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Abstract

A (d, k) set is a subset of Rd containing a translate of every k-dimensional disc of

diameter 1. We show that if (1 +
√

2)k−1 + k > d and k ≥ 2, then every (d, k) set has

positive Lebesgue measure. This improves a result of Bourgain, who showed that the

analogous statement holds when 2k−1 +k ≥ d and k ≥ 2. We obtain this improvement in

two parts. First, we replace Bourgain’s main estimate with a simple recursive maximal

operator bound involving mixed-norm estimates for the X-ray transform. This method

allows us to simplify Bourgain’s proof, allows us to obtain improved bounds for the

maximal operator associated with (d, k) sets, and demonstrates that improved estimates

for (d, k) sets would follow from new bounds for the X-ray transform. Second, we adapt

arithmetic-combinatorial methods of Katz and Tao to obtain improved bounds for the

X-ray transform suitable for use with the recursive maximal operator bound.
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Chapter 1

Introduction

1.1 History

We begin by giving a brief history of the Kakeya problem, mentioning only the work

which is perhaps most relevant to the specific problems considered in this document.

For complete surveys, see [39], [45], [41], and [7].

In 1917 Kakeya posed the question: What is the minimum area of a subset of R2 in

which a unit line segment can be rotated 180 degrees? Independently, in 1919, Besicov-

itch constructed a measure zero subset of R2 containing a line segment in every direction

for use as a counterexample in a problem of Riemann integration. After leaving Russia,

Besicovitch learned of Kakeya’s question and used a variant of his construction to show

that Kakeya’s sets may be taken to have arbitrarily small measure [3],[4].

Today, we say that a subset of Rd is a Kakeya set if it contains a unit line segment

in every direction, and we say that a Kakeya set is a Besicovitch set if it has Lebesgue

measure zero. The standard construction of Besicovitch sets in R2 is due to Perron [34].

This construction starts with the triangle whose vertices are (0, 0), (0, 1), (
√

2, 0), which

contains unit line segments in 1
4

of all directions but has relatively large area. Perron

observed that by cutting the triangle into small angular sectors and carefully translating

the sectors along the x-axis so that they have large overlap, the resulting set still contains
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line segments in 1
4

of all directions but may be taken to have arbitrarily small area. A

limiting argument then yields 1
4

of a Besicovitch set, and the union of 4 rotations gives

the full Besicovitch set; for details of the proof, see [38]. The Cartesian product of a

Besicovitch set in R2 with the unit ball in Rd−2 then gives a Besicovitch set in Rd.

Once we know that there are Kakeya sets of measure zero, it is natural to ask whether

Kakeya sets must even have full dimension. The weakest formulation of this question is

in terms of Minkowski dimension. Given a bounded subset E of Rd and δ > 0, let Eδ

denote the δ-neighborhood of E. Then E is said to have upper Minkowski dimension at

least η if for every ε > 0

lim sup
δ→0

Ld(Eδ)

δd−(η−ε)
> 0,

where Ld denotes Lebesgue measure in Rd. It is conjectured that every Kakeya set in Rd

has upper Minkowski dimension d, and stronger still that every Kakeya set has Hausdorff

dimension d. This was shown to be the case when d = 2 by Davies in [12], also see [11]

and [21], but is still far from being resolved in higher dimensions.

When d > 2, we may also consider the planar generalizations of Kakeya sets. Let

G(d, k) denote the set of k-dimensional linear subspaces of Rd. We say that a subset E

of Rd is a (d, k) set if for every L ∈ G(d, k), E contains a translate of the intersection of

L with the ball centered at the origin with radius 1
2
, B(0, 1

2
). Marstrand showed in [24]

that every (3, 2) set has positive measure, in other words that there are no Besicovitch

(3, 2) sets. This contrast between the case k = 2 and k = 1 may be justified heuristically

by counting parameters. The dimension of G(d, k) is k(d − k) and the dimension of a

k-plane is k, so one might expect the dimension of a (d, k) set to be min(d, k(d−k)+k).

When k = 1, k(d − k) + k = d; however when k > 1, k(d − k) + k is strictly larger

than d. Thus, (d, 1) sets should “barely” have full dimension and we might expect
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them to have zero measure, whereas (d, 2) sets should “easily” have full dimension and

thus might be expected to have positive measure. Although parameter counting clearly

works in the case of (2, 1) sets and (3, 2) sets, it is known to fail in certain cases when

one replaces G(d, k) by a lower dimensional subset of G(d, k), or when one replaces the

k-planes by lower dimensional subsets of k-planes; see [45], [35], [31], [32]. Nonetheless,

it is conjectured that (d, k) sets have positive measure when k ≥ 2, and soon after

Marstrand’s work this was shown to be the case when k > d
2

by Falconer [14] (the

papers [15] and later [26] are erroneous).

Direct interest in the Kakeya problem was resparked by Bourgain’s revolutionary

paper [5]. For L ∈ G(d, k), δ > 0, and a ∈ Rd, let Lδ(a) denote the δ-neighborhood of

a + (L ∩B(0, 1
2
)). The Kakeya maximal operator for k-planes is defined

Mk
δ [f ](L) = sup

a∈Rd

1

Ld(Lδ(a))

∫
Lδ(a)

|f(x)| dx.

Bourgain observed that Lp bounds for M1
δ imply Hausdorff dimension estimates for

(d, 1) sets. Specifically, the bound 1

‖M1
δ [f ]‖L1(G(d,1)) . δ−

α
p ‖f‖Lp(Rd)

for some α > 0 implies that (d, 1) sets have Hausdorff dimension at least d−α. Although

not explicit in [5], the same method gives the corresponding result when k > 1. From

Bourgain’s observation, Drury’s bound [13] for the X-ray transform, and Christ’s bound

[10] for the k-plane transform, it follows that (d, k) sets must have Hausdorff dimension

at least k(d+1)
k+1

for every d, k. Bourgain also gave an improved bound for M1
δ , implying

that (3, 1) sets have dimension at least 7
3

and (d, 1) sets have dimension at least d+1
2

+ εd

1We will use · . · to denote · ≤ C· where C may depend, for example, on d, k, p, q, ε, α but not on
f, δ, λ. A similar notation / will be used and explained later.
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for d > 3, where εd > 0 is defined recursively, also see [36]. By combining this improved

bound with the L2 estimate [37] and a recursive metric-entropy estimate, he then showed

that there are no (d, k) Besicovitch sets when 2k−1 + k ≥ d and k ≥ 2. In the cases

(d, k) = (4, 2), (7, 3) where the recursive metric-entropy estimate was not needed, he

also gave Lp bounds for the maximal operator

Mk[f ](L) = sup
a∈Rd

∫
L+a

|f(x)| dx,

showing that, for f supported on a fixed ball,

‖Mk[f ]‖Lp(G(d,k)) . ‖f‖Lp(Rd),

for p > 2 when (d, k) = (4, 2) and for p > 3 when (d, k) = (7, 3). He alluded to a bound

when 2k−1 + k ≥ d, but it is clear that this bound would have to be for a very large p

due to the inefficiencies of the metric-entropy estimates.

Bourgain’s bounds for M1
δ were later surpassed by Wolff [43], who gave a bound

implying that (d, 1) sets have Hausdorff dimension at least d+2
2

. Wolff’s “hairbrush”

argument can be viewed as a unification of Bourgain’s “bush” argument from [5] with

the L2 method of Cordoba [11]. The hairbrush argument was later refined by  Laba,

Tao, and Wolff to give mixed-norm estimates for the X-ray transform in R3 [44] and Rd,

d > 3 [23].

The bush and hairbrush arguments, and work on the Kakeya problem for circles,

are largely incidence-combinatorial in nature. The next breakthrough came with Bour-

gain’s use of methods from arithmetic combinatorics. While working on quantitative

estimates related to Szemerédi’s theorem, Gowers [16] developed a quantitative version

of the Balog-Szemerédi theorem [2] which relates the size of sum-sets and difference-sets.
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Bourgain applied this result to the Kakeya problem [6], showing that (d, 1) sets have

lower Minkowski dimension at least 13d+12
25

, and giving a less substantial improvement for

the maximal operator bound. Katz and Tao then gave related arithmetic estimates [19],

[17], which were more specialized to the Kakeya problem and hence more elementary

and more flexible for use in maximal operator and Hausdorff dimension estimates than

those of Balog-Szemerédi type. With these estimates they were able to give improved

maximal operator bounds and show that (d, 1) sets have lower Minkowski dimension at

least d−1
β

+ 1 where β = 1.675 . . . is the largest root of β3 − 4β + 2 = 0.

Katz and Tao also combined their arithmetic estimates with hairbrush type improve-

ments to show that the Hausdorff dimension of (d, 1) sets is at least (2−
√

2)(d− 4) + 3.

 Laba, Katz, and Tao combined arithmetic methods with the hairbrush argument and

an intricate “sticky/plainy/grainy” analysis [18] [22] to obtain marginal improvements

for the upper Minkowski dimension over Wolff’s estimate in dimensions 3 and 4.

As we will discuss in Chapter 4, the Kakeya problem may also be considered in the

setting of vector spaces over finite-fields. This variant of the problem first appeared in the

literature in [45]. Many of the methods used in Euclidean space transfer to finite fields

with the most notable exception being the sticky/plainy/grainy analysis of Katz,  Laba,

and Tao. Interestingly, alternative methods have been employed to obtain analogous

results in 3 and 4 dimensions [8], [42]. It remains to be seen whether these methods can

be adapted for use in Euclidean space.

Recent work on the (d, k) Kakeya problem for k > 1 has focused on bush and hair-

brush type arguments. Alvarez used the bush argument to reprove, except for endpoints,

the maximal operator bound implied by [10] when k = 2, and used the hairbrush argu-

ment to to show that the lower Minkowski dimension of (d, 2) sets is at least 2d+3
3

and
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to give estimates for a Kakeya-type maximal operator for lines in Cd, see [1]. Mitsis

improved this Minkowski dimension estimate to a Hausdorff dimension estimate [27],

also see [28]. In the setting of finite fields, Bueti improved this Hausdorff dimension

estimate to a maximal operator bound and then generalized this bound from k = 2 to

k < d− 1, see [9].

1.2 Statement of main results

1.2.1 Maximal operators associated with k-planes

Our work on the (d, k) Kakeya problem begins by revisiting, as suggested by A. Seeger,

Bourgain’s recursive metric-entropy estimate from [5]. Roughly stated, Bourgain showed

that if (d − 1, k − 1) sets always have codimension less than α, then (d, k) sets must

always have codimension less than α
2
. Our initial goal was to adapt the geometric content

of Bourgain’s proof in a manner which was more efficient for Lp bounds of Mk
δ and Mk.

A reasonably efficient “recursive maximal operator bound” was thus obtained in the

unpublished work [33]. Upon completion of [33], the author realized that the recursive

maximal operator bound was essentially Drury’s bound [13] for the X-ray transform

combined with Proposition 2.5 below and an interpolation.

The X-ray transform is the case k = 1 of the k-plane transform

T k[f ](L, x) =

∫
L+x

f(y)dy

where f is a suitable function on Rd, L ∈ G(d, k), and x is in the orthogonal complement

L⊥ of L. We are interested in mixed-norm estimates

‖T k[f ]‖Lq(Lr) . ‖f‖Lp(Rd)
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where

‖T k[f ]‖Lq(Lr) =

(∫
G(d,k)

(∫
L⊥
|T k[f ](L, x)|r dx

) q
r

dL

) 1
q

, (1.1)

and where we only consider functions supported on a fixed ball. Above, integration on

G(d, k) is with respect to rotation invariant measure, see Chapter 2.

Proposition 2.52. Suppose the bounds

‖Mk−1
δ [f ]‖Lq0 (G(d−1,k−1)) . δ

−α0
p0 ‖f‖Lp0 (Rd−1) (1.2)

and

‖T 1[g]‖Lq0 (Lp0 ) . ‖g‖Lp1 (Rd)

are known to hold for f ∈ Lp0(Rd−1) and for g ∈ Lp1(Rd) supported on a fixed ball, where

q0 ≥ p1. Then the bound

‖Mk
δ [f ]‖Lq0 (G(d,k)) . δ

−α1
p1 ‖f‖Lp1 (Rd)

holds for f ∈ Lp1(Rd), where α1 = α0
p1

p0
.

An analogous statement holds with Mk−1
δ replaced by T k−1. Heuristically, Proposi-

tion 2.5 says that if the X-ray transform in Rd is known to be bounded from Lp → Lq(Lr),

then when passing from Mk−1
δ in Rd−1 to Mk

δ in Rd, we may improve α by a factor of

p
r
. Recalling from Section 1.1 that a bound (1.2) implies that (d − 1, k − 1) sets must

have co-Hausdorff-dimension less than α0, we see that our codimension estimate is thus

improved by a factor of p
r

when passing from (d− 1, k− 1) sets to (d, k) sets. From [10],

we know that T 1 is bounded from L
d+1
2 → Ld+1(Ld+1) for every d, and so we may take

p
r

= 1
2
, recovering the dimension estimate given by Bourgain’s recursive metric-entropy

estimate.
2Label numbers corresponding to later chapters refer to propositions and theorems which will be

restated for the readers convenience.
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A potential difficulty which arises when applying Proposition 2.5 is that the exponent

r for the X-ray transform bound must match up with the exponent p0 for the Mk−1
δ

bound. This difficulty is overcome by interpolating with L∞ bounds when necessary.

However, the interpolation comes at the cost of losing “sharp-p” type estimates, as we

will see below. Also, our method does not allow for the optimal range of q. In possible

future work we hope to eliminate one or both of these issues.

From a judicious application of Hölder’s inequality, one sees that for every f

‖M1
δ [f ]‖Lq(G(d,1)) . δ−

(d−1)
p
r

p ‖T 1[f ]‖Lq(Lr), (1.3)

and thus from our known bound for the X-ray transform

‖M1
δ [f ]‖Ld+1(G(d,1)) . δ−

d−1
d+1‖f‖

L
d+1
2 (Rd)

.

Using this bound as a starting point and recursively applying Proposition 2.5, we obtain

Theorem 2.6. For 1 ≤ k < d

‖Mk
δ [f ]‖Lq(G(d,k)) . δ−

α
p ‖f‖Lp(Rd)

where p = d+1
2

, q = d + 1, and α = d−k
2k .

Our primary interest in Theorem 2.6 is that, when combined L2 methods as in [5],

it yields

Theorem 2.4. Suppose 2k−1 + k > d. Then

‖Mk[f ]‖
L

d−1
2 (G(d,k))

. ‖f‖
L

d−1
2 (Rd)

for f supported on a fixed ball.

Theorem 2.6 is new when k > 1 and d > 2k. Theorem 2.4 is new when k > 3

and d > 2k. It follows from Theorem 2.4 that (d, k) sets must have positive measure
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when 2k−1 + k > d. This range of k could be improved to match Bourgain’s original

2k−1 + k ≥ d by starting with Bourgain’s bound for M1
δ , and indeed there are now even

better bounds to start with, but the statements of the theorems are slightly cleaner as

written.

Our approach to proving Theorem 2.4 is, perhaps, interesting for three reasons.

First, Proposition 2.5 serves to demystify Bourgain’s recursive metric-entropy estimate

which was quite technical, whereas the proof of Proposition 2.5 is fairly straightforward.

Second, by revealing the connection with the X-ray transform, Proposition 2.5 shows

that we may increase our range of k for which Mk is bounded by proving new mixed-

norm estimates for the X-ray transform. Finally, the range of p obtained in Theorem

2.4 is a considerable improvement over what we could have hoped to obtain using the

recursive metric-entropy estimate. Unfortunately, this range of p is presumably not

optimal, as we conjecture below.

Conjecture 1.1. Suppose p < d
k
, 1 ≤ k < d, k + d−k

r
≥ d

p
, and k

q
+ 1

r
≥ 1

p
. Then

‖T k[f ]‖Lq(Lr) . ‖f‖Lp(Rd)

for f supported on a fixed ball.

Conjecture 1.2. For 1 ≤ k < d, p < d
k
, q ≤ (d− k)p′

‖Mk
δ [f ]‖Lq(G(d,k)) . δk− d

p‖f‖Lp(Rd). (1.4)

Conjecture 1.3. For 2 ≤ k < d, p > d
k
, q ≤ kp

‖Mk[f ]‖Lq(G(d,k)) . ‖f‖Lp(Rd)

for f supported on a fixed ball.
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These conjectures are fairly standard and, if true, would represent the best possible

range of p, q, r, modulo endpoints and interpolation with L∞ estimates. This may be

seen by testing the operators on characteristic functions of balls and k-plates Lδ. We

also expect a suitable version of Conjecture 1.1 to hold without the requirement that f

is supported on a fixed ball. However, by taking f(x) = (1 + |x|)−k, one sees that there

is no hope for a global version of Conjecture 1.3.

All three conjectures, and even more, are known to hold when k = d−1, see [11], [30],

and [21]. Conjectures 1.1 and 1.2 are known when k > d
2
, or for any k when p ≤ d+1

k+1
,

see [10]. In these cases there is no restriction to the local version of Conjecture 1.1.

Our results, Theorems 2.6 and 2.4, are interpolants of certain conjectured bounds.

For example, from Conjecture 1.2 we expect (1.4) to hold with p = d
k
− d−k

k2k and q =

d+ k
2k−1

. This implies the weaker estimate with p̃ = p and q̃ = 2p < q. Interpolating this

estimate with the trivial L∞ → L∞ estimate would yield Theorem 2.6.

1.2.2 Estimates for the X-ray transform

As discussed above, Proposition 2.5 motivates us to seek mixed-norm estimates for the

X-ray transform T 1. From (1.3), we see that estimates for the X-ray transform imply

bounds for the Kakeya maximal operator M1
δ . This implication does not seem to be

reversible, however it is reasonable to expect that methods used to prove bounds for

M1
δ may extend to give estimates for T 1. This approach was used previously by  Laba

Tao and Wolff in [44] and [23], where Wolff’s hairbrush method of [43] was generalized.

Unfortunately, neither of these bounds seems to be useful for the method of Section

1.2.1. In [44] a bound is only given for d = 3, and M2 is already well understood when
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d = 3. In [23], a bound is given for d > 3 but only in terms of an Lp Sobolev space of

strictly positive order. This represents the loss of a large enough negative power of δ

that the use of the bound is not advantageous for our purposes.

Since [43] there has been much further study of M1
δ , culminating in Katz and Tao’s

work [20] where it was shown that when d ≥ 6

‖M1
δ‖L

4d+3
4 (G(d,1))

. δ−( 3(d−1)
4d+3

+ε)‖f‖
L

4d+3
7 (Rd)

(1.5)

for ε > 0 arbitrarily small. This bound was proven using a “sliced” estimate. Interest-

ingly, Bourgain’s recursive metric-entropy estimate is a sort of sliced X-ray transform

estimate, see [33], and seems to be the first appearance of this technique.

We answer the question of whether (1.5) can be extended to a mixed-norm estimate

affirmatively.

Theorem 3.1. When d ≥ 6 and ε > 0,

‖T 1[f ]‖Lq(Lr) . ‖f‖Lp(Rd) (1.6)

for f supported on a fixed ball, where p = 4d+3
7

, q = 4d+3
4
− ε, and r = 4d+3

3
− ε.

Except for endpoints, this attains the conjectured range of p and q for the ratio

r
p

= 7
3
. In contrast to [44] and [23], the refinements needed to obtain the mixed-norm

estimate are quite minimal. An interesting feature of our proof is that we manage to

avoid discretization arguments.

We also extend Katz and Tao’s Hausdorff dimension estimate from [20] to obtain

Theorem 3.2. For d ≥ 4 and ε > 0, there exist pε, qε, rε so that (1.6) holds for f

supported on a fixed ball with (p, q, r) = (pε, qε, rε) where

rε

pε

> 1 +
√

2− ε, and
qε

pε

> 1 +

√
2

2
− ε.
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This bound features an increased value of r
p
, but not the sharp range of p for the

given r
p
. Using an observation [40] of Tao, we also obtain variants of Theorems 3.1 and

3.2 where the order of the mixed-norms is reversed. The correspondence between these

“Nikodym-order” mixed-norms and the Nikodym maximal operator is analogous to that

between the “Kakeya-order” mixed-norms (1.1) and the Kakeya maximal operator.

1.2.3 The Lebesgue measure and dimension of (d, k) sets

By combining Theorem 3.2 with the method of Section 1.2.1, we obtain

Theorem 1.4. Suppose (1+
√

2)k−1 +k > d. Then every (d, k) set has positive measure.

Thus, for example, we now know that there are no (8, 3) or (18, 4) Besicovitch sets,

where before we only knew that there were no (7, 3) or (10, 4) Besicovitch sets. We point

out that the (8, 3) estimate starts with a bound forM1
δ on R6, and the best known bound

is Wolff’s. By plugging this bound into Bourgain’s original method, one may see that

(8, 3) sets have full Hausdorff dimension, but not positive measure. Thus, a mixed-norm

estimate was necessary for the improvement.

We also obtain a bound for Mk corresponding to Theorem 1.4, but it is for extremely

large p.

When (1 +
√

2)k−1 + k ≤ d, we do not know that (d, k) sets have positive measure,

but we still have the following

Theorem 1.5. The Hausdorff dimension of each (d, k) set is at least

max

(
d− d− k

(1 +
√

2)k
, min

(
d, d + 1− d− k

(1 +
√

2)k−1

))
.
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The estimates given by Theorems 1.4 and 1.5 are superior to those given by the

direct use of the bush or hairbrush arguments such as [1] and [27]. In fact this would

still be the case without the introduction of the mixed-norm estimate, if one were to

update Bourgain’s proof with Wolff’s maximal operator bound. One may also attempt

to directly apply arithmetic-combinatorial techniques to the (d, k) Kakeya problem, but

the author’s efforts in this regard have fallen short of Theorems 1.4 and 1.5.

Theorems 1.4 and 1.5 are proven in Chapter 2.

1.2.4 Finite fields

The Kakeya problem may also be considered in the setting of vector spaces over finite

fields. In this discrete setting, one avoids certain technical issues present in Euclidean

space, and some aspects of the arguments become more transparent.

Given a finite field F , a subset E of F d is said to be a (d, k) set if it contains a

translate of every k-dimensional subspace of F d. By deriving analogues of Proposition

2.5 and Theorem 3.1, and using the analogue of Wolff’s maximal operator bound from

[29], we obtain the theorem below, where | · | denotes cardinality.

Theorem 4.2. Suppose that the characteristic of F is strictly greater than 3. Then for

every (d, k) set E in F d

|E| & |F |η

where

η = max

(
d−

(
3

7

)k

(d− k), d−
(

3

7

)k−1
d− k − 1

2

)
.

and where the implicit constant is independent of |F |.
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This is the finite field analogue of the statement that (d, k) sets have Minkowski

dimension at least η.
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Chapter 2

Maximal operators associated with

k-planes

This chapter concerns the proof and application of Proposition 2.5, which should be

considered a revisionist approach to Bourgain’s recursive metric entropy estimate from

[5].

As stated in Chapter 1, our main interest in Proposition 2.5 is the following principle.

Given a bound

‖Mk−1
δ [f ]‖Lq0 (G(d−1,k−1)) . δ

−α0
p0 ‖f‖Lp0 (Rd−1), (2.1)

and a bound

‖T 1[f ]‖Lq(Lr) . ‖f‖Lp(Rd), (2.2)

we may obtain a bound

‖Mk
δ [f ]‖Lq1 (G(d,k)) . δ

−α1
p1 ‖f‖Lp1 (Rd) (2.3)

where α1 = α0
p
r
. The value α1 is of importance because the bound (2.3) implies that

(d, k) sets have Hausdorff dimension at least d − α1. The specific statement of this

principle is below.

Proposition 2.1. Suppose the bound (2.1) holds for f ∈ Lp0(Rd−1) where q0 ≥ p0, and

suppose the bound (2.2) holds for f ∈ Lp(Rd) supported on a fixed ball where q, r ≥ p.
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Then (2.3) holds for f ∈ Lp1(Rd) where

q1 = min

(
q0

r

p0

, q

)
, p1 = p

if r ≥ p0, and where

q1 = min
(
q0, q

p0

r

)
, p1 = p

p0

r

if r ≤ p0.

Typically, this is applied with r ≥ p0. We point out that in either case q1 ≥ p1, and

so it is possible to use Proposition 2.1 recursively, provided bounds for T 1 are known

in all dimensions with q, r ≥ p. We delay the proofs of Propositions 2.1 and 2.5 until

Section 2.1, where we also show that Theorem 2.6 follows from a combination of Drury

and Christ’s L
d+1
2 → Ld+1(Ld+1) bound for T 1 with Proposition 2.1.

One could formulate an endless number of variations of Theorem 2.6 by starting

from a different bound for M1
δ , using a different estimate for T 1, or considering the

mixed-norm version of Proposition 2.5 from Section 2.2. One such variation is

Theorem 2.2. Suppose 1 ≤ k < d. For every ε > 0, there exists a p < ∞ so that

‖Mk
δ [f ]‖Lp(G(d,k)) . δ−

α+ε
p ‖f‖Lp(Rd)

where α = d−k
(1+

√
2)k .

This follows immediately from Theorem 3.2 and Proposition 2.1.

The method above gives diminishing returns for small α. In particular, when α <

1 + 1√
2

it is preferable to use the L2 method from [5] which we restate in a somewhat

generalized form.
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Proposition 2.3. Suppose k, p ≥ 2 and that a bound for Mk−1
δ on Lp(Rd−1) of the form

‖Mk−1
δ [f ]‖Lp(G(d−1,k−1)) . δ−

α
p ‖f‖Lp(Rd−1) (2.4)

is known. Then if α ≥ 1 we have the bound

‖Mk
δ [f ]‖Lp(G(d,k)) . δ−

α−1
p ‖f‖Lp(Rd) (2.5)

for f ∈ Lp(Rd). If α < 1 we have the bound

‖Mk[f ]‖Lp(G(d,k)) . ‖f‖Lp(Rd) (2.6)

for f ∈ Lp(Rd) supported on a fixed ball.

This is proven in Section 2.3.

If 2k−1 + k > d and k ≥ 3, we see from Theorem 2.6 that

‖Mk−2
δ [f ]‖

L
d−1
2 (G(d−2,k−2))

. δ
− α

d−1
2 ‖f‖

L
d−1
2 (Rd−2)

where α < 2. Thus, applying (2.5) we see that

‖Mk−1
δ [f ]‖

L
d−1
2 (G(d−1,k−1))

. δ
− α′

d−1
2 ‖f‖

L
d−1
2 (Rd−1)

where α′ < 1. Applying (2.6), we obtain

Theorem 2.4. Suppose 2k−1 + k > d. Then

‖Mk[f ]‖
L

d−1
2 (G(d,k))

. ‖f‖
L

d−1
2 (Rd)

for f supported on a fixed ball.

If (1 +
√

2)k−1 + k > d and k ≥ 2, then we see from Theorem 2.2 that for sufficiently

large p

‖Mk−1
δ [f ]‖Lp(G(d−1,k−1)) . δ−

α
p ‖f‖Lp(Rd−1)
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where α < 1. Thus (2.6) gives

‖Mk[f ]‖Lp(G(d,k)) . ‖f‖Lp(Rd)

for f supported on a fixed ball, which implies Theorem 1.4. Theorem 1.5 follows from

Theorem 2.2 and a combination of Theorem 2.2 with (2.5).

2.1 A recursive maximal operator bound

We start with the definition of the measure we will use on G(d, k). Fix any L ∈ G(d, k).

For a Borel subset F of G(d, k) let

G(d,k)(F ) = O({θ ∈ O(d) : θ(L) ∈ F})

where O is normalized Haar measure of the orthogonal group on Rd, O(d). By the

transitivity of the action of O(d) on G(d, k) and the invariance of O, it is clear that the

definition is independent of the choice of L. Also note that G(d,k) is invariant under the

action of O(d). By the uniqueness of uniformly-distributed measures (see [25], pages

44-53), G(d,k) is the unique normalized Radon measure on G(d, k) invariant under O(d).

It will be necessary to use an alternate formulation of G(d,k). For each ξ in Sd−1 let Uξ :

ξ⊥ → Rd−1 be an orthogonal linear transformation. Then U−1
ξ identifies G(d− 1, k − 1)

with the k − 1 dimensional subspaces of ξ⊥. Now, define U : Sd−1 × G(d− 1, k − 1) →

G(d, k) by

U(ξ, M) = span(ξ, U−1
ξ (M)).

Choosing Uξ continuously on the upper and lower hemispheres of Sd−1, U−1 identifies

the Borel subsets of G(d, k) with the completion of the Borel subsets of Sd−1 × G(d −
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1, k − 1). Let σd−1 denote normalized surface measure on the unit sphere. We claim

that σd−1 × G(d−1,k−1)(U−1(F )) is rotation invariant, and thus

G(d,k)(F ) = σd−1 × G(d−1,k−1)(U−1(F )). (2.7)

Indeed, let R ∈ O(d). Then for F ⊂ G(d, k)∫
Sd−1

∫
G(d−1,k−1)

χRF (U(ξ, M)) dM dξ

=

∫
Sd−1

∫
G(d−1,k−1)

χF (span(R−1ξ, R−1U−1
ξ (M))) dM dξ

=

∫
Sd−1

∫
G(d−1,k−1)

χF (span(R−1ξ, U−1
R−1ξ(RξM))) dM dξ

=

∫
Sd−1

∫
G(d−1,k−1)

χF (span(R−1ξ, U−1
R−1ξ(M))) dM dξ

=

∫
Sd−1

∫
G(d−1,k−1)

χF (span(ξ, U−1
ξ (M))) dM dξ.

Above, each Rξ is a suitable element of O(d− 1). The second equation follows from the

orthogonality of Uξ and R, and the appropriate choice of Rξ. The third equation follows

from the fact that G(d−1,k−1) is invariant under O(d− 1). The last equation follows from

the fact that σd−1 is invariant under O(d).

Proposition 2.5. Suppose the bounds

‖Mk−1
δ [f ]‖Lq0 (G(d−1,k−1)) . δ

−α0
p0 ‖f‖Lp0 (Rd−1) (2.8)

and

‖T 1[g]‖Lq0 (Lp0 ) . ‖g‖Lp1 (Rd)

are known to hold for f ∈ Lp0(Rd−1) and for g ∈ Lp1(Rd) supported on a fixed ball, where

q0 ≥ p1. Then the bound

‖Mk
δ [f ]‖Lq0 (G(d,k)) . δ

−α1
p1 ‖f‖Lp1 (Rd)
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holds for f ∈ Lp1(Rd), where α1 = α0
p1

p0
.

Proof. Without loss of generality, we assume that f is positive. Since averaging over a

k-plate is local and we are proving an Lp → Lq(Lr) estimate with p ≤ q ≤ r, we may

also assume that f is supported on a fixed ball.

Let L ∈ G(d, k) and suppose that L = span(ξ, U−1
ξ (M)) where M ∈ G(d− 1, k − 1).

Let aL ∈ Rd and let aM = Uξ(projξ⊥(aL)), where proj denotes orthogonal projection.

Then ∫
Lδ(aL)

f(y) dy ≤
∫

Mδ(aM )

∫
R

f(U−1
ξ (x) + tξ) dt dx

=

∫
Mδ(aM )

T 1[f ](ξ, U−1
ξ (x)) dx

where Lδ(aL) and Mδ(aM) are k and k − 1 plates respectively. Noting that d − k =

(d− 1)− (k − 1), it follows that

Mk
δ [f ](L) . Mk−1

δ [T 1[f ](ξ, U−1
ξ (·))](M).

By (2.7) and our hypothesized bound for Mk−1
δ , we now have

‖Mk
δ [f ]‖Lq0 (G(d,k)) .

(∫
Sd−1

∫
G(d−1,k−1)

Mk−1
δ [T 1[f ](ξ, U−1

ξ (·))](M)q0 dM dξ

) 1
q0

. δ
−α0

p0

(∫
Sd−1

(∫
Rd−1

T 1[f ](ξ, U−1
ξ (x))p0 dx

) q0
p0

dξ

) 1
q0

= δ
−α0

p0 ‖T 1[f ]‖Lq0 (Lp0 ).

Finally, f is supported on a fixed ball so we may apply our hypothesized estimate

for T 1

δ
−α0

p0 ‖T 1[f ]‖Lq0 (Lp0 ) . δ
−α0

p0 ‖f‖Lp1 (Rd) = δ
−α1

p1 ‖f‖Lp1 (Rd).
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Proof of Proposition 2.1. First, suppose r ≥ p0. Then, we may interpolate our hypoth-

esized bound for Mk−1
δ with the trivial L∞ bound to obtain the bound

‖Mk−1
δ [f ]‖

L
q0

r
p0 (G(d−1,k−1))

. δ−
α0
r ‖f‖Lr(Rd−1).

Applying Hölder’s inequality if necessary, the same bound holds with q0
r
p0

replaced by q1.

Possibly applying Hölder’s inequality again, we obtain from our hypothesized estimate

for T 1,

‖T 1[f ]‖Lq1 (Lr) . ‖f‖Lp1 (Rd).

By our assumptions that qo ≥ p0 and q, r ≥ p, we have q1 ≥ p1 and so we may apply

Proposition 2.5 to obtain the conclusion.

Now, suppose r ≤ p0. Since we are only considering bounds for T 1[f ] when f is

supported on a fixed ball, we may interpolate with the trivial L∞ → L∞(L∞) bound to

obtain

‖T 1[f ]‖
Lq

p0
r (Lp0 )

. ‖f‖Lp1 (Rd)

where 1
p1

= r
p0

1
p
. Applying Hölder’s inequality if necessary, we may replace q p0

r
by q1.

Possibly applying Hölder’s inequality again, we obtain the bound

‖Mk−1
δ [f ]‖Lq1 (G(d−1,k−1)) . δ

−α0
p0 ‖f‖Lp0 (Rd−1).

By our assumptions that q0 ≥ p0 and q, r ≥ p, we have q1 ≥ p1 and so we may apply

Proposition 2.5 to obtain the conclusion.

Theorem 2.6. For 1 ≤ k < d

‖Mk
δ [f ]‖Lq(G(d,k)) . δ−

α
p ‖f‖Lp(Rd)

where p = d+1
2

, q = d + 1, and α = d−k
2k .
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Proof. We first observe the well known fact that Theorem 2.6 holds when k = 1. From

Hölder’s inequality, we see that for any L ∈ G(d, 1) and a ∈ Rd

∫
Lδ(a)

|f(x)| dx . δ(d−1)(1− 1
d+1

)

(∫
Rd−1

|T 1[f ](L, x)|d+1 dx

) 1
d+1

.

Thus, using the L
d+1
2 → Ld+1(Ld+1) bound from [10] for the second inequality,

‖M1
δ [f ]‖Ld+1(G(d,1)) . δ−(d−1)δ(d−1)(1− 1

d+1
)‖T 1[f ]‖Ld+1(Ld+1)

. δ−(d−1)δ(d−1)(1− 1
d+1

)‖f‖
L

d+1
2 (Rd)

= δ−
d−1
2

/ d+1
2 ‖f‖

L
d+1
2 (Rd)

.

Now, assume that Theorem 2.6 holds for (d − 1, k − 1). Then, we may take α0 =

d−1−(k−1)
2k−1 = d−k

2k−1 , p0 = d
2
, and q0 = d in Proposition 2.1. From the L

d+1
2 → Ld+1(Ld+1)

bound for T 1, we take p = d+1
2

, q = d+1, and r = d+1. Thus q1 = min(dd+1
d
2

, d+1) = d+1,

p1 = d+1
2

, and α1 = d−k
2k−1

1
2

= d−k
2k . Hence, Theorem 2.6 holds for (d, k).

2.2 A recursive mixed-norm estimate

We now demonstrate that the method of the previous section can also be used to obtain

mixed-norm estimates for T k. Our recursive bound here is

Proposition 2.7. Suppose the bounds

‖T k−1[f ]‖Lq0 (Lr0 ) . ‖f‖Lp0 (Rd−1) (2.9)

and

‖T 1[g]‖Lq0 (Lp0 ) . ‖g‖Lp1 (Rd)
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are known to hold for f ∈ Lp0(Rd−1) supported on a fixed ball, and for g ∈ Lp1(Rd)

supported on a fixed ball. Then the bound

‖T k[f ]‖Lq0 (Lr0 ) . ‖f‖Lp1 (Rd)

holds for f ∈ Lp1(Rd) supported on a fixed ball.

Instead of reducing the quantity α, we apply Proposition 2.7 to increase the ratio r0

p0
.

Given a bound

‖T k−1[f ]‖Lq0 (Lr0 ) . ‖f‖Lp0 (Rd−1), (2.10)

and a bound

‖T 1[f ]‖Lq(Lr) . ‖f‖Lp(Rd), (2.11)

we may obtain a bound

‖T k[f ]‖Lq1 (Lr1 ) . ‖f‖Lp1 (Rd) (2.12)

where r1

p1
= r0

p0

r
p
. The specific statement of this principle is below. We will not give any

applications; let it suffice to say that one may obtain previously unknown estimates, but

these estimates are rarely for the optimal range of p and never for the optimal range of

q (here we mean the optimal range for the given value of r
p
).

Proposition 2.8. Suppose the bound (2.10) holds for f ∈ Lp0(Rd−1) supported on a

fixed ball, and suppose the bound (2.11) holds for f ∈ Lp(Rd) supported on a fixed ball.

Then (2.12) holds for f ∈ Lp1(Rd) supported on a fixed ball, where

q1 = min

(
q0

r

p0

, q

)
, r1 = r0

r

p0

, p1 = p

if r ≥ p0, and where

q1 = min
(
q0, q

p0

r

)
, r1 = r0, p1 = p

p0

r
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if r ≤ p0.

Proof of Proposition 2.7. Without loss of generality, we assume that f is positive.

Let L ∈ G(d, k), x ∈ L⊥, and suppose that L = span(ξ, U−1
ξ (M)) where M ∈

G(d− 1, k − 1). Then

T k[f ](L, x) =

∫
L+x

f(y) dy =

∫
M+Uξ(x)

∫
R

f(U−1
ξ (z) + tξ) dt dz

= T k−1[T 1[f ](ξ, U−1
ξ (·))](M, Uξ(x)).

By (2.7) and our hypothesized bound for T k−1, we now have

‖T k[f ]‖Lq0 (Lr0 )

.

(∫
Sd−1

∫
G(d−1,k−1)

(∫
M⊥

T k−1[T 1[f ](ξ, U−1
ξ (·))](M, x)r0 dx

) q0
r0

dM dξ

) 1
q0

.

(∫
Sd−1

(∫
Rd−1

T 1[f ](ξ, U−1
ξ (y))p0 dy

) q0
p0

dξ

) 1
q0

= ‖T 1[f ]‖Lq0 (Lp0 ),

where above we note that T 1[f ](ξ, U−1
ξ (·)) is supported on a fixed ball, since f is sup-

ported on a fixed ball.

Finally, we apply apply our hypothesized bound for T 1

‖T 1[f ]‖Lq0 (Lp0 ) . ‖f‖Lp1 (Rd).

Proof of Proposition 2.8. First, suppose r ≥ p0. Then, since we are only considering

local estimates, we may interpolate our known bound for T k−1 with the trivial L∞
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bound to obtain the bound

‖T k−1[f ]‖
L

q0
r

p0

„
L

r0
r

p0

« . ‖f‖Lr(Rd−1).

Applying Hölder’s inequality if necessary, the same bound holds with q0
r
p0

replaced by q1.

Possibly applying Hölder’s inequality again, we obtain from our hypothesized estimate

for T 1,

‖T 1[f ]‖Lq1 (Lr) . ‖f‖Lp1 (Rd).

We apply Proposition 2.5 to obtain the conclusion.

Now, suppose r ≤ p0. Since we are only considering local estimates, we may interpo-

late with the trivial L∞ bound to obtain

‖T 1[f ]‖
Lq

p0
r (Lp0 )

. ‖f‖Lp1 (Rd).

Applying Hölder’s inequality if necessary, we may replace q p0

r
by q1. Possibly applying

Hölder’s inequality again, we obtain the bound

‖T k−1[f ]‖Lq1 (Lr0 ) . ‖f‖Lp0 (Rd−1).

We apply Proposition 2.5 to obtain the conclusion.

2.3 The L2 method

Reducing α0 by a fixed factor r
p
, as in Proposition 2.1, is not a substantial gain for

small α0. By using an L2 estimate of the X-ray transform which takes advantage of

cancellation, instead of the Lp → Lq(Lr) bounds, we may take α1 = α0− 1 when α0 ≥ 1

and obtain a bound for Mk when α0 < 1.
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The main estimate needed to derive Proposition 2.3 was proven by Smith and Solmon

in [37].

Lemma 2.9. For d ≥ 3

‖T 1[f ]‖L2(L2) = Cd‖f‖Ḣ− 1
2 (Rd)

where Cd is a fixed constant depending only on d and Ḣ denotes the homogeneous L2

Sobolev space.

It immediately follows that if the Fourier transform ĝ of a function g is identically 0

on B(0, R) then

‖T 1[g]‖L2(L2) . R− 1
2‖g‖L2(Rd). (2.13)

To effectively apply (2.13), we use a Littlewood-Paley decomposition. Let φ0 be a

Schwartz function with φ̂0 ≡ 1 on B(0, 1) and with φ̂0 supported on B(0, 2). For j > 0,

define φj = 2jdφ0(2
j·)−2(j−1)dφ0(2

j−1·) so that φ̂j is supported on B(0, 2j+1)\B(0, 2j−1).

Functions are decomposed

f =
∞∑

j=0

fj

where fj = f ∗ φj.

Our last ingredients are two Schwartz-tail estimates needed to reconcile the localiza-

tion properties of the space and frequency variables.

Lemma 2.10. Suppose g ≥ 0 and ̂̃g = ĝ on B(0, 1
δ
). Then

Mk−1
δ [g] . Mk−1

δ [|g̃|]. (2.14)

Proof. For 1 ≤ n ≤ d let Φn be a nonnegative Schwartz function on Rn such that Φn ≥ 1

on B(0, 1) and Φ̂n is supported on B
(

0, 1√
2

)
. For L ∈ G(d, k) let

πL,δ(x) = Φk(projL(x))δ−(d−k)Φd−k
(

projL⊥
(x

δ

))
.
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Now, define

M̃k
δ [f ](L) = sup

a∈Rd

∫
Rd

πL,δ(x− a)f(x)dx.

By construction, πL,δ(· − a) &
χLδ(a)

Ld(Lδ(a))
and π̂L,δ is supported on B(0, 1

δ
). Thus

Mk
δ [g] . M̃k

δ [g] = M̃k
δ [g̃].

Since Φk and Φd−k are Schwartz functions, we have

Φk ≤
∞∑

j=1

cjχB(yj , 1
2
)

and

Φd−k ≤
∞∑

j=1

djχB(zj , 1
2
)

for some {cj}, {dj} ∈ l1(N), {yj} ⊂ Rk, and {zj} ⊂ Rd−k. Then, for an appropriately

chosen {aj,l}

πL,δ(x) ≤
∞∑

j,l=1

cjdlχB(yj , 1
2
)(projL(x))δ−(d−k)χB(zl,

1
2
)

(
projL⊥

(x

δ

))
.

∞∑
j,l=1

cjdl

χLδ(aj,l)

Ld(Lδ(aj,l))
.

Thus,

M̃k
δ [g̃] .

∞∑
j,l=1

cjdlMk
δ [|g̃|] . Mk

δ [|g̃|].

Lemma 2.11. Define

Mk−1
loc [g](L) = sup

a∈Rd

∫
a+(L∩B(0, 1

2
))

g(x)dx.

Suppose ĝ is supported on B(0, 1
δ
). Then

Mk−1
loc [|g|] . Mk−1

δ [|g|].
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Proof. Since ĝ is supported on B(0, 1
δ
),

g = g ∗ δ−dφ0

( ·
δ

)
and so ∫

a+(L∩B(0, 1
2
)

|g(x)|dx ≤
∫

Rd

∣∣∣δ−dφ0

(y

δ

)∣∣∣ ∫
a+y+(L∩B(0, 1

2
))

|g(x)|dx dy.

Since φ0 is a Schwartz function,

|φ0| ≤
∞∑

j=1

cjχB(yj , 1
2
)

for some {cj} ∈ l1(N) and {yj} ⊂ Rd. Thus∫
Rd

∣∣∣δ−dφ0

(y

δ

)∣∣∣ ∫
a+y+(L∩B(0, 1

2
))

|g(x)|dx dy

≤
∞∑

j=1

cjδ
−d

∫
B(δyj , δ

2
)

∫
a+y+(L∩B(0, 1

2
))

|g(x)|dx dy

.
∞∑

j=1

cjMk−1
δ [|g|](L)

. Mk−1
δ [|g|](L).

Proof of Proposition 2.3. We begin by proving (2.5). Averaging over each k-plate is

local and we are proving an Lp → Lq(Lr) bound where p ≤ q ≤ r, so we may assume

that f is supported on a fixed ball. Additionally, assume that f is nonnegative.

Following the proof of Proposition 2.5, we observe that for L = span(ξ, U−1
ξ (M)) we

have

Mk
δ [f ](L) . Mk−1

δ [T 1[f ](ξ, U−1
ξ (·))](M). (2.15)
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Since f is supported on a fixed ball, we may switch the order of integration between

convolution and the X-ray transform to obtain

‖T 1[fj]‖L∞(L∞) . ‖f‖L∞(Rd)

uniformly in j. Hence, interpolation with (2.13) gives

‖T 1[fj]‖Lp(Lp) . (2−j)
1
p‖f‖Lp(Rd) (2.16)

for any p ≥ 2.

From Lemma 2.10, we obtain

Mk−1
δ [T 1[f ](ξ, U−1

ξ (·))](M) .
| log(δ)|+1∑

j=0

Mk−1
δ [|T 1[fj](ξ, U

−1
ξ (·))|](M). (2.17)

Averaging Lemma 2.11 gives, for each j,

Mk−1
δ [|T 1[fj](ξ, U

−1
ξ (·))|](M) . Mk−1

2−j [|T 1[fj](ξ, U
−1
ξ (·))|](M). (2.18)

Integrating over G(d, k) and combining the bounds (2.4) and (2.16) as in the proof

of Proposition 2.5, we obtain

‖Mk
δ [f ]‖Lp(G(d,k)) .

| log δ|+1∑
j=0

(2j)
α−1

p ‖f‖Lp(Rd) . δ−
α−1

p ‖f‖Lp(Rd)

from (2.15), (2.17), and (2.18), when α ≥ 1.

Proceeding to the proof of (2.6), we have f supported on the unit ball and we assume

that f is nonnegative, giving

Mk[f ] . Mk
loc[f ].

As before,

Mk
loc[f ](L) . Mk−1

loc [T 1[f ](ξ, U−1
ξ (·))](M)
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and

Mk−1
loc [|T 1[fj](ξ, U

−1
ξ (·))|](M) . Mk−1

2−j [|T 1[fj](ξ, U
−1
ξ (·))|](M),

giving

‖Mk[f ]‖Lp(G(d,k)) .
∞∑

j=0

(2j)
α−1

p ‖f‖Lp(Rd) . ‖f‖Lp(Rd)

when α < 1.
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Chapter 3

Estimates for the X-ray transform

In this chapter, we extend two results of Katz and Tao from [20] to give mixed-norm

estimates. In addition to their intrinsic interest, these mixed-norm estimates are needed

to fully utilize the method of Chapter 2. Modulo endpoints, Katz and Tao gave the

best possible L
4d+3

7 bounds for M1
δ on Rd, d ≥ 6. Through a slight refinement of their

technique, we give the best possible, except for endpoints, local L
4d+3

7 bounds for T 1 on

Rd, d ≥ 6.

Theorem 3.1. When d ≥ 6 and ε > 0,

‖T 1[f ]‖Lq(Lr) . ‖f‖Lp(Rd) (3.1)

for f supported on a fixed ball, where p = 4d+3
7

, q = 4d+3
4
− ε, and r = 4d+3

3
− ε.

By combining an iterated version of the main estimate from their maximal operator

bound with certain “hairbrush”-type improvements, Katz and Tao showed that (d, 1)

sets have Hausdorff dimension at least (2 −
√

2)(d − 4) + 3. Ignoring the hairbrush

improvements, which are perhaps not well suited for mixed-norm estimates, one would

obtain the lower bound (2 −
√

2)(d − 4) + 3 − (3
√

2 − 4). We extend this lower bound

to a mixed-norm estimate for T 1.

Theorem 3.2. For d ≥ 4 and ε > 0, there exist pε, qε, rε so that (3.1) holds for f
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supported on a fixed ball with (p, q, r) = (pε, qε, rε) where

rε

pε

> 1 +
√

2− ε, and
qε

pε

> 1 +

√
2

2
− ε.

Here, we do not obtain the optimal range of p for the given ratio r
p
. This is because, at

present, we are not able to effectively use the two-ends reduction for iterated estimates.

It will convenient for our purposes to use a different parametrization of the set of

lines. Let e1, . . . , ed be an orthonormal basis for Rd and let H = span(e1, . . . , ed−1). For

ξ, x ∈ H and a function f defined on Rd, the local X-ray transform of f at the line

x + R(ξ + ed) may be defined

T [f ](ξ, x) =

∫ 1

0

f(x + t(ξ + ed)) dt.

We consider the “Kakeya-order” mixed norm of T [f ]

‖T [f ]‖Lq(Lr),K =

(∫
B(0,C)

(∫
Rd−1

|T [f ](ξ, x)|r dx

) q
r

dξ

) 1
q

(3.2)

where C > 0 and B(0, C) denotes the ball centered at 0 with radius C in Rd−1, and we

aim to prove bounds of the form

‖T [f ]‖Lq(Lr),K . ‖f‖Lp(Rd). (3.3)

Through a covering argument, one may see that the bound (3.3) is equivalent to the

more conventional version

‖T 1[f ]‖Lq(Lr) . ‖f‖Lp(Rd) (3.4)

where we only consider f supported on a fixed ball, and where T 1 and the mixed-norms

are as defined in Chapter 1.
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By testing T on the characteristic functions of δ-neighborhoods of points and line

segments, and letting δ approach 0, one sees that

1 +
d− 1

r
≥ d

p
(3.5)

and

1

q
+

1

r
≥ 1

p
(3.6)

are necessary conditions for the bound (3.3) to hold. It is conjectured that, together

with the condition r < ∞, these are also sufficient. This was shown to be the case for

p < d+1
2

by Drury in [13] and for p = d+1
2

by Christ in [10].

Instead of the Kayeya-order mixed norms (3.2), one may also consider the Nikodym-

order mixed norms of T [f ]

‖T [f ]‖Lq(Lr),N =

(∫
Rd−1

(∫
B(0,C)

|T [f ](ξ, x)|r dξ

) q
r

dx

) 1
q

.

In order for the bound

‖T [f ]‖Lq(Lr),N . ‖f‖Lp(Rd) (3.7)

to hold, we again have the necessary conditions (3.5), (3.6), and r < ∞. Unless we

impose the additional assumption that f is supported away from H, we have another

necessary condition

1 +
d− 1

q
≥ d

p
(3.8)

which follows from the application of T to characteristic functions of δ-neighborhoods

of a point in H. Tao showed in [40] that bounds for the Kakeya and Nikodym maximal

operators are roughly equivalent. We observe that his proof carries over to the general

mixed norm case, and hence combined with Theorem 3.1 yields
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Corollary 3.3. When d ≥ 6 and ε > 0, the bound (3.7) holds with p = 4d+3
7

, q = 4d+3
4
−ε,

and r = 4d+3
3
− ε.

One may also formulate a corresponding version of Theorem 3.2.

We prove Theorem 3.1 in sections 3.1, 3.2, 3.3, and 3.4. We give the additional

arguments needed for Theorem 3.2 in section 3.5. We show that Corollary 3.3 follows

from Theorem 3.1 in section 3.6.

3.1 Reduction to weak estimates

We first note that, since T is local, when p ≤ q ≤ r it suffices to prove (3.3) for f

supported on the cube Q centered at 1
2
ed with side length 1. A natural simplification of

the bound (3.3) is the estimate

‖λχF‖Lq(Lr),K . ‖χE‖Lp(Rd) (3.9)

where E ⊂ Q, 0 < λ ≤ 1, and

T [χE](ξ, x) ≥ λ for (ξ, x) ∈ F ⊂ B(0, C)× Rd−1. (3.10)

We further simplify the estimate (3.9) to

Ld(E)
1
p & λ

(
L2(d−1)(F )

Ω(F )

) 1
q

Ω(F )
1
r (3.11)

= λL2(d−1)(F )
1
q Ω(F )

1
r
− 1

q

where

Ω(F ) = sup
ξ∈B(0,C)

Ld−1({x : (ξ, x) ∈ F}).

The crude interpolation argument below shows that (3.3) follows from (3.11).
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Claim 3.4. Suppose that r > q and that the estimate (3.11) holds for all E contained

in Q. Then for any ε > 0, the bound

‖T [f ]‖Lq(Lr),K . ‖f‖Lp+ε(Rd)

holds for functions f supported on Q.

Proof. Without loss of generality, assume that f is nonnegative and

‖f‖Lp+ε(Rd) = 1. (3.12)

For integers j, k, l let

Ej = {x ∈ Rd : 2j−1 < f(x) ≤ 2j}

Fj,k = {(ξ, x) ∈ B(0, C)× Rd−1 : 2k−1 < T [χEj
](ξ, x) ≤ 2k}

Fj,k,l = {(ξ, x) ∈ Fj,k : 2l−1 < Ld−1({x′ : (ξ, x′) ∈ Fj,k}) ≤ 2l}.

Since each T [χEj
] ≤ 1, we have Fj,k = ∅ for k > 1. Since we only consider ξ ∈ B(0, C)

and f supported on Q, Fj,k,l = ∅ for l > C̃. It follows that

‖T [f ]‖Lq(Lr),K .
∞∑

j=−∞

0∑
k=−∞

C̃∑
l=−∞

2j+k+l( 1
r
− 1

q
)L2(d−1)(Fj,k,l)

1
q .

Let ε1, ε2 > 0 and Sk,l = 2kε1−l( 1
r
− 1

q
)ε2 . Then

2k+l( 1
r
− 1

q
)L2(d−1)(Fj,k,l)

1
q = Sk,l

(
2k2

l( 1
r
− 1

q
)
1+ε2
1−ε1L2(d−1)(Fj,k,l)

1
q(1−ε1)

)1−ε1

.

Provided that ε2 is sufficiently small relative to ε1, we have(
1

r
− 1

q

)
1 + ε2

1− ε1

=
1

r
− 1

q(1− ε1)
+

ε1

r(1− ε1)
+ ε2

(
1

r(1− ε1)
− 1

q(1− ε1)

)
(3.13)

≥ 1

r
− 1

q(1− ε1)
.
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We then have

2k2
l( 1

r
− 1

q
)
1+ε2
1−ε1L2(d−1)(Fj,k,l)

1
q(1−ε1) . 2k2

l( 1
r
− 1

q(1−ε1)
)L2(d−1)(Fj,k,l)

1
q(1−ε1)

. Ld(Ej)
1
p ,

where the first inequality follows from (3.13) and the second inequality follows from

(3.11) and the fact that
L2(d−1)(Fj,k,l)

2l . 1. Since Sk,l is summable this gives

‖T [f ]‖Lq(Lr),K .
∞∑

j=−∞

2jLd(Ej)
1−ε1

p

=
0∑

j=−∞

2jε1
(

2jLd(Ej)
1
p

)1−ε1
+

∞∑
j=1

2−jε1
(

2jLd(Ej)
1−ε1

p(1+ε1)

)1+ε1

. ‖f‖1−ε1
Lp + ‖f‖1+ε1

L
p(1+ε1)
1−ε1

. ‖f‖1−ε1

L
p(1+ε1)
1−ε1

+ ‖f‖1+ε1

L
p(1+ε1)
1−ε1

= 2‖f‖Lp+ε ,

where we choose ε1 solving p1+ε1
1−ε1

= p + ε, and recall (3.12) for the last equation.

3.2 The two-ends reduction

In order to obtain a favorable value of p in Theorem 3.1, we will employ a version of

the two-ends reduction from [43], namely that it suffices to assume for λ ≤ ρ ≤ λε,

(ξ, x) ∈ F , z ∈ Rd, that ∫ 1

0

χE∩B(z,ρ)(x + t(ξ + ed)) dt . λρBε (3.14)

where B = 1
4p

. To justify this reduction, we will use induction on scales via Claim 3.5

below.
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Claim 3.5. Suppose that 1 + d−1
r
≥ d

p
and that the inequality

Ld(E) ≥ Cελ
p+εL2(d−1)(F )

p
q Ω(F )p( 1

r
− 1

q ) (3.15)

holds for

E ⊂ Q, λ ≥ λ0, and E, F, λ satisfying (3.10). (3.16)

Then, we also have for ρ < 1

Ld(Ẽ) ≥ ρ−εCελ̃
p+εL2(d−1)(F̃ )

p
q Ω(F̃ )p( 1

r
− 1

q ) (3.17)

when Ẽ is contained in any sub-cube Q̃ ⊂ Q with side length ρ; λ̃ ≥ ρλ0; and Ẽ, F̃ , λ̃

are as in (3.10) (i.e. T [χẼ] ≥ λ̃ on F̃ ).

Proof. The proof is simply a change of variables, mapping Q̃ to Q. Let z be the center

of Q̃. Then, letting tzed = projed
(z), xz = projH(z), and t̃ = 1

ρ

(
t−
(
tz − ρ

2

))
, we see

that

T [χẼ](ξ, x) =

∫ tz+ ρ
2

tz− ρ
2

χẼ(x + t(ξ + ed)) dt

=

∫ tz+ ρ
2

tz− ρ
2

χẼ−z+ ρ
2
ed

(
x− xz + t(ξ + ed)−

(
tz −

ρ

2

)
ed

)
dt

= ρ

∫ 1

0

χẼ−z+ ρ
2
ed

(
x− xz +

(
tz −

ρ

2

)
ξ + ρt̃ (ξ + ed)

)
dt̃

= ρ

∫ 1

0

χ 1
ρ(Ẽ−z+ ρ

2
ed)

(
1

ρ

(
x− xz +

(
tz −

ρ

2

)
ξ
)

+ t̃(ξ + ed)

)
dt̃

= ρT [χE]

(
ξ,

1

ρ

(
x− xz +

(
tz −

ρ

2

)
ξ
))

,

where E = 1
ρ

(
Ẽ − z + ρ

2
ed

)
.

Let F = {(ξ, 1
ρ

(
x− xz +

(
tz − ρ

2

)
ξ
)
) : (ξ, x) ∈ F̃} and λ = 1

ρ
λ̃, so that T [χE] ≥ λ
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on F . Then

Ld(E) = ρ−dLd(Ẽ),

L2(d−1)(F ) = ρ−(d−1)L2(d−1)F̃ ,

and

Ω(F ) = ρ−(d−1)Ω(F̃ ).

By construction, E is contained in Q and, since λ̃ ≥ ρλ0, we have λ ≥ λ0. Thus, we

may apply (3.15), obtaining

ρ−dLd(Ẽ) ≥ Cε

(
ρ−1λ̃

)p+ε (
ρ−(d−1)L2(d−1)(F̃ )

) p
q

(ρ−(d−1)Ω(F̃ ))p( 1
r
− 1

q )

= ρ−p(1+ d−1
r

)ρ−εCελ̃
p+εL2(d−1)(F̃ )

p
q Ω(F̃ )p( 1

r
− 1

q ).

Then, since 1 + d−1
r
≥ d

p
and ρ < 1, we have ρd−p(1+ d−1

r
) > 1 and thus our conclusion

(3.17) holds.

We will use induction on λ0 to show that proving (3.15) for arbitrary λ under the

two-ends reduction is sufficient to prove (3.15) for arbitrary λ in general.

Note that (3.14) holds trivially for any fixed choice of λ by a sufficiently large choice

of the implicit constant. Thus, we may start our induction and assume that (3.15) holds

for an initial λ0. Now, suppose that (3.15) is known to hold with λ0 = Λ ≤ 64−
1
ε and

that we want to prove it with λ0 = 1
2
Λ. Let 1

2
Λ ≤ λ ≤ Λ, and let E, F be as in (3.16).

Let F be the subset of F for which the two ends condition (3.14) fails. If

L2(d−1)(F ) ≤ 1

2
L2(d−1)(F ), (3.18)

then we may apply our knowledge of (3.15) under the two-ends reduction to the set

F \ F . Thus, without loss of generality we assume the inequality opposite to (3.18).
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By dyadic pigeonholing we may find ρ0 ∈ [λ, λε] and F̂ so that (3.14) fails with ρ = ρ0

for (ξ, x) ∈ F̂ and

L2(d−1)(F̂ ) &
L2(d−1)(F )

| log(λ)|
.

We then tile Q by a collection {Qj} of cubes with side length ρ0, and let Ẽj = E ∩ Q̃j

where Q̃j is the cube with the same center as Qj and side length 4ρ0. For each (ξ, x) ∈ F̂ ,

(3.14) fails for some zξ,x ∈ Qjξ,x
, giving

T [χẼjξ,x
](ξ, x) ≥ λρBε

0 . (3.19)

Henceforth, we take λ̃ = λρBε
0 and let F̃j = {(ξ, x) ∈ F̂ : j = jξ,x}. Without loss of

generality, we assume that the constant on the right hand side of (3.14) is at least 1 and

thus we may ignore it in (3.19).

For each j we now have T [χẼj
] ≥ λ̃ on F̃j, and Ẽj contained in a sub-cube of Q with

side length 4ρ0. Naturally, we will want to apply Claim 3.5 in order to estimate the size

of the Ẽj. In order to apply the claim, it only remains to verify that λ̃ ≥ 4ρ0Λ. In fact,

assuming without loss of generality that ε ≤ 1
2B

, we have

λ̃ ≥ λρBε
0 = ρ0Λ

λ

Λ
ρBε−1

0 ≥ ρ0Λ
1

2
ρBε−1

0 ≥ ρ0Λ
1

2
ρ
− 1

2
0 ≥ ρ0Λ

1

2
Λ− 1

2
ε ≥ 4ρ0Λ.

Thus, we may apply Claim 3.5. We then have by (3.17)

Ld(Ẽj) ≥ (4ρ0)
−εCελ̃

p+εL2(d−1)(F̃j)
p
q Ω(F̃j)

p( 1
r
− 1

q )

≥ 1

4
ρ
−ε+(p+ε)Bε
0 Cελ

p+εL2(d−1)(F̃j)
p
q Ω(F̃j)

p( 1
r
− 1

q ).

Recalling that q ≤ r, we observe that, since F̃j ⊂ F , we have Ω(F̃j)
p( 1

r
− 1

q
) ≥
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Ω(F )p( 1
r
− 1

q
). Since the Ẽj are finitely overlapping and q ≥ p, we then have

Ld(E) &
∑

j

Ld(Ẽj) (3.20)

≥ 1

4
ρ
−ε+(p+ε)Bε
0 Cελ

p+ε
∑

j

L2(d−1)(F̃j)
p
q Ω(F̃j)

p( 1
r
− 1

q )

≥ 1

4
ρ
−ε+(p+ε)Bε
0 Cελ

p+εΩ(F )p( 1
r
− 1

q )
∑

j

L2(d−1)(F̃j)
p
q

≥ 1

4
ρ
−ε+(p+ε)Bε
0 Cελ

p+εΩ(F )p( 1
r
− 1

q )L2(d−1)(F̂ )
p
q

& ρ
−ε+(p+ε)Bε
0 | log(λ)|−

p
q Cελ

p+εΩ(F )p( 1
r
− 1

q )L2(d−1)(F )
p
q .

Recalling that B = 1
4p

and assuming that ε < p, we have

ρ
−ε+(p+ε)Bε
0 | log(λ)|−

p
q ≥ λ−

1
2
ε2| log(λ)|−

p
q . (3.21)

It only remains to verify that the right side of (3.21) is large enough to overcome the

implicit constant in (3.20). Noting that this constant is independent of the constant in

(3.14), we see that this may be accomplished by a sufficiently small initial choice of λ0.

3.3 The main estimate

For t ∈ R, let Ht denote the plane H + ted. Given a line g which intersects H in exactly

one point, we define

πt(g) = Ht ∩ g.

For collections G of such lines, we are interested in lower bounds for the size of πt(G) in

terms of the size of G.

We first consider the purely combinatorial setting where G is finite. Then, from the
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fact that a line is determined by two points, we see that for every t1 6= t2,

#G
1
2 ≤ sup

t=t1,t2

#πt(G)

where # denotes cardinality. In [20], Katz and Tao showed that if t0, t∞, t1, t1′ , t2, t2′

satisfy a certain algebraic condition, and if the lines in G point in distinct directions,

then

#G
4
7 . sup

t=t0,t∞,t1,t1′ ,t2,t2′
#πt(G). (3.22)

In order to give a bound of type (3.3), one must consider the more general case where

the lines in G do not point in distinct directions. Suppose that at most M lines in G

point in each direction. Then by taking a maximal direction separated subset of G, the

estimate

#G
4
7 . M

4
7 sup

t=t0,t∞,t1,t1′ ,t2,t2′
#πt(G) (3.23)

follows trivially from (3.22). However, following the proof of (3.22) with the quantity

M in mind, one actually obtains

#G
4
7 . M

1
7 sup

t=t0,t∞,t1,t1′ ,t2,t2′
#πt(G) (3.24)

with no additional arguments required. This is, in fact, the sharp power of M for the

given power of G, as one may verify by letting Gn be the set of lines determined by the

pairs of points (ie1, ie1 + je1 + ed) where 1 ≤ i, j ≤ n, letting t0, t∞, t1, t1′ , t2, t2′ be any

fixed rational numbers, and considering n large.

To prove the desired operator estimates, one must make the transition from the

combinatorial to the continuous setting. The maximal operator bound in [20] was proven

using a δ-discretization argument and a refinement of (3.22) which took into account

possible δ-uncertainties. It is possible to adapt (3.24) for use with a discretization
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argument and use this estimate to prove Theorem 3.1. Instead, we will prove the analog

of (3.24) for Lebesgue-measurable sets of lines and avoid discretization entirely.

Let G be a set of lines in Rd, each of which intersect the plane H in exactly one

point. Considering the coordinates for the X-ray transform T , we parametrize G by the

subset

GX = {(ξ, x) : there exists g ∈ G with x, (x + ξ + ed) ∈ g}

of H ×H. For t1 6= t2, we may also parametrize G by the subset

Gt1,t2 = {(πt1(g), πt2(g)) : g ∈ G}

of H ×H. Using the “line property”

(x, y) ∈ Gt1,t2 ⇔
(

t2 − t3
t2 − t1

x +
t3 − t1
t2 − t1

y,
t2 − t4
t2 − t1

x +
t4 − t1
t2 − t1

y

)
∈ Gt3,t4 , (3.25)

we may change variables to give

|G| := L2(d−1)(GX) = L2(d−1)(G0,1) = |t1 − t2|−(d−1)L2(d−1)(Gt1,t2). (3.26)

Henceforth, we will use the abbreviation

Dt,t′ := |t− t′|−(d−1).

Finally, define

Ω(G) := Ω(GX) = sup
ξ∈H

Ld−1({x : (ξ, x) ∈ GX}).

In practice, each line in G will intersect the cube Q, and GX ⊂ B(0, C) × Rd−1. Thus

Ω(G), |G|,Ld−1(πt(G)) < ∞. We will always assume that this inequality holds below.

To put the following proposition in context, we point out that, as we will see later,

the quantity k
α−β

in an estimate of the form (3.27) corresponds to the quantity r
p

in an

estimate of the form (3.3).
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Proposition 3.6. Suppose that for t1, . . . , tk ∈ R, we have

|G|α . Ct1,...,tkΩ(G)β
∏

i=1,...,k

Ld−1(πti(G)) (3.27)

for each set of lines G, where 0 ≤ β and α ≤ k.

Then, for any t0, t∞, t1′ , . . . , tk′ ∈ R satisfying t0 6= t∞;

ti 6= t0, ti′ 6= t0, ti 6= t∞, for i = 1, . . . , k;

and satisfying the requirement that

s = st0,t∞(ti, ti′) := (t∞ − t0)
ti − t0

(ti − t∞)(ti′ − t0)
(3.28)

is independent of i for i = 1, . . . , k, we have

|G|2k .

(
Ct1,...,tkD

k−α
t0,t∞

∏
i=1,...k

Dti′ ,t0

)
Ω(G)β+k−α

· Ld−1(πt∞(G))k−αLd−1(πt0(G))k
∏

i=1,...k

Ld−1(πti(G))Ld−1(πti′
(G)).

(3.29)

For t1 6= t2, the trivial estimate

|G| ≤ Dt1,t2Ld−1(πt1(G))Ld−1(πt2(G)) (3.30)

follows directly from (3.26). Thus, applying Proposition 3.6 with k = 2, α = 1, β = 0,

and Ct1,t2 = Dt1,t2 , we obtain

Corollary 3.7. Let t1, t1′ , t2, t2′ , t0, t∞ ∈ R satisfy

t1 6= t2; t0 6= t∞, t1, t1′ , t2, t
′
2; t∞ 6= t1, t2;

and the requirement that s is independent of i in (3.28). Then

|G|4 .
(
Dt1,t2Dt0,t∞Dt1′ ,t0

, Dt′2,t0

)
Ω(G) sup

t=t∞,t0,t1,t1′ ,t2,t2′
Ld−1(πt(G))7. (3.31)



44

In Section 3.4, we will use a uniformization argument to obtain Theorem 3.1 from

Corollary 3.7. In Section 3.5, we will consider further iterations of Proposition 3.6.

Proof of Proposition 3.6. We will begin by defining the set

V = {(g1, g2) ∈ G×G : πt0(g1) = πt0(g2)}.

For any w = (g1, g2) ∈ V , let γi(w) = gi when i = 1, 2. Consider the function on V ,

ν = sπt∞(γ1) + πt∞(γ2)− πt0(γ2).

Our purpose in defining ν is to obtain the equivalence classes in subsets W of V deter-

mined by the fibers of ν:

Wν0 := W ∩ ν−1(ν0) for ν0 ∈ H.

Let Gν0 = γ1(Vν0). Then we may calculate an upper bound for |Gν0| in terms of Ω(G)

and Ld−1(πt∞(G)). First note that

|Gν0| = Dt0,t∞

∫
Rd−1

∫
Rd−1

χ(Gν0 )t0,t∞ (x, y) dx dy (3.32)

= Dt0,t∞

∫
Rd−1

∫
Rd−1

χGt0,t∞ (x, y)χGt0,t∞ (x, ν0 − sy + x) dx dy.

Fix y and let ξy = ν0−sy
t∞−t0

. Observe that∫
Rd−1

χGt0,t∞ (x, x + ν0 − sy) dx =

∫
Rd−1

χGt0,t∞ (x, x + (t∞ − t0)ξy) dx (3.33)

=

∫
Rd−1

χG0,1(x− t0ξy, x− t0ξy + ξy) dx

= Ld−1({x : (ξy, x) ∈ GX})

≤ Ω(G),
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where the second equation follows from the line property (3.25), and the third equation

follows from the translation invariance of Ld−1. Combining (3.32) and (3.33), we have

|Gν0| ≤ Dt0,t∞Ld−1(πt∞(G))Ω(G). (3.34)

The remainder of our argument will consist of using (3.27) to obtain a lower bound

for |Gν0| when ν0 is chosen favorably. For any t, t′ 6= t0 and subset W of V , we may

parametrize W by the subset

Wt0,t,t′ = {(πt0(g1), πt(g1), πt′(g2)) : (g1, g2) ∈ W}

of H3. Using our line-property (3.25), we note that, as was the case with |G|,

|W | := Dt0,tDt0,t′L3(d−1)(Wt0,t,t′)

is independent of t, t′.

For any t, t′ 6= t0, W ⊂ V , we may consider the subset of W which is “popular” with

respect to the double projection (πt(γ1), πt′(γ2))

W
〈πt⊗t′ 〉
t0,t,t′ :={
(x, y, z) : Dt0,tDt0,t′

∫
Rd−1

χWt0,t,t′
(x′, y, z) dx′ ≥ |W |

2Ld−1(πt(G))Ld−1(πt′(G))

}
. (3.35)

After estimating
∣∣W \W 〈πt⊗t′ 〉

∣∣, one observes that

|W 〈πt⊗t′ 〉| ≥ 1

2
|W |. (3.36)

Thus, abbreviating

V ′ :=

(((
V
〈πt1⊗t′1

〉
)〈πt2⊗t′2

〉
)

...

)〈πtk⊗t′
k
〉

,

we have

|V ′| & |V |. (3.37)
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Given any subset W of V ,

|W | = Dt0,t∞Dt0,t∞

∫
Rd−1

∫
Rd−1

∫
Rd−1

χWt0,t∞,t∞ (x, y, z) dx dy dz (3.38)

= Dt0,t∞Dt0,t∞

∫
Rd−1

∫
Rd−1

∫
Rd−1

χWt0,t∞,t∞ (x, y, ν ′ − sy + x) dx dy dν ′

= Dt0,t∞Dt0,t∞

∫
Rd−1

∫
Rd−1

∫
Rd−1

χ(γ1(Wν′ ))t0,t∞ (x, y) dx dy dν ′.

Substituting (3.38) with W = V ′ and W = V into the left and right hand sides respec-

tively of (3.37), we observe that

|G′
ν0
| & |Gν0| (3.39)

for some ν0 ∈ ν(V ), where we define G′
ν0

= γ1 ((V ′)ν0).

Applying our hypothesis (3.27) to the set of lines G′
ν0

, we obtain

|G′
ν0
|α . Ct1,...,tkΩ(G′

ν0
)β

∏
i=1,...,k

Ld−1(πti(G
′
ν0

)) (3.40)

≤ Ct1,...,tkΩ(G)β
∏

i=1,...,k

Ld−1(πti(G
′
ν0

)),

where the second inequality follows from the fact that G′
ν0
⊂ G and the condition that

β ≥ 0.

Suppose y ∈ πti(G
′
ν0

). Then y = πti(g1) where (g1, g2) ∈ (V ′)ν0 . Letting z = πti′
(g2),

we have by definition of V ′

|V |
Ld−1(πti(G))Ld−1(πti′

(G))
. Dti,t0Dti′ ,t0

∫
Rd−1

χVt0,ti,ti′
(x, y, z) dx. (3.41)
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We will now need to use our definition of s, rewriting

ν = s (πt∞(γ1)− πt0(γ1)) + (πt∞(γ2)− πt0(γ2)) + sπt0(γ2) (3.42)

= s
t∞ − t0
ti − t0

(πti(γ1)− πt0(γ1)) +
t∞ − t0
ti′ − t0

(
πti′

(γ2)− πt0(γ2)
)

+ sπt0(γ2)

= s
t∞ − t0
ti − t0

πti(γ1) +
t∞ − t0
ti′ − t0

πti′
(γ2) + πt0(γ2)

(
t0 − t∞
ti′ − t0

+ s
ti − t∞
ti − t0

)
= s

t∞ − t0
ti − t0

πti(γ1) +
t∞ − t0
ti′ − t0

πti′
(γ2),

where πt0(γj) is independent of j by definition of V , and where the last equation follows

from (3.28). The point is that membership in Vν0 is determined by the double projection

(πti(γ1), πt′i
(γ2)). Hence∫

Rd−1

χVt0,ti,ti′
(x, y, z) dx =

∫
Rd−1

χ(Vν0 )t0,ti,ti′
(x, y, z) dx (3.43)

=

∫
Rd−1

χ(Gν0 )t0,ti
(x, y) dx.

Combining (3.41) and (3.43), we obtain

Ld−1(πti(G
′
ν0

)) =

∫
Rd−1

χπti (G
′
ν0

)(y) dy (3.44)

. Dti,t0Dti′ ,t0

Ld−1(πti(G))Ld−1(πti′
(G))

|V |

∫
Rd−1

∫
Rd−1

χ(Gν0 )t0,ti
(x, y) dx dy

= |Gν0|Dti′ ,t0

Ld−1(πti(G))Ld−1(πti′
(G))

|V |
.

Combining (3.39), (3.40), and (3.44), we have

|V |k . Ct1,...,tk,τΩ(G)β|Gν0|k−α
∏

i=1,...,k

Dt0,t′i
Ld−1(πti(G))Ld−1(πti′

(G)). (3.45)

From the Cauchy-Schwarz inequality, we obtain a lower bound for |V | in terms of
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|G|: (
|G|
Dt0,t

)2

≤ Ld−1(πt0(G))

∫
Rd−1

∫
Rd−1

χGt0,t(x, y) dy

∫
Rd−1

χGt0,t(x, z) dz dx

= Ld−1(πt0(G))

∫
Rd−1

∫
Rd−1

∫
Rd−1

χVt0,t,t(x, y, z) dx dy dz

= Ld−1(πt0(G))
|V |
D2

t0,t

,

which simplifies to

|V | ≥ |G|2

Ld−1(πt0(G))
. (3.46)

Combining (3.46), (3.45), and (3.34), we finally obtain (3.29).

3.4 Uniformization

We now want to find six suitably “average” slices of E to which we will apply Corollary

3.7, allowing us to prove (3.15) under the two-ends reduction. Our argument below is a

continuous version of the uniformization argument in [20]. Let E, F, λ be as in (3.16),

and define

M(E, F ) =

∫
Rd−1

∫
Rd−1

χF (ξ, x)T [χE](ξ, x) dx dξ

=

∫
Rd−1

∫
Rd−1

∫ 1

0

χF (ξ, x)χE(x + t(ξ + ed)) dt dx dξ

=

∫
Rd

χE(z)

∫
Rd−1

χF (ξ, xz − tzξ) dξ dz,

where xz = projH(z) and tzed = projed
(z). By definition of F , M(E, F ) ≥ λL2(d−1)(F ).

We will abbreviate γd = projed
. Let

S0 = {t ∈ [0, 1] : Ld−1(E ∩ γ−1
d (t)) � λL2(d−1)(F )}
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and for k > 0 let

Sk = {t ∈ [0, 1] : (λL2(d−1)(F ))1−(k−1)ε . Ld−1(E ∩ γ−1
d (t)) � (λL2(d−1)(F ))1−kε}.

Recalling that F ⊂ B(0, C)× Rd−1, we note that∫
Rd−1

χF (ξ, projH(z)− projed
(z)ξ) dξ . 1

for every z. Hence, defining Ek = E∩γ−1
d (Sk), we have M(E0, F ) � λL2(d−1)(F ). Thus,

since E =
⋃

k. 1
ε
Ek, an appropriate choice of implicit constants gives

M(Ek0 , F ) & ελL2(d−1)(F ) & λL2(d−1)(F )

for some k0 > 0. Let E ′ = Ek0 , S = Sk0 , and

F ′ = {(ξ, x) ∈ F : T [χE′ ](ξ, x) & λ}.

Considering M(E ′, F \ F ′), we note that

M(E ′, F ′) & λL2(d−1)(F ).

We now proceed to find a point (t0, t∞, t1, t1′ , t2, t2′) ∈ S6 with which we may apply

Corollary 3.7 to our advantage. Due to the factors of Dti,tj in (3.31), we would like to

keep |ti − tj| suitably large; this is facilitated by the two-ends reduction.

For every (ξ, x) ∈ F ′, let

Sξ,x = {t′ ∈ S : x + t′(ξ + ed) ∈ E ′}.

Then, by definition of F ′,

µξ,x := L1(Sξ,x) & λ.
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By (3.14) we have, for every t ∈ R,

L1({t′ ∈ Sξ,x : |t′ − t| < λε}) . λλBε2 � λ

where we assume, without loss of generality, that λ is sufficiently small to obtain the

rightmost inequality. Thus,

L1({t′ ∈ Sξ,x : |t′ − t| ≥ λε}) & µξ,x

and so letting

P (ξ, x) = {(t0, t∞) ∈ (Sξ,x)2 : |t0 − t∞| ≥ λε},

we have L2(P (ξ, x)) & µ2
ξ,x.

For each (t0, t∞) ∈ P (ξ, x) let

Qt0,t∞(ξ, x) = {(t1, t1′) ∈ (Sξ,x)2 : for all i 6= j ∈ {0,∞, 1, 1′}, |ti − tj| ≥ λε},

and note that

L2(Qt0,t∞(ξ, x)) & µ2
ξ,x (3.47)

for every (t0, t∞) ∈ P (ξ, x).

We recall the definition of s from (3.28),

st0,t∞(ti, ti′) :=
(t∞ − t0)(ti − t0)

(ti − t∞)(ti′ − t0)
.

In order to satisfy the condition in Corollary 3.7 that s is independent of i, we consider

the set

Rt0,t∞(ξ, x) = {(t1, t1′ , t2, t2′) ∈ Qt0,t∞(ξ, x)2 : st0,t∞(t1, t1′) = st0,t∞(t2, t2′)}.

Below we abbreviate st0,t∞ by s, Qt0,t∞(ξ, x) by Q, Rt0,t∞(ξ, x) by R, and µξ,x by µ. Also

we use · ' · to denote · & λCε·, and we similarly use / and u. We observe that s(t1, ·)
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is a diffeomorphism on an open set containing the support of χQ(t1,·), and so we may

change variables to obtain

L2(Q) =

∫
R

∫
R

χQ(t1, t1′) dt1 dt1′ (3.48)

=

∫
R

∫
R

χQ (t1, ut0,t∞(t1, s
′))

∣∣∣∣(ut0,t∞(t1, s
′)− t0)

2(t1 − t∞)

(t1 − t0)(t∞ − t0)

∣∣∣∣ dt1 ds′

u
∫

R

∫
R

χQ (t1, ut0,t∞(t1, s
′)) dt1 ds′

where we define

ut0,t∞(t1, s) = t0 +
(t∞ − t0)(t1 − t0)

s(t1 − t∞)

and where the u follows from the fact that the Jacobian is u 1 on Q. We apply Cauchy-

Schwarz and change variables again to see that∫
R

∫
R

χQ (t1, ut0,t∞(t1, s
′)) dt1 ds′ (3.49)

≤ L1(s(Q))
1
2

(∫
R

∫
R

∫
R

χQ (t1, ut0,t∞(t1, s
′)) χQ (t2, ut0,t∞(t2, s

′)) dt1 dt2 ds′
) 1

2

/

(∫
R

∫
R

∫
R

χQ (t1, t1′) χQ (t2, ut0,t∞(t2, s(t1, t1′))) dt1 dt1′ dt2

) 1
2

.

Abbreviating

wt0,t∞(t1, t
′
1, t2) = ut0,t∞(t2, s(t1, t1′))

we have by construction

s(t1, t1′) = s(t2, wt0,t∞(t1, t1′ , t2))

and hence

χR(t1, t1′ , t2, wt0,t∞(t1, t1′ , t2)) = χQ(t1, t1′)χQ(t2, wt0,t∞(t1, t1′ , t2)).
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Thus, we combine (3.47), (3.48), and (3.49), to obtain

|R| :=

∫
R3

χR(t1, t1′ , t2, wt0,t∞(t1, t1′ , t2)) dt1 dt1′ dt2

' µ4.

We have control over all of the |ti − tj| relevant to Corollary 3.7, except for |t1 − t2|.

However, since∫
R3

χR(t1, t1′ , t2, wt0,t∞(t1, t1′ , t2))χ[0,r](|t1−t2|) dt1 dt1′ dt2 . rL1(projt1(R))L1(projt1′ (R)),

and L1(projti(R)) ≤ µ for each i, we have |R′| ' µ4 where

R′ = {(t1, t1′ , t2, t2′) ∈ R : |t1 − t2| ' µ2}. (3.50)

Let

X = {(ξ, x, t0, t∞, t1, t1′ , t2) : (ξ, x) ∈ F ′, (t0, t∞) ∈ P (ξ, x), and

(t1, t1′ , t2, wt0,t∞(t1, t1′ , t2)) ∈ R′
t0,t∞(ξ, x)}.

Integrating everything out, we see that

L2(d−1)+5(X) ' M(E ′, F ′)

(
inf

(ξ,x)∈F ′
µξ,x

)5

& L2(d−1)(F )λ6.

For each k ≥ 0 let

Xk = {(ξ, x, t0, t∞, t1, t
′
1, t2) : λCελ2−kε . |t1 − t2| � λCελ2−(k+1)ε}.

Then, recalling that each µξ,x & λ we have by definition of R′
ξ,x

X =
⋃
k≤ 2

ε

Xk,
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and hence for some X ′ := Xk0 , we have L2(d−1)+5(X ′) & L2(d−1)+5(X). Let µ̃2 = λ2−k0ε.

Since each ti ∈ S, and each |t1 − t2| u µ̃2, we see that the (t0, t∞, t1, t1′ , t2) reside in

a set of measure / L1(S)4µ̃2. Thus we may choose a (t0, t∞, t1, t1′ , t2) so that, letting

F ′′ = {(ξ, x) : (ξ, x, t0, t∞, t1, t1′ , t2) ∈ X ′},

we have

L2(d−1)(F ′′) ' (L1(S))−4µ̃−2L2(d−1)(F )λ6. (3.51)

We now define G by the condition GX = F ′′ and recall that

|G| = L2(d−1)(F ′′), and Ω(G) = Ω(F ′′).

Let t2′ = wt0,t∞(t1, t1′ , t2). Since st0,t∞(t1, t1′) = st0,t∞(t2, t2′), we may apply Corollary

3.7 to obtain

L2(d−1)(F ′′)4 .
(
Dt1,t2Dt0,t∞Dt1′ ,t0

, Dt′2,t0

)
Ω(F ′′) sup

t=t∞,t0,t1,t1′ ,t2,t2′
Ld−1(πt(G))7 (3.52)

/ µ̃−2(d−1)Ω(F ) sup
t=t∞,t0,t1,t1′ ,t2,t2′

Ld−1(πt(G))7.

By definition of F ′′, πti(G) ⊂ (E ′ ∩ γ−1
d (ti)) for i ∈ {0,∞, 1, 1′, 2, 2′}. Thus, we may

combine (3.51) and (3.52) to obtain

L2(d−1)(F )4λ24µ̃2(d−1)−8Ω(F )−1 / L1(S)16 sup
t=t∞,t0,t1,t1′ ,t2,t2′

Ld−1(E ′ ∩ γ−1
d (t))7 (3.53)

/ Ld(E)7L2(d−1)(F )−7ε.

Since µ̃ & λ, we thus have

L2(d−1)(F )
4
7
+Cελ

14+2d
7

+CεΩ(F )−
1
7 . Ld(E).

Since d ≥ 6, we have 4d + 3 ≥ 14 + 2d + Cε and hence

(
L2(d−1)(F )

) 4
4d+3

+ε
λΩ(F )

3
4d+3

− 4
4d+3 . Ld(E)

7
4d+3 .
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3.5 Further iteration

By applying Proposition 3.6 once to (3.30), we obtained Corollary 3.7. One obtains the

corollary below from N − 1 iterative applications of Proposition 3.6. This results in an

improved value of k
α−β

, but also requires a larger collection of slices which satisfy a more

complicated set of conditions. Recall the definition

ut0,t∞(ti, s̃) = t0 +
(t∞ − t0)(ti − t0)

s̃(ti − t∞)
,

and note that st0,t∞(ti, ut0,t∞(ti, s̃)) = s̃, where st0,t∞ is as defined in (3.28).

Corollary 3.8. Let N ≥ 3 and σ = (t0,1, t∞,1, s1, . . . , t0,N−1, t∞,N−1, sN−1, t0,N , t∞,N) ∈

R3N−1. Let ΓN+1(σ) = ∅, and for 1 ≤ i ≤ N let

Γi(σ) = {t0,i, t∞,i} ∪∆i(σ) ∪ Γi+1(σ)

and

∆i(σ) = {ut0,i,t∞,i
(t, si) : t ∈ Γi+1}.

Suppose that

t0,i /∈ ∆i(σ) ∪ Γi+1(σ) ∪ {t∞,i}

and

t∞,i /∈ Γi+1(σ)

for each 1 ≤ i ≤ N . Then for any set of lines G

|G|αN .

(
sup
t̃,t̂

DαN

t̃,t̂

)
Ω(G)βN

(
sup

t
Ld−1(πt(G))kN

)
(3.54)

where the right sup ranges over t ∈ Γ1(σ), where the left sup ranges over t̃, t̂ such that

t̃ = t0,i, t̂ ∈ {t∞,i} ∪∆i(σ), 1 ≤ i ≤ N,
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and where

α1 = 1, β1 = 0, k1 = 2,

and

αi+1 = 2ki, βi+1 = βi + ki − αi, and ki+1 = 4ki − αi

for 1 ≤ i < N.

One may calculate the formulas

ki+1 = 4ki − 2ki−1

βi+1 = 2ki−1

which give

ki+1

αi+1 − βi+1

= 1 +

(
1− ki−1

ki

)−1

.

Since ki

ki−1
= 4−2

(
ki−1

ki−2

)−1

, the Banach contraction principle tells us that limi→∞
ki

ki−1
=

2 +
√

2. Thus

lim
i→∞

ki

αi − βi

= 1 +
√

2. (3.55)

Similarly

lim
i→∞

ki

αi

= 1 +

√
2

2
. (3.56)

In the remainder of this section we use Corollary 3.8 to show that the estimate (3.11)

holds with pN , qN , rN satisfying

rN

pN

≥ kN

αN − βN

− ε, and
qN

pN

≥ kN

αN

− ε

where ε may be taken arbitrarily small. Thus, we obtain Theorem 3.2 from (3.55), (3.56),

and Claim 3.4. Due to the complicated nature of the set of slices Γ1(σ), we are not able
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to obtain an appropriately small value of pN . Hence, for the sake of exposition, we will

simplify the argument by passing up several opportunities to slightly improve pN . For

example, we will not employ the two-ends reduction.

Let E ′, F ′, λ, S, and Sξ,x be as in Section 3.4. For (ξ, x) ∈ F ′ let

Xξ,x =

{
σ ∈

(
Sξ,x × Sξ,x × [−Cλ−CN , Cλ−CN ]

)N−1 × Sξ,x × Sξ,x (3.57)

such that Γ1(σ) ⊂ Sξ,x, and such that |t̃− t̂| & λC′N

for all t̃ = t0,i, t̂ ∈ ∆i(σ) ∪ Γi+1(σ) ∪ {t∞,i}, and for all t̃ = t∞,i, t̂ ∈ Γi+1(σ),

where 1 ≤ i ≤ N

}
,

where CN and C ′
N will be determined below. One should think of Xξ,x as the set of

candidates for σ in Corollary 3.8. Our aim is to find a lower bound for L3N−1(Xξ,x).

This will be accomplished by providing the lower bound for a subset YN of Xξ,x which

is appropriately compatible with the following estimate.

Claim 3.9. Let I ⊂ [0, 1] with L1(I) < ∞. For (t0, t∞, s) ∈ I × I × R let

Ĩt0,t∞,s = {t ∈ I : ut0,t∞(t, s) ∈ I, and |t̃−t̂| & L1(I) for t̃ ∈ {t, ut0,t∞(t, s)}, t̂ ∈ {t0, t∞}}.

(3.58)

Then letting

P(I) = {(t0, t∞, s) ∈ I × I × [−CL1(I)−2, CL1(I)−2] : |t0 − t∞| & L1(I),

and L1(Ĩt0,t∞,s) & L1(I)6}, (3.59)

we have ∫
P(I)

L1(Ĩy) dy & L1(I)6. (3.60)
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Proof. We argue as in Section 3.4. Let

P = {(t0, t∞) ∈ I × I : |t0 − t∞| & L1(I)}

and note that

L2(P ) & L1(I)2. (3.61)

For each (t0, t∞) ∈ P , we let

Qt0,t∞ = {(t1, t1′) ∈ I × I : |ti − tj| & L1(I) for all i 6= j ∈ {0,∞, 1, 1′}}.

and note that

L2(Qt0,t∞) & L1(I)2. (3.62)

Consider any fixed t0, t∞ ∈ P , and let Q = Qt0,t∞ . Then, as in (3.48), we have

L2(Q) =

∫
R

∫
R

χQ(t1, t1′) dt1 dt1′ (3.63)

=

∫
R

∫
R

χQ (t1, ut0,t∞(t1, s
′))

∣∣∣∣(ut0,t∞(t1, s
′)− t0)

2(t1 − t∞)

(t1 − t0)(t∞ − t0)

∣∣∣∣ dt1 ds′

.
(
L1(I)

)−2
∫

R

∫
R

χQ (t1, ut0,t∞(t1, s
′)) dt1 ds′.

Note that in Q each |s′| . L1(I)−2. Thus, letting

St0,t∞ =

{
s′ :

∫
R

χQ (t1, ut0,t∞(t1, s
′)) dt1 � L1(I)6

}
we have ∫

St0,t∞

∫
R

χQ (t1, ut0,t∞(t1, s
′)) dt1 ds′ � L1(I)4 . L2(Q)L1(I)2. (3.64)

Next, we note that if s /∈ St0,t∞ then (t0, t∞, s) ∈ P(I). Thus,∫
P(I)

L1(Ĩx)dx ≥
∫

P

∫
R\St0,t∞

(∫
R

χQt0,t∞ (t1, ut0,t∞(t1, s
′)) dt1

)
ds′ dt0 dt∞

& L1(I)6,

where the second inequality follows from (3.61), (3.62), (3.63), and (3.64).
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Taking I = Sξ,x in Claim 3.9, we let Y1 = P(Sξ,x) and for each (t0, t∞, s) = y ∈ Y1

let Iy = (̃Sξ,x)y. Recalling that L1(Sξ,x) & λ, we have by definition of P(Sξ,x)

L1(Iy) & λ6 for y ∈ Y1 (3.65)

and we see from (3.60) that ∫
Y1

L1(Iy) dy & λ6. (3.66)

For j = 2, . . . , N − 1, we define Yj and Iy recursively, letting

Yj = {(y′, y′′) : y′ ∈ Yj−1 and y′′ ∈ P(Iy′)} ⊂ R3j

and

I(y′,y′′) = (̃Iy′)y′′ for (y′, y′′) ∈ Yj.

From (3.65), the definition of P(I), and induction, we see that

L1(Iy) & λ6j

for y ∈ Yj. (3.67)

From (3.60), (3.66), (3.67), and induction, we have∫
Yj

L1(Iy) dy =

∫
Yj−1

∫
P(Iy′ )

L1((̃Iy′)y′′) dy′′ dy′ (3.68)

&
∫

Yj−1

(L1(Iy′))
6 dy′

& λ5·6j−1

∫
Yj−1

L1(Iy′) dy′

& λ5·6j−1

λ6j−1

= λ6j

.

Finally, we let

YN = {(y, t, t′) : y ∈ YN−1; t, t
′ ∈ Iy; and |t− t′| & L1(Iy)}.
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From (3.67) and (3.68), we have

L3N−1(YN) & λ2·6N−1

.

We will now verify that YN ⊂ Xξ,x, where in the definition (3.57) of Xξ,x we have

CN = 2 · 6N−2 and C ′
N = 6N−1. Let

σN = (t0,1, t∞,1, s1, . . . , t0,N−1, t∞,N−1, sN−1, t0,N , t∞,N) ∈ YN

and for j = 1, . . . , N − 1 let

σj = (t0,1, t∞,1, s1, . . . , t0,j, t∞,j, sj),

where we note that σj ∈ Yj. Additionally, define Iσ0 = Sξ,x. By the definition of Yi, we

have each

(t0,i, t∞,i, si) ∈ P(Iσi−1
). (3.69)

Since, by (3.67), each L1(Iσi−1
)−2 . λ−CN , we thus have, by (3.59),

σN ∈ (Sξ,x × Sξ,x × [−Cλ−CN , Cλ−CN ])N−1 × Sξ,x × Sξ,x.

Next, we note that ΓN(σN) = {t0,N , t∞,N} ⊂ IσN−1
and that, since

Iσi−1
= (̃Iσi−2

)
t0,i−1,t∞,i−1,si−1

,

it follows that

Γi(σN) ⊂ Iσi−1
⇒ ∆i−1(σN) ⊂ Iσi−2

and thus Γi−1(σN) ⊂ Iσi−2
.

So by induction Γi(σN) ⊂ Iσi−1
for 1 ≤ i ≤ N , and in particular Γ1(σN) ⊂ Iσ0 = Sξ,x.

Again using (3.69) and (3.59), we obtain

|t0,i − t∞,i| & L1(Iσi−1
) & λC′N .
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Also, since Γi+1(σN) ⊂ Iσi
= (̃Iσi−1

)
t0,i,t∞,i,si

, we see that

|t̃− t̂| & L1(Iσi−1
) & λC′N for t̃ ∈ {t0,i, t∞,i}, t̂ ∈ ∆i(σN) ∪ Γi+1(σN).

Thus σN ∈ Xξ,x and YN ⊂ Xξ,x. In particular

L3N−1(Xξ,x) & λ2·6N−1

.

Let

X = {(ξ, x, σ) : (ξ, x) ∈ F ′ and σ ∈ Xξ,x}

and note that

L2(d−1)+3N−1(X) & λ2·6N−1L2(d−1)(F ′).

Since the σ’s reside in a set of measure . L1(S)2Nλ−(N−1)CN , we see that, letting C ′′
N =

2 · 6N−1 + (N − 1)CN , we may find a fixed σ so that

L2(d−1)(F ′′) & λC′′NL1(S)−2NL2(d−1)(F ′) (3.70)

where

F ′′ = {(ξ, x) : (ξ, x, σ) ∈ X}.

Since M(E, F ′) & λL2(d−1)(F ) and T [χE] ≤ 1, we have

L2(d−1)(F ′) & λL2(d−1)(F ). (3.71)

We now apply Corollary 3.8 with the set of lines G defined by GX = F ′′. We then

have

|G| = L2(d−1)(F ′′)
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and

Ω(G) = Ω(F ′′) ≤ Ω(F ).

Also, since Γ1(σ) ∈ Sξ,x for every (ξ, x) ∈ F ′′, we have πt(G) ⊂ E ∩ γ−1
d (S) for every

t ∈ Γ1(σ). Furthermore, by definition of Xξ,x, we have

sup
t̃,t̂

Dt̃,t̂ . λ−(d−1)C′N .

where the sup ranges over

t̃ = t0,i, t̂ ∈ {t∞,i} ∪∆i(σ), 1 ≤ i ≤ N.

Thus, from (3.54) we obtain

L2(d−1)(F ′′)αN .
(
λ−(d−1)C′N

)αN

Ω(F )βN

(
sup
t∈S

Ld−1(E ∩ γ−1
d (t))kN

)
. (3.72)

Noting that kN

αN
< 2 (and certainly < 2N) and

L1(S)

(
sup
t∈S

Ld−1(E) ∩ γ−1
d (t)

)
. λ−εL2(d−1)(F )−εLd(E),

we obtain from (3.70), (3.71), and (3.72)

L2(d−1)(F )αN+kN ελC′′′N αN+kN εΩ(F )−βN . Ld(E)kN .

where C ′′′
N = 1 + (d− 1)C ′

N + C ′′
N .

Finally, this gives

λL2(d−1)(F )
1

qN Ω(F )

“
1

qN
− 1

rN

”
. Ld(E)

1
pN

where

pN =
C ′′′

NαN + kNε

kN

≥ 6N−2(6(d + 1) + 2(N − 1))
αN

kN

+ ε (3.73)

qN =
C ′′′

NαN + kNε

αN + kNε
≥
(

kN

αN

− Cε

)
pN

rN =
C ′′′

NαN + kNε

αN − βN + kNε
≥
(

kN

αN − βN

− Cε

)
pN .
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Thus, from (3.55), we see that by taking N large and ε small, we have r
p

arbitrarily close

to 1 +
√

2 (although this comes with the price of a very large p).

3.6 Nikodym mixed-norms

We now follow a method of Tao from [40] to show that Corollary 3.3 follows from

Theorem 3.1. For z ∈ Rd write xz = projH(z) and tzed = projed
(z) where proj denotes

orthogonal projection. For nonnegative integers j let

Sj = {z ∈ Rd : 2−(j+1) < tz ≤ 2−j}.

We first prove Corollary 3.3 in the special case when f is supported on S0. In fact, to

prove this case it suffices, since T is local and p ≤ q ≤ r, to consider the case when f is

supported on S0∩Q where Q is the cube centered at 1
2
ed with side length 1. Furthermore,

assume that f is positive.

We then consider the projective transformation

φ(z) =
xz + ed

tz
.

The idea is that we have T [f ](ξ, x) ≈ T [f ◦ φ](x, ξ). To line everything up, we will in

fact estimate T [f ◦ φ ◦ d2] where d2(y) = 2y. Then

T [f ◦ φ ◦ d2](ξ, x) =

∫ 1

1
2

f ◦ φ ◦ d2(x + t(ξ + ed)) dt

=

∫ 1

1
2

f

(
ξ +

1

2t
(2x + ed)

)
dt

≈
∫ 1

1
2

f(ξ + t̃(2x + ed)) dt̃

= T [f ](2x, ξ),
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where the ≈ follows from the fact that the Jacobian 1
2t̃2
≈ 1 on [1

2
, 1] and where the first

and last equations follow from the fact that f is supported on S0. Thus by Theorem 3.1(∫
Rd−1

(∫
B(0,C)

|T [f ](ξ, x)|r dξ

) q
r

dx

) 1
q

=

(∫
B(0,C′)

(∫
B(0,C)

|T [f ](ξ, x)|r dξ

) q
r

dx

) 1
q

.

(∫
B(0,C′)

(∫
B(0,C)

∣∣∣∣T [f ◦ φ ◦ d2]

(
x,

1

2
ξ

)∣∣∣∣r dξ

) q
r

dx

) 1
q

.

(∫
B(0,C′)

(∫
Rd−1

|T [f ◦ φ ◦ d2](x, ξ)|r dξ

) q
r

dx

) 1
q

. ‖f ◦ φ ◦ d2‖Lp(Rd).

where we use the fact that f is supported on Q for the first equation. Since f is supported

on S0, we have

‖f ◦ φ ◦ d2‖Lp(Rd) . ‖f‖Lp(Rd).

Lifting our support assumptions on f , we note that

‖T [f ]‖Lq(Lr),N ≤
∞∑

j=0

‖T [χSj
f ]‖Lq(Lr),N .

However each χSj
f ◦ d2−j is supported on S0, and

T [χSj
f ](ξ, x) = 2−jT [χSj

f ◦ d2−j](ξ, 2jx).

Thus, for each j

‖T [χSj
f ]‖Lq(Lr),N = 2−j(1+ d−1

q
)‖T [χSj

f ◦ d2−j ]‖Lq(Lr),N

. 2−j(1+ d−1
q

)‖χSj
f ◦ d2−j‖Lp(Rd)

≤ 2−j(1+ d−1
q
− d

p
)‖f‖Lp(Rd).
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Hence, provided (3.8) holds with strict inequality, which is indeed the case under the

assumptions of Corollary 3.3, we have

∞∑
j=0

‖T [χSj
f ]‖Lq(Lr),N . ‖f‖Lp(Rd).
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Chapter 4

Finite fields

When estimating the size of Kakeya sets in Rd, we are interested in lower bounds for

the Hausdorff or Minkowski dimension of the union of a direction-separated collection

of lines. Due to the nature of the quantities in question, it is often desirable to replace

the collection of lines by a δ-separated collection of δ-neighborhoods of lines, in effect

discretizing our Kakeya set to scale δ. Unfortunately this discretization process obscures

some of the structure which should be present in E. For example, while two distinct

lines intersect in at most 1 point, the discretization of two δ separated lines can intersect

in many discretized points. Similar “small-angle” considerations apply to (d, k) sets in

general. The difficulty of overcoming this and related issues can tend to hide the true

nature of the problem, and for this reason it is instructive to replace Euclidean space by

vector spaces over finite fields.

In the sense that it retains access to linear algebra, a finite field F is an ideal model

for the discretization of the unit interval in R to scale 1
|F | . In this setting, a (d, k) set

is defined to be a subset of F d containing a translate of every k-dimensional plane in

F d. For a given field F , there is not a suitable analogue of Hausdorff or Minkowski

dimension. Instead, we are interested in uniform estimates over large families of F . We

let ffdim(d, k, p) be the supremum of the set of values η such that there exist Cd,k,p,η > 0
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with

|E| ≥ Cd,k,p,η|F |η (4.1)

for all F with characteristic at least p and all (d, k) sets E in F d. The statement

that ffdim(d, k, p) ≥ β is then analogous to the statement that (d, k) sets in Rd have

Minkowski dimension at least β. Ideally we would like to prove such statements with

p = 2, but the main goal is to improve β regardless of p.

The primary drawback of working in the setting of finite fields is that it is difficult

to model Euclidean objects with size between 1
|F | and 1, such as a cube of side-length

ω where 1
|F | � ω � 1. Thus, for instance, it does not seem to be possible to use

induction on scales. This difficulty can be overcome in part by restricting ourselves to

the fields Zp, where the notion of order in R is locally retained. Indeed, this would seem

to be a natural restriction since any finite field is a field-extension of some Zp, and in

the Euclidean setting we generally restrict ourselves to considering the Kakeya problem

over R rather than its field-extension C. However, even with this sort of restriction, the

model of the ω-cube would not completely retain the structure of F d. This reflects the

lack of a dilation symmetry in discrete settings.

4.1 A recursive estimate for (d, k) sets

In Chapters 2 and 3, we derive dimension estimates for (d, k) sets in Rd as a corollary

to certain maximal operator bounds for k-planes. These bounds are obtained, through

an iterative process, from maximal operator bounds and mixed-norm estimates for lines.

It is likely that similar operator estimates hold in the setting of finite fields, but in the

interest of keeping this chapter non-technical we prove weaker estimates of the form (4.3)
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which are still strong enough to obtain the desired dimension estimates. In any case,

the iterative process in Chapter 2 does not generally provide “sharp p,q” type bounds.

For known sharp-type k-plane maximal operator bounds in F d, see [9].

The proposition below is a recursive dimension estimate, analogous to the recursive

maximal operator/mixed-norm estimate from Chapter 2.

Proposition 4.1. Let F be a finite field, and 1 ≤ k < d − 1. Suppose that for every

(d, k) set E,

|E| & |F |η (4.2)

and suppose that for every set L of lines in F d+1, no more than M of which are parallel

to each direction, ∣∣∣∣∣⋃
l∈L

l

∣∣∣∣∣ & M−α|L|β|F |γ. (4.3)

Then for every (d + 1, k + 1) set E,

|E| & |F |η(β−α)+dβ+γ. (4.4)

The X-ray estimates which we will prove in Propositions 4.5 and 4.8 have the value

γ = 1. In this case, by taking L to be the collection of all lines, one may check that the

sharp exponent of M , which we obtain, is α = 2β − 1. With these exponents, we may

rewrite (4.4) in the more pleasing form

|E| & |F |(η+1)(1−β)+(d+1)β.

Combining Propositions 4.1, 4.5, and 4.7, we obtain

Theorem 4.2.

ffdim(d, k, 4) ≥ max

(
d−

(
3

7

)k

(d− k), d−
(

3

7

)k−1
d− k − 1

2

)
.
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Previously, the best known dimension estimate was d − d−k−1
k+1

, from [9]. The left

hand side of the max is obtained by using Proposition 4.5 for both dimension and

X-ray estimates. The right hand side of the max is superior when d − (k − 1) < 8

and is obtained by instead starting with the dimension estimate from Proposition 4.7.

Further improvement is possible when d− (k− 1) < 6 by using the X-ray estimate from

Proposition 4.8. By using more advanced arithmetic-combinatorial X-ray estimates such

as the finite field analog of the Theorem 3.2, it is likely that 7
3

could be replaced in all

dimensions by numbers arbitrarily close to 1 +
√

2 (which is still inferior to the value 5
2

from Proposition 4.8) by taking p sufficiently large. Also, note that we do not use an

analogue of the L2 method from Chapter 2, since the corresponding finite field estimates

do not seem to be known at present. Finally, readers interested in field-extensions of Z2

and Z3 should replace 7
3

with 2.

Proof of Proposition 4.1. Let E ⊂ F d+1 be a (d + 1, k + 1) set. Let e1, . . . , ed+1 be the

standard basis for F d+1 and H denote the hyperplane span(e1, . . . , ed). For each ξ ∈ H

let Eξ be the set of points x ∈ H so that the line l(x, x + ed+1 + ξ) determined by x and

x + ed+1 + ξ is contained in E.

We want to observe that for each ξ, Eξ is a (d, k) set. Let P be a k-dimensional

subspace of F d = H. Then, since E is a (d + 1, k + 1) set, there exists an x0 ∈ F d+1

so that x0 + span(ξ + ed+1, P ) is contained in E. Possibly subtracting a multiple of

(ξ + ed+1), we may assume that x0 ∈ H. Then the k-plane x0 + P is contained in Eξ.

Since P was arbitrary, we see that Eξ is a (d, k) set.

From the hypothesized bound (4.2), we thus have

|Eξ| & |F |η
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for every ξ. Choose each Ẽξ ⊂ Eξ so that

|Ẽξ| ≈ |F |η. (4.5)

Define the collection of lines in F d+1

L = {l(x, x + ed+1 + ξ) : x ∈ Ẽξ, ξ ∈ H}.

Since |H| = F d, we have |L| ≈ |F |η+d. By definition of Eξ,⋃
l∈L

l ⊂ E.

The classes of parallel lines in L are the sets Lξ = {l(x, x + ed+1 + ξ) : x ∈ Ẽξ}, so from

(4.5) we see that no more than ≈ |F |η lines in L are parallel. It follows from (4.3) that

|E| ≥

∣∣∣∣∣⋃
l∈L

l

∣∣∣∣∣ & (|F |η)−α (|F |η+d
)β |F |γ

= |F |η(β−α)+dβ+γ.

4.2 The bush and Cordoba arguments

We now proceed to the task of proving estimates suitable for use with Proposition 4.1.

In this section, we give two bounds which are, for the most part, weaker than those given

in later sections, but which serve to illustrate the technical simplifications afforded by

the setting of finite-fields.

First, we prove an estimate which would be implied by the analogue of Drury and

Christ’s L
d+1
2 → Ld+1(Ld+1) X-ray transform bound. We use Bourgain’s bush argument;

this is one of a multitude of proofs of (4.6), also see [29].
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Proposition 4.3. Let F be a finite field, and let d ≥ 2. For every collection L of lines

in F d ∣∣∣∣∣⋃
l∈L

l

∣∣∣∣∣ & |L|
1
2 |F |. (4.6)

Proof. Let E =
⋃

l∈L l and µ = supx∈E |{l ∈ L : x ∈ l}|. We observe two lower bounds

for |E|; the first bound is favorable for small µ and the second bound is favorable for

large µ.

Let I = {(x, l) : x ∈ l, l ∈ L}. Then

|E| ≥ 1

µ

∑
x∈E

|{l ∈ L : x ∈ l}| =
1

µ

∑
x∈E

∑
l∈L

χI(x, l) =
1

µ

∑
l∈L

∑
x∈E

χI(x, l) (4.7)

=
1

µ
|L||F |.

On the other hand, let x0 satisfy |{l ∈ L : x0 ∈ l}| = µ. We form the “bush”

B =
⋃

l∈L:x0∈L

l.

Two distinct lines intersect in at most one point, and thus the lines in B are disjoint

away from x0. This implies that

|E| ≥ |B| ≥ µ(|F | − 1) & µ|F |. (4.8)

We finish by taking the geometric mean of (4.7) and (4.8).

Next, we have an estimate in the spirit of Cordoba’s bound [11]. Our bound implies

that ffdim(d, d− 1, 2) = d for d ≥ 2.

Proposition 4.4. Let F be a finite field, and let 1 ≤ k < d. For every collection L of

k-planes in F d such that |L| ≤ |F | ∣∣∣∣∣⋃
l∈L

l

∣∣∣∣∣ & |L||F |k.
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Proof. Let E =
⋃

l∈L l, and I = {(x, l) : x ∈ l, l ∈ L}. For each x ∈ E let

µ(x) = |{l ∈ L : x ∈ l}|.

Then for every l ∈ L

∑
x∈l

µ(x) =
∑
x∈l

∑
l′∈L

χI(x, l′) = |F |k +
∑
x∈l

∑
l′ 6=l∈L

χI(x, l′)

= |F |k +
∑

l′ 6=l∈L

∑
x∈l

χI(x, l′).

For any l′ 6= l, we have |l′ ∩ l| ≤ |F |k−1. By hypothesis |L \ {l}| ≤ |F |, and thus

∑
l′ 6=l∈L

∑
x∈l

χI(x, l′) ≤ |F ||F |k−1

giving ∑
x∈l

µ(x) ≤ 2|F |k.

For each l, we thus have |{x ∈ l : µ(x) ≥ 4}| ≤ |F |k
2

and hence

|{x ∈ l : µ(x) ≤ 4}| ≥ |F |k

2
.

Letting I ′ = {(x, l) : x ∈ l, l ∈ L, µ(x) ≤ 4}, we thus have |I ′| ≥ |L| |F |
k

2
. Thus, as in

(4.7), we have

|E| ≥ 1

8
|L||F |k.

4.3 The 7
3 X-ray estimate.

The following proposition would follow from an L
4d+3

7 → L
4d+3

4 (L
4d+3

3 ) mixed-norm esti-

mate for the X-ray transform in F d.
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Proposition 4.5. Let F be a finite field with characteristic strictly greater than 3, and

let d ≥ 2. For every collection L of lines in F d so that at most M lines in L are parallel

to each direction ∣∣∣∣∣⋃
l∈L

l

∣∣∣∣∣ & M− 1
7 |L|

4
7 |F |. (4.9)

To obtain a restricted weak-type version of the corresponding X-ray transform bound,

one would additionally need to consider unions of collections of λ-density subsets of lines,

where λ < 1.

By considering the set of all lines, where |L| = |F |2(d−1) and M = |F |d−1, one sees

that the exponent −1
7

for M is sharp for the given exponents of |L| and |F |.

Before proving Proposition 4.5, we state the ubiquitous “combinatorial Cauchy-

Schwarz” inequality.

Lemma 4.6. Suppose A and B are finite sets, and I ⊂ A×B. Then

|{(a, b, b′) : (a, b), (a, b′) ∈ I}| ≥ |I|2

|A|
.

Proof. We note that

|{(a, b, b′) : (a, b), (a, b′) ∈ I}| =
∑
a∈A

(∑
b∈B

χI(a, b)

)2

,

and

|I| =
∑
a∈A

∑
b∈B

χI(a, b).

Applying Cauchy-Schwarz,

∑
a∈A

∑
b∈B

χI(a, b)

≤∑
a∈A

(∑
b∈B

χI(a, b)

)2
 1

2

|A|
1
2 .
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Alternatively, if one is willing to lose a factor of 4 (which is permissible for every

application we consider), Lemma 4.6 can be proven by observing that for “the average

a” there are |I|
|A| points b ∈ B such that (a, b) ∈ I.

Second Proof. Let Ip be the set of “popular” incidences

Ip =

{
(a, b) ∈ I : |{(a, b′) ∈ I : b′ ∈ B}| ≥ |I|

2|A|

}
.

By design, |I \ Ip| ≤ |I|
2

and so |Ip| ≥ |I|
2
. Letting

Vp = {(a, b, b′) : (a, b), (a, b′) ∈ Ip},

we clearly have

|I|2

4|A|
≤ |Ip|

|I|
2|A|

≤ |Vp| ≤ |{(a, b, b′) : (a, b), (a, b′) ∈ I}|.

Proof of Proposition 4.5. We follow an argument in [29], but we do not assume that our

collection of lines is direction-separated. Let E denote ∪l∈Ll. Consider the set of double

point line incidences

I ′ = {(x, y, l) : x, y ∈ l; l ∈ L; x 6= y},

the set of “double pointed angles”

V ′′ = {((x1, y1, l1), (x2, y2, l2)) ∈ I ′2 : x1 = x2},

and the set of quadrilaterals

Q = {(((x1,1, y1,1, l1,1), (x1,2, y1,2, l1,2)) , ((x2,1, y2,1, l2,1), (x2,2, y2,2, l2,2))) ∈ V ′′2 :

y1,1 = y2,1, y1,2 = y2,2}. (4.10)
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Above, we allow for degenerate configurations such as angles v with l1 = l2. Due to

“correct parity” this does not seem to affect the argument, however if one desired these

degeneracies could be easily eliminated.

We obtain (4.9) by giving upper and lower bounds for the number of quadrilaterals,

|Q|. Since |F | ≥ 2 and each line contains |F | points

|I ′| ≈ |F |2|L|. (4.11)

By Lemma 4.6,

|V ′′| & |I ′|2

|E|
. (4.12)

Finally, another application of Lemma 4.6 gives

|Q| & |V ′′|2

|E|2
. (4.13)

We now proceed to the upper bound for |Q|. For x 6= y ∈ F d, let l(x, y) denote the

line determined by x and y. It will be convenient to use the definition, equivalent to

(4.10),

Q =
{

(x0, x1, x2, x3) ∈ E4 : xi 6= xi+1, l(xi, xi+1) ∈ L, for i ∈ {0, 1, 2, 3}
}

where above we adopt the convention that x4 := x0. Our upper bound follows the

heuristic “a quadrilateral is determined, up to a factor of M |F |, by three points.” This

is analogous to the fact that a line is determined by two points. Define the projections

from Q to F d

π0(q) :=
x0 + x1

2
,

π1(q) =
x1 + 2x2

3
,

π2(q) = 2x2 − x3.
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Noting that each πi maps into the line l(xi, xi+1) and hence into E, we obtain the bounds

|πi(Q)| ≤ E (4.14)

for i = 0, 1, 2. Since

x0 − x3 = 2π0 − 3π1 + π2,

we see that the direction of the line l(x0, x3) is determined by (π0, π1, π2). By assumption

there are at most M lines from L in a given direction, and for each such line there are

at most |F | possible values of x0.

However, once x0, l(x0, x3), and π0, π1, π2 are known we can fully reconstruct q. Thus,

there are at most M |F | quadrilaterals in Q which share values of π0, π1, π2 and so from

(4.14) we obtain the upper bound

|Q| ≤ M |F ||E|3.

Combining this with (4.11), (4.12), and (4.13), we obtain (4.9).

From the case M = 1 of Proposition 4.5, we see, as in [29], that ffdim(d, 1, 4) ≥ 4d+3
7

.

4.4 Wolff’s estimate for (d, 1) sets.

For d < 8, the dimension estimate for Kakeya sets implied by Proposition 4.5 is su-

perceded by Wolff’s estimate. Although Wolff’s original “hairbrush” argument still

applies in the setting of finite fields (see [45]), we instead follow the triangle-counting

argument of Katz from [29].
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Proposition 4.7. Let F be a finite field, and let L be a collection of direction separated

lines in F d so that |L| & |F |. Then∣∣∣∣∣⋃
l∈L

∣∣∣∣∣ & |L|
1
2 |F |

3
2 . (4.15)

Proof. Let E denote ∪l∈Ll. We consider the set of point line incidences

I = {(x, l) : x ∈ l; l ∈ L},

the set of non-degenerate angles

V = {((x1, l1), (x2, l2)) ∈ I2 : x1 = x2, l1 6= l2},

the set of “single pointed angles”

V ′ = {(y, (x1, l1), (x2, l2)) ∈ E × V : y ∈ l1, y 6= x1},

and the set of non-degenerate triangles

T = {((y1, (x1,1, l1,1), (x1,2, l1,2)) (y2, (x2,1, l2,1), (x2,2, l2,2))) ∈ V ′2 :

y1 = y2, l1,2 = l2,2, l1,1 6= l2,1}.

We obtain (4.15) by giving lower and upper bounds for |T |. Starting with the lower

bound, we note that since each line contains |F | points

|I| ≥ |L||F |.

By Lemma 4.6,

|Ṽ | & |I|2

|E|
(4.16)
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where Ṽ is the set of possibly degenerate angles. Since the set of degenerate angles,

where l1 = l2, is in correspondence with I, we see that the lower bound

|V | & |I|2

|E|
(4.17)

would follow if |Ṽ | � I. We guarantee this condition by assuming that |E| � |I|, which

is without loss of generality since |L| & |F |.

Since |F | ≥ 2,

|V ′| & |F ||V |.

Finally, applying Lemma 4.6 again, we obtain

|T | & |V ′|2

|E||L|
. (4.18)

To guarantee (4.18), we must assume without loss of generality that |E| � |L| 12 |F | 32 ,

implying |V ′|
|E||L| � 1 and thus that the number of triangles is much greater than the

number of degenerate triangles, where l1,1 = l2,1.

To obtain the upper bound for |T |, we note that for a fixed angle v the number of

triangles ((y1, v), (y2, v
′)) is bounded above by the number of lines l2,1 in L co-planar

to v. Since there are |F | directions co-planar to each v and each line in L points in a

different direction, we obtain

|T | ≤ |V ||F |. (4.19)

Combining this upper bound with (4.18) yields (4.15). It is worth noting that the upper

bound (4.19) required nondegeneracy only of the angle collection V and not the triangle

collection T . In the next section, we will give a different upper bound which will require

the nondegeneracy of T .

From Proposition 4.7, we see that ffdim(d, 1, 2) ≥ d+2
2

.
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4.5 An improved X-ray estimate in dimensions 3-6.

In Proposition 4.7, we only considered the case of a direction separated collection of

lines. Following the proof and allowing for at most M parallel lines, one obtains the

bound ∣∣∣∣∣⋃
l∈L

∣∣∣∣∣ & M− 1
2 |L|

1
2 |F |

3
2 .

However, since at most M lines are parallel, we could have applied Proposition 4.7 to

a direction separated subcollection L′ ⊂ L of lines with |L′| ≥ |L|
M

to obtain the same

result. In fact, after considering the example where L is the collection of all lines, we

conjecture that the sharp exponent of M should be − 1
2(d−1)

.

In Euclidean space, this sharp estimate was shown to hold by Wolff when d = 3.

Wolff’s argument was generalized to d ≥ 4 by  Laba and Tao to obtain an interpolant of

the conjectured sharp estimate. The argument used by Wolff,  Laba, and Tao, involves

objects (slabs) of intermediate scale, and thus does not seem to immediately transfer to

the setting of finite fields (except possibly Zp).

By using an “arithmetic” upper bound for triangles, we obtain an improvement to

Proposition 4.5 when d ≤ 6.

Proposition 4.8. Let F be a finite field with characteristic strictly greater than 2.

Suppose d ≤ 6 and let L be a collection of lines in F d so that at most M lines in L are

parallel to each direction. Then ∣∣∣∣∣⋃
l∈L

l

∣∣∣∣∣ & M− 1
5 |L|

3
5 |F |. (4.20)

As in Proposition 4.5, the exponent of M is sharp. In terms of dimension estimates

for Kakeya sets, the bound (4.20) matches Wolff’s estimate when d = 6, and is worse
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when d < 6. The mixed norm estimate corresponding to (4.20) would be an L
3d+2

5 →

L
3d+2

3

(
L

3d+2
2

)
bound, which in Euclidean space is not implied by  Laba and Tao’s bound.

Proof of Proposition 4.8. Recall from the proof of Proposition 4.7 the definitions of E,

I, V , V ′, T , and the lower bound

|T | & |V ′|2

|E||L|
&
|L|3|F |6

|E|3
. (4.21)

To ensure the non-degeneracy of angles, we made the assumption |E| � |I|, which we

may repeat here (in fact without the additional hypothesis necessary for Proposition

4.7). To ensure the non-degeneracy of triangles, we assumed

|E| � |L|
1
2 |F |

3
2 . (4.22)

To have (4.20) implied by the negation of (4.22), we need

M− 1
5 |L|

3
5 |F | . |L|

1
2 |F |

3
2 .

Since |L| ≤ M |F |d−1, this is guaranteed when d ≤ 6.

We now mimic the upper bound for quadrilaterals from Proposition 4.5. Rewrite

T =
{

(x0, x1, x2) ∈ E3 : xi 6= xj, l(xi, xi+1) ∈ L, l(xi, xi+1) 6= l(xj, xj+1)

for i 6= j ∈ {0, 1, 2}
}

(4.23)

where above we adopt the convention that x3 := x0. Define the projections from T → E

π0(t) =
x0 + x1

2

and

π1(t) =
x1 + x2

2
.
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Then x0 − x2 = 2(π0 − π1), and thus the direction of l(x0, x2) is determined by (π0, π1).

As in Proposition 4.5, we conclude that

|T | ≤ M |F ||E|2

which, combined with (4.21), yields (4.20).
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