(F) = 0$ then by absolute continuity $\nu(F) = 0$. Otherwise $\mu(F) > 0$ and so (by finiteness of μ) $\mu(F \cup E) > \mu(E)$. By maximality of E, this implies $F \cup E$ is not σ -finite for ν and hence (since the union of a finite set with a σ -finite set is σ -finite) $\nu(F) = \infty$.

Now, let ν_E and μ_E be the restrictions of ν and μ to E. Applying the Radon-Nikodym theorem $\nu_E = f_E d\mu_E$ for some f_E . Defining f by $f(x) = f_E(x)$ if $x \in E$ and $f(x) = \infty$ if $x \notin E$ we have $d\nu = f d\mu$. Indeed:

$$\nu(G) = \nu(G \cap E) + \nu(G \cap E^c) = \int_{G \cap E} f d\mu + \int_{G \cap E^c} f d\mu = \int_G f d\mu$$

where the penultimate identity holds from the observation in the previous paragraph and the fact that the integral of ∞ over a set of measure 0 is 0 and the integral of ∞ over a set of positive measure is ∞ . \Box