1.5 #33 There exists a Borel set $A \subset [0, 1]$ such that $0 < m(A \cap I) < m(I)$ for for every subinterval I of [0, 1]. (Hint: Every subinterval of [0, 1] contains Cantor-type sets of positive measure).

Proof. Here is Rudin's answer or for more discussion stack exchange. \Box

3.5 #41 Let $A \subset [0, 1]$ be a Borel set such that $0 < m(A \cap I) < m(I)$ for every subinterval I of [0, 1] (Exercise 33, Chapter 1).

- (a) Let $f(x) = m([0, x] \cap A)$. Then F is absolutely continuous and strictly increasing on [0, 1], but F' = 0 on a set of positive measure.
- (b) Let $g(x) = m([0, x] \cap A) m([0, x] \setminus A)$. Then g is absolutely continuous on [0, 1], but g is not monotone on any subinterval of [0, 1].

Proof. For (a): It is clear that f is strictly increasing, since $m(A \cap I) > 0$ for every I. Absolute continuity is also immediate since whenever x < y we have f(y) - f(x) < m((x, y]) = x - y. (i.e. we may take $\delta = \epsilon$). By theorem 3.35 we have

$$f(x) = \int_0^x f'(y) \, dy$$

for $x \ge 0$. But, we also have $f(x) = \int_0^x 1_A(y) \, dy$ for $x \ge 0$. Thus, we have $f' = 1_A$ almost everywhere (since f'dm and 1_Adm agree on intervals, they must agree on all sets by uniqueness of outer measures). But m(A) < m([0,1]) and so $1_A = 0$ on a positive measure subset of [0,1].

For (b): Let $h(x) = m([0, x] \cap A^c)$. Since A^c satisfies the hypotheses of the problem, we also have h absolutely continuous with $h' = 1_{A^c}$ almost everywhere. Then g = f - h is absolutely continuous and $g' = 1_A - 1_{A_c}$ almost everywhere. Since every interval contains a positive measure subset of points in A and A^c we have g' > 0 and g' < 0 on points in every interval, which would be impossible if g was monotone on an interval.