5.2 \#20 If $\mathcal{M}$ is a finite-dimensional subspace of a normed vector space $\mathcal{X}$, there is a closed subspace $\mathcal{N}$ such that $\mathcal{M} \cap \mathcal{N}=\{0\}$ and $\mathcal{M}+\mathcal{N}=\mathcal{X}$

Proof. Since $\mathcal{M}$ is finite-dimensional, it has some basis $\left\{e_{i}\right\}_{i=1}^{n}$. For each $i=1, \ldots, n$ we may apply the Hahn-Banach theorem (as in Theorem 5.8a) to find a bounded linear functional $f_{i}$ on $\mathcal{X}$ such that $f_{i}\left(e_{i}\right)=1$ and $f_{i}\left(e_{j}\right)=0$ for $j \neq i$ (Specifically we construct $f_{i}$ to vanish on $\operatorname{span}\left(\left\{e_{j}: j \neq i\right\}\right)$ and be nonzero on $e_{i}$ and renormalize appropriately. Note that the subspace is closed since it is finite dimensional).

Then, for any $x \in \mathcal{M}$ one can check

$$
\begin{equation*}
x=\sum_{i=1}^{n} f_{i}(x) x_{i} . \tag{1}
\end{equation*}
$$

Let

$$
\mathcal{N}=\bigcap_{i=1}^{n} f_{i}^{-1}(\{0\})
$$

Then $\mathcal{N}$ is a subspace of $\mathcal{X}$ due the the linearity of the $f_{i}$ 's. And $\mathcal{M}$ is closed since it is the intersection of closed (by the boundedness of the $f_{i}$ 's) sets. Furthermore, by (1) we have $\mathcal{M} \cap \mathcal{N}=\emptyset$.

Given any $x \in X$ write

$$
x_{\mathcal{M}}=\sum_{i=1}^{n} f_{i}(x) x_{i}
$$

and $x_{\mathcal{N}}=x-x_{\mathcal{M}}$. Then $x=x_{\mathcal{M}}+x_{\mathcal{N}}$ and $x_{\mathcal{M}} \in \mathcal{M}$. Also for each $j$

$$
\begin{aligned}
f_{j}\left(x_{\mathcal{N}}\right)=f_{j}(x)-f_{j}\left(x_{\mathcal{M}}\right) & =f_{j}(x)-\sum_{i=1}^{n} f_{i}(x) f_{j}\left(x_{i}\right) \\
& =f_{j}(x)-f_{j}(x)=0
\end{aligned}
$$

and so $x_{\mathcal{N}} \in \mathcal{N}$. Therefore $\mathcal{X}=\mathcal{M}+\mathcal{N}$.

