MAA 5617 Midterm

Name: \qquad
Complete two of the following problems (circle the numbers of the two you want graded):

Problem 1 Suppose that ν and μ are positive measures on $(\mathcal{X}, \mathcal{M})$, that $\nu \ll \mu$, and that ν is finite. Show that for every $\epsilon>0$ there is a $\delta>0$ such that for all $E \in \mathcal{M}$ with $\mu(E)<\delta$, we have $\nu(E)<\epsilon$. (You are not allow to use any theorem that trivializes the problem (for example you can't use the Radon-Nikodym theorem)).

Solution:

Suppose not. Then there is an $\epsilon>0$ such that for every $\delta>0$ there exists a set E with $\mu(E)<\delta$ but $\nu(E) \geq \epsilon$. Applying this with $\delta=2^{-j}$ we obtain sets $\left\{E_{j}\right\}_{j=1}^{\infty}$. Letting $F_{k}=\cup_{j=k}^{\infty} E_{j}$ we have $\mu\left(F_{k}\right) \leq 2^{1-k}$ by countable subadditivity, so by monotonicity $\mu\left(\cap_{k=1}^{\infty} F_{k}\right)=0$. On the other hand (since ν is finite) continuity from above gives

$$
\nu\left(\cap_{k=1}^{\infty} F_{k}\right)=\lim _{k \rightarrow \infty} \nu\left(F_{k}\right) \geq \epsilon .
$$

Problem 2 Suppose that $\left\{f_{j}\right\}_{j=1}^{\infty}$ is a sequence of functions on \mathbb{R} that are of normalized bounded variation. Show that if $\lim _{j \rightarrow \infty} f_{j}=f$ pointwise then

$$
T_{f}(x) \leq \liminf _{j \rightarrow \infty} T_{f_{j}}(x)
$$

Solution:

Let $\epsilon>0$ and choose $x_{0}<\ldots<x_{n}=x$ so that

$$
\sum_{k=1}^{n}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \geq T_{f}(x)-\epsilon / 2
$$

Since $f_{j} \rightarrow f$ pointwise, we can find M so that for $j \geq M$ and $k=$ $0, \ldots, n$ we have $\left|f_{j}\left(x_{k}\right)-f\left(x_{k}\right)\right|<\epsilon /(4 n)$. Then by the sub-triangle and triangle inequalities

$$
\begin{aligned}
\left|\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|-\left|f_{j}\left(x_{k}\right)-f_{j}\left(x_{k-1}\right)\right|\right| & \leq\left|f\left(x_{k}\right)-f_{j}\left(x_{k}\right)+f\left(x_{k-1}\right)-f_{j}\left(x_{k-1}\right)\right| \\
& <\epsilon /(4 n)+\epsilon /(4 n) \\
& =\epsilon /(2 n)
\end{aligned}
$$

and in particular
$T_{f_{j}}(x) \geq \sum_{k=1}^{n}\left|f_{j}\left(x_{k}\right)-f_{j}\left(x_{k-1}\right)\right|>\sum_{k=1}^{n}\left(\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right|-\epsilon /(2 n)\right) \geq T_{f}(x)-\epsilon$.
So

$$
\left.\inf _{j \geq M} T_{f_{j}}(x)\right) \geq T_{f}(x)-\epsilon
$$

and thus

$$
\liminf _{j \rightarrow \infty} T_{f_{j}}(x) \geq T_{f}(x)-\epsilon
$$

Since ϵ was arbitrary, we are done.

Problem 3 Suppose that X is a normed vector space and that M is a closed subspace of X with $M \neq X$. Show that there is an $x \in X$ with $x \neq 0$ and

$$
\inf _{y \in M}\|x-y\| \geq \frac{1}{2}\|x\|
$$

Solution:

Since $M \neq X$ we may find a $z \in X \backslash M$. Let

$$
\delta=\inf _{y \in M}\|z-y\|
$$

and choose a $y_{0} \in M$ with $\left\|z-y_{0}\right\| \leq 2 \delta$. Letting $x=z-y_{0}$ we have

$$
\|x-y\|=\left\|z-\left(y_{0}+y\right)\right\| \geq \delta \geq\|x\| / 2
$$

for every $y \in M$.

