5.3 #37 Let \mathcal{X} and \mathcal{Y} be Banach spaces. If $T : \mathcal{X} \to \mathcal{Y}$ is a linear map such that $f \circ T \in \mathcal{X}^*$ for every $f \in \mathcal{Y}^*$, then T is bounded.

Proof. By the closed graph theorem, it suffices to show that whenever $x_n \to x$ and $T(x_n) \to y$ then y = T(x). Suppose not. Then, since (by some corollary of the Hahn-Banach theorem) \mathcal{Y}^* separates points in Y there is an $f \in \mathcal{Y}^*$ such that $f(T(x)) \neq f(y)$. On one hand, by continuity of f

 $\lim_{n \to \infty} f(T(x_n)) = f(y)$

On the other hand by continuity of $f \circ T$

$$\lim_{n \to \infty} f(T(x_n)) = f(T(x)).$$

But we can't have both (by choice of f), so contradiction.

Alternatively:

Let
$$A = \{y \in \mathcal{Y}^* : ||y|| = 1\}$$
. Then for each $x \in \mathcal{X}$
$$\sup_{f \in A} |f \circ T(x)| \le ||T(x)|| < \infty.$$

Since, by assumption, the $f \circ T \in \mathcal{X}^*$, the uniform boundedness principle gives a C such that

(1)
$$\sup_{f \in \mathcal{A}} \|f \circ T\| \le C.$$

By the Hahn-Banach theorem, for each $x \in \mathcal{X}$ there is an $f \in A$ such that |f(T(x))| = ||T(x)||. However, by (1) we have $|f(T(x))| \leq C||x||$ and so $||T(x)|| \leq C||x||$. Thus, T is bounded.