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Abstract. We prove almost sharp mixed-norm estimates for the X-ray
transform restricted to lines whose directions lie on certain well-curved
two dimensional manifolds.

1. Introduction

The full X-ray transform, also known as the 1-plane transform, Xfull, is an
operator from the functions on Rd to the functions on Gd, the space of all lines
in Rd. It is defined as

Xfullf(l) =
∫

l
f, l ∈ Gd.

It is well-known [2, 20, 14] that the optimal conjectured mixed-norm estimates
for Xfull imply the Kakeya conjecture, which states that every compact subset
of Rd containing a unit line segment in every direction must have Hausdorff
dimension d.

Note that Gd is a 2d−2-dimensional manifold, thus Xfull is over-determined
for d ≥ 3, and it is of interest to consider its restrictions to lower dimensional
subspaces of Gd. We consider subspaces defined by restricting the set of di-
rections to a lower dimensional submanifold of Sd−1. One particular example
is the restriction of Xfull to the space of light rays (lines in Rd making a 45
degree angle with the plane xd = 0). In [21], Wolff obtained mixed-norm es-
timates for this operator in all dimensions (almost sharp in R3 and R4). Also
see [17] for a simplified proof of Wolff’s result. Almost sharp mixed-norm es-
timates are also known in the cases when the set of directions is given by a
curve, see [9, 10].

In this paper, we consider the X-ray transform restricted to directions lying
on a 2-surface in Rd−1:

z → θ(z) = (θ1(z), . . . , θd−1(z)).

Specifically, let f be a function on Rd, z ∈ R2, and y ∈ Rd−1. We define

T θ[f ](z, y) =
∫ 1

0
f(γ(z, y, s)) ds

where
γ(z, y, s) = y + s(θ(z) + ed).

Here e1, . . . , ed is an orthonormal basis for Rd and we identify Rd−1 with
span(e1, . . . , ed−1).

The first author is partially supported by NSF grant DMS-0600101.
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Letting B ⊂ R2 be a fixed ball, we have the Kakeya-order mixed-norm on
the set of lines

‖T θ[f ]‖Lq(Lr) =
(∫

B

(∫
Rd−1

|T θ[f ](z, y)|r dy
) q

r
dz

) 1
q

and are interested in estimates

(1) ‖T θ[f ]‖Lq(Lr) . ‖f‖Lp(Rd).

Let sj be the “minimum degree” of a collection of j distinct monomials in
two variables: s1, s2 = 1; s3, . . . , s5 = 2; s6, . . . , s9 = 3; s10, . . . , s14 = 4; . . . Let
Sn =

∑n
j=1 sj . Then, for any smooth 2-surface in Rd−1, (1) may only hold if

the following inequalities are satisfied

(2) 1 +
d− 1

r
≥ d

p
,

(3)
2
q

+
Sd−1

r
≥ Sd−1

p
,

(4)
Sd−1

r
≥ Sd−1 − 2

p
.

The first necessary condition above follows by applying T θ to the characteristic
function of a δ-ball and taking δ to zero. Similarly, the second one follows by
applying T θ to the characteristic function of a parallelepiped with dimensions
1 × δs1 × δs2 × · · · × δsd−1 adapted to the cone of θ via an order sd−1 Taylor
expansion for θ. Finally, the third one can be obtained by applying T θ to the
characteristic function of a disjoint union of ∼ δ−2 parallelepipeds as above.
Also note that (4) follows from (3) if we restrict ourself to the natural case
p ≤ q as it was observed in [10].

We call a 2-surface “well-curved”, if the corresponding restricted X-ray
transform satisfies (1) for all (p, q, r) in the interior of the region determined
by (2), (3), (4). We expect the following to be examples of well-curved 2-
surfaces in Rd−1

d θ(u, v)

4 (u, v, u2 + v2)

5 (u, v, u2 − v2, uv)

6 (u, v, u2, uv, v2)

7 (u, v, u2, uv, v2, u3 + v3)

8 (u, v, u2, uv, v2, u(u2 + v2), v(u2 + v2))

9 (u, v, u2, uv, v2, u3 + v3, u2v, uv2)
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Note that the inequality (1) for critical exponents (p, q, r) =
(pcr(d), qcr(d), rcr(d)) specified below

pcr = qcr = 1 +
2(d− 1)

Sd−1

rcr = 1 +
2d

Sd−1 − 2

implies (1) for all possible values of (p, q, r) permitted by (2), (3), and (4) by
interpolation with trivial estimates. It is important to note that

pcr ≤ qcr ≤ rcr.

To study these operators, we use the iterated T ∗T method from [5], also
see [6, 18, 7, 8, 13, 15] for some related work. In [9] and [10], this method was
extended to the mixed norm setting. Using a variation of the method from
[9], we will prove (1) with (p, q, r) arbitrarily close to (pcr(d), qcr(d), rcr(d))
for some surfaces θ (including the well-curved example surfaces above) when
d = 4, 5, 7, 8, 9. The case d = 4 was already known to hold, as shown by
Wolff [21]. When d = 6, the method in [9] breaks down since the Jacobian is
identically zero; However, by using the inflation argument from [6, 7], we are
still able to obtain the almost sharp Lp → Lq estimates.

The main difference between the method here and the method in [9] is the
“localization” argument. In [9], the set of directions is one-dimensional and
the mixed-norm estimates are obtained by reduction to the case where the
directions are localized to and well distributed within a small interval. Higher
dimensional localizations were used, within the context of Lp → Lq estimates,
in [7]. There, the localization was performed with respect to parallelepipeds
whose axes had varying direction and varying length. Here, in order to obtain
mixed-norm estimates, it seems to be necessary to fix (according to the surface
θ) the directions of the axes (see Section 2). This method also gives sharp
estimates for certain surfaces θ of dimension greater than 2 which are not
“well-curved”. However, it appears that a general result involving the mixed
norm estimates is currently out of reach due to the complicated nature of the
Jacobians.

In Appendix A, we present an extension of the method in [5] to the multi-
linear setting.

The second author would like to thank D. Oberlin for helpful conversations,
including the suggestion of some of the model surfaces under consideration
here.

2. Bilinear reduction

Since the operator T is local and translation-invariant in a suitable sense,
and p ≤ q ≤ r, we can assume that f is supported in B(0, 1) ⊂ Rd. Also,
since we are not considering endpoints, it suffices to establish the restricted
weak-type inequality

(5) 〈χF , T [χE ]〉 . |E|
1
p ‖χF ‖Lq′ (Lr′ )

where q′ and r′ are dual to the exponents q and r, and E ⊂ B(0, 1) ⊂ Rd,
F ⊂ B ×Rd−1, and B is a fixed ball in R2. Note that (5) is equivalent to (for
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1 < p < ∞)

|{x : T ∗[χF ] ≥ β}| . β−p′‖χF ‖p′

Lq′ (Lr′ )
.

Therefore, in (5), we can assume that for some 0 < β̃ . 1, and for each x ∈ E,

(6) β̃ ≤ T ∗[χF ] ≤ 2β̃.

One may calculate that for x ∈ Rd and functions g on R2 × Rd−1

T ∗[g](x) =
∫

B
g(γ∗(x, z)) dz

where
γ∗(x, z) = (z,projRd−1(x)− 〈x, ed〉θ(z)).

Note that T ∗[g](x) is an averaging of g over the set of lines passing thru x.

2.1. Localization. The following lemma is a variant of certain lemmas found,
for example, in [21], [18], and [9].

For R1, R2 > 0, y ∈ R2, and linearly independent w1, w2 ∈ R2, we consider
the parallelogram

Pw1,w2(y, R1, R2) = {y + s1w1 + s2w2 : (s1, s2) ∈ [−R1, R1]× [−R2, R2]}.

Lemma 2.1. Let 0 < ε < 1, and let B ⊂ R2 be a fixed ball. Then, for every
G ⊂ B with |G| > 0, there exist R1, R2 with |G|1+ε . R1, R2 . 1 and y ∈ R2

such that

(7) |G ∩ Pw1,w2(y, R1, R2)| & |G|1+ε

and such that for every y′ and R′
1R

′
2 < R1R2

(8) |G ∩ Pw1,w2(y
′, R′

1, R
′
2)| <

(
R′

1R
′
2

R1R2

) ε
2

|G ∩ Pw1,w2(y, R1, R2)|.

The implicit constants above may depend on B, ε, w1, w2.

Proof. Choose R1, R2 . 1 and y so that B ⊂ Pw1,w2(y, R1, R2), and let ε′ =
ε

1+ε . Then

|G ∩ Pw1,w2(y, R1, R2)| ≥
(

R1R2

R1R2

)ε′

|G|.

Let R1, R2 be chosen with R1R2 minimal so that there exists a y with

|G ∩ Pw1,w2(y, R1, R2)| ≥
(

R1R2

R1R2

)ε′

|G|.

Clearly

(9) R1R2 & |G|
1

1−ε′ = |G|1+ε

By the minimality of R1R2, and the fact that G ⊂ B, we also have R1, R2 . 1
and so R1, R2 & |G|1+ε. Again from (9),

|G ∩ Pw1,w2(y, R1, R2)| &

(
|G|

1
1−ε′

R1R2

)ε′

|G| & |G|1+ε.
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The minimality of R1, R2 then guarantees that for every y′ and R′
1R

′
2 < R1R2,

we have

|G ∩ Pw1,w2(y
′, R′

1, R
′
2)| <

(
R′

1R
′
2

R1R2

)ε′

|G|

≤
(

R′
1R

′
2

R1R2

)ε′

|G ∩ Pw1,w2(y, R1, R2)|

≤
(

R′
1R

′
2

R1R2

) ε
2

|G ∩ Pw1,w2(y, R1, R2)|.

�

2.2. Decomposition. We now decompose E with respect to the parallelo-
grams obtained from Lemma 2.1. Fix w1, w2 depending on d (and in particular
depending on the surface specified for d).

For each x ∈ E, let
Gx = {z : γ∗(x, z) ∈ F}.

We have Gx contained in the fixed ball B and |Gx| = T ∗[χF ](x) ≈ β̃. Applying
Lemma 2.1 with G = Gx and ε > 0 (which will be determined later), we obtain
R1,x, R2,x and yx satisfying (7) and (8). Note that for each Ri,x

β̃1+ε . Ri,x . 1

and so, by absorbing a possible factor of ≈ | log(β̃)|2, it suffices to show that

(10) 〈T ∗[χF ], χE′〉 . β̃ε|E′|
1
p ‖χF ‖Lq′ (Lr′ )

where Ri . Ri,x ≤ Ri on E′.
Cover R2 by parallelograms Pw1,w2(yj , R1, R2) which have measure-zero

overlap. For each j, let

Fj = F ∩
(
Pw1,w2(yj , 2R1, 2R2)× Rd−1

)
and

Ej = {x ∈ E′ : yx ∈ Pw1,w2(yj , R1, R2)}.
Then

(11) 〈T ∗[χF ], χE′〉 ≤
∑

j

〈T ∗[χF ], χEj 〉 . β̃−ε
∑

j

〈T ∗[χFj ], χEj 〉

where the second inequality follows from (7) and the fact that
Pw1,w2(yx, R1, R2) ⊂ Pw1,w2(yj , 2R1, 2R2) if yx ∈ Pw1,w2(yj , R1, R2). In Sec-
tions 3 and 4, we prove the estimate

(12) 〈T ∗[χFj ], χEj 〉 . β̃2ε|Ej |
1
p ‖χFj‖Lq′ (Lr′ ).

It thus follows from Hölder’s inequality that∑
j

〈T ∗[χFj ], χEj 〉 . β̃2ε
∑

j

|Ej |
1
p ‖χFj‖Lq′ (Lr′ )(13)

≤ β̃2ε
(∑

j

|Ej |
) 1

p
(∑

j

‖χFj‖
p′

Lq′ (Lr′ )

) 1
p′

.
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We have p′ ≥ q′ and so(∑
j

|Ej |
) 1

p
(∑

j

‖χFj‖
p′

Lq′ (Lr′ )

) 1
p′ .

(∑
j

|Ej |
) 1

p
(∑

j

‖χFj‖
q′

Lq′ (Lr′ )

) 1
q′(14)

. |E′|
1
p ‖χF ‖Lq′ (Lr′ )

where the last inequality follows from the finite overlap of the
Pw1,w2(yj , 2R1, 2R2). Combining (11), (13), and (14), we obtain (10).

3. Main estimate

We now prove

〈T ∗[χF ], χE〉 . β̃2ε|E|
1
p ‖χF ‖Lq′ (Lr′ ),

for (p, q, r) close to (pcr(d), qcr(d), rcr(d)) (where ε > 0 depends on rcr(d)− r),
under the assumptions:
I) For some y ∈ R2 and β̃1+ε . R1, R2 . 1

(15) F ⊂ Pw1,w2(y, 2R1, 2R2)× Rd−1.

II) For each x ∈ E,

(16) β̃1+ε . T ∗[χF ](x) . β̃.

III) For each x ∈ E, y′ ∈ R2, and R′
1R

′
2 < R1R2,

(17) T ∗
[
χF∩(Pw1,w2 (y′,R′

1,R′
2)×Rd−1)

]
(x) .

(
R′

1R
′
2

R1R2

) ε
2

T ∗ [χF ] (x).

By Section 2, this suffices to prove (1).
Absorbing a possible factor of ≈ | log(β̃)|, we assume without loss of gen-

erality that T ∗[χF ] ≈ β′ on E where β̃1+ε . β′ . β̃.
The quantities

α =
〈T ∗[χF ], χE〉

|F |
and

β =
〈T ∗[χF ], χE〉

|E|
will appear throughout this section. Of course β ≈ β′.

3.1. Iterated maps and parameter-space towers. Let n be the integer
satisfying d + 1 ≤ 3n ≤ d + 3. Fix a line (z0, y0) to be specified below, and
define the maps

Φ1(t1) = γ(z0, y0, t1)
and

Φ∗
1(t1, z1) = γ∗(Φ1(t1), z1).

For i = 2, . . . , n define the iterated maps

Φi(t1, z1, . . . , ti−1, zi−1, ti) = γ(Φ∗
i−1(t1, z1, . . . , ti−1, zi−1), ti)

and
Φ∗

i (t1, z1, . . . , ti, zi) = γ∗(Φi(t1, z1, . . . , ti−1, zi−1, ti), zi).
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For any Ω ⊂
(
R1 × R2

)n and 1 ≤ i ≤ n, let

Ω∗
i = {(t1, z1, . . . , ti, zi) : (t1, z1, . . . , tn, zn) ∈ Ω},

Ωi = {(t1, z1, . . . , ti−1, zi−1, ti) : (t1, z1, . . . , tn, zn) ∈ Ω}.

Definition 3.1. Let α, β > 0, and Ω ⊂
(
R1 × R2

)n
. We say that Ω is an

(α, β) tower if there exists a (z0, y0) ∈ F so that the following conditions hold.

(18) |Ω1| ≥ 2−4nα.

For 1 < i ≤ n

(19) |s : (ω∗, s) ∈ Ωi| ≥ 2−4nα for every ω∗ ∈ Ω∗
i−1.

For 1 ≤ i ≤ n

(20) Φi(ω) ∈ E for every ω ∈ Ωi

(21) |z : (ω, z) ∈ Ω∗
i | ≥ 2−4nβ for every ω ∈ Ωi

(22) Φ∗
i (ω

∗) ∈ F for every ω∗ ∈ Ω∗
i .

The following is essentially Lemma 1 of [5].

Lemma 3.2. There exists an (α, β) tower.

3.2. Change of variables. Let Ω be an (α′, β′) tower where α′ & α and
β′ & β.

Fix t1 ∈ Ω1. If 3n = d + 3 let

Π = {(z1, t2, z2, . . . , tn−1, zn−1, tn) : (t1, z1, . . . , tn, zn) ∈ Ω},
if 3n = d + 2 let

Π = {(z1, t2, z2, . . . , tn, zn) : (t1, z1, . . . , tn, zn) ∈ Ω},
and if 3n = d + 1 let

Π = Ω.

Set Φ = Φn(t1, ·) if 3n = d + 3, Φ = Φ∗
n(t1, ·) if 3n = d + 2, and Φ = Φ∗

n if
3n = d + 1.

Then
Φ : Π → E

if 3n = d + 3 and
Φ : Π → F

if 3n = d + 2, d + 1.
From Bezout’s theorem, these mappings are generically finite-to-one. Thus,

(23) |E| &
∫

Π
J(ω) dω

if 3n = d + 3 where J = |det(∂Φ/∂u1, v1, . . . , tn)|, and

(24) |F | &
∫

Π
J(ω) dω

if 3n = d + 1, d + 2 where

J = |det(∂Φ/∂u1, v1, . . . , tn, un, vn)| if 3n = d + 2
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and
J = |det(∂Φ/∂t1, u1, v1, . . . , tn, un, vn)| if 3n = d + 1.

Above, we write zi = (ui, vi).
In Section 4, we show that Ω may be chosen so that

(25) |J | & αkdβldR1R2

on Ω where kd and ld are given by

kd = 2(n− 1), ld =
Sd−1

2
− n.

Since Ω is an (α′, β′) tower with α′ & α, and β′ & β, we have

|Π| & αn−1βn−1, if 3n = d + 3,
|Π| & αn−1βn, if 3n = d + 2,
|Π| & αnβn, if 3n = d + 1.

It thus follows from (23), (24), (25), and the definitions of α and β that

(26) R1R2〈χF , T [χE ]〉
Sd−1

2
+d−1 . |E|

Sd−1
2 |F |d.

From (15) and Hölder’s inequality, it follows that

(27)
( |F |

(R1R2)
1− r′

q′

) 1
r′ . ‖χF ‖Lq′ (Lr′ ).

Thus, combining (26) and (27), we obtain

〈χF , T [χE ]〉 . |E|
1

pcr ‖χF ‖Lq′cr (Lr′cr )
.

This implies that

〈χF , T [χE ]〉 . β2ε|E|
1
p ‖χF ‖Lq′ (Lr′ )

where (p, q, r) are given by an arbitrarily small interpolation of (pcr, qcr, rcr)
with (1, 1, 1).

4. Lower bounds for the Jacobians

Let Ω0 be the (α, β) tower guaranteed by Lemma 3.2. For any fixed
t1, . . . , ti,

|{t : min
j=1,...,i

|t− tj | � α}| � α.

Thus, by induction, one may find an (α′, β) tower Ω1 ⊂ Ω0, with α′ & α so
that |ti − tj | & α for (t1, z1, . . . , tn, zn) ∈ Ω1 and 1 ≤ i < j ≤ n.

Additional refinements of Ω1 needed to bound the Jacobian will have to
be tailored to the individual 2-surface in question. However, we will use the
following lemma repeatedly.

Lemma 4.1. Let 0 < C < 1, α > 0, and let Ω be an (α, Cβ) tower. Let
1 ≤ i ≤ n, and let {Pw1,w2(yω, R′

1, R
′
2)}ω∈Ωi be a family of parallelograms with

R′
1R

′
2 � R1R2(C)

2
ε . Then

Ω′ = {(ω, zi, . . . , tn, zn) ∈ Ω : zi /∈ Pw1,w2(yω, R′
1, R

′
2)}

is an (α, 1
2Cβ) tower.
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Proof. It suffices to check that for each ω ∈ Ω1,

|{zi /∈ Pw1,w2(yω, R′
1, R

′
2) : (ω, zi, . . . , tn, zn) ∈ Ω}| ≥ 2−4n 1

2
Cβ

which follows from

(28) |{zi ∈ Pw1,w2(yω, R′
1, R

′
2) : (ω, zi, . . . , tn, zn) ∈ Ω}| < 2−4n 1

2
Cβ.

To see (28), note that, from (22), we have

{zi ∈ Pw1,w2(yω, R′
1, R

′
2) : (ω, zi, . . . , tn, zn) ∈ Ω} ⊂ {zi : γ∗(Φi(ω), zi) ∈ F}.

But, from (20), we have Φi(ω) ∈ E and so from (17)

|{zi : γ∗(Φi(ω), zi) ∈ F}| .
(

R′
1R

′
2

R1R2

) ε
2

β′

Since β′ . β, we thus have (28) from our choice of R′
1R

′
2. �

4.1. The case 3n = d + 1. One may calculate that for ω = (t1, z1, . . . , tn, zn)
and zi = (ui, vi)

Φ(ω) =
(
zn, y0 +

n∑
i=1

ti(θ(zi−1)− θ(zi))
)
.

Thus,

J = |det(∂Φ/∂t1, u1, v1, . . . , tn, un, vn)|
= Jt · Jz

where

(29) Jt =
n−1∏
i=1

(ti+1 − ti)2, and

(30) Jz = |det(θu(z1), θv(z1), . . . , θu(zn−1), θv(zn−1),

θ(z0)− θ(z1), . . . , θ(zn−1)− θ(zn))|.

Above, we denote θu = ∂θ
∂u and θv = ∂θ

∂v .

On Ω1, we have Jt & α2(n−1). Thus, it remains to find an (α′, β′) tower
Ω ⊂ Ω1 with Jz & R1R2β

ld on Ω and β′ & β.

4.1.1. d=5. We now work under the assumption that d = 5 and that θ is of
the form

θ(u, v) = (u, v, θ(u, v)).
We may then simplify (30) to

Jz = |det(θ(z0)− θ(z1)− (u0 − u1)θu(z1)− (v0 − v1)θv(z1),

θ(z2)− θ(z1)− (u2 − u1)θu(z1)− (v2 − v1)θv(z1))|.

Assuming that the entries in θ are polynomials of degree 2 or less, this sim-
plifies to

Jz =
∣∣∣∣det

(
u2

0θuu

2
+

v2
0θvv

2
+ u0v0θuv,

u2
2θuu

2
+

v2
2θvv

2
+ u2v2θuv

)∣∣∣∣
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where
z0 = z1 − z0, z2 = z2 − z1.

After some algebra, we obtain

(31) Jz =
∣∣∣∣(u0, v0)

(
0 1
−1 0

)(
u2

v2

)∣∣∣∣ · ∣∣∣∣(u0, v0)
(

A B
2

B
2 C

)(
u2

v2

)∣∣∣∣
where

A =
1
2

det(θuu, θuv), B =
1
2

det(θuu, θvv), C =
1
2

det(θuv, θvv).

We need the following lemma to further refine the parameter space tower.

Lemma 4.2. Let A,B, C ∈ R satisfy B2− 4AC 6= 0, let w1, w2 be chosen, as
specified below, according to A,B, C, let 0 ≤ i < j ≤ n and let Ω be an α′, β′

tower with β′ & β. Then, there is an (α′, β′′) tower Ω′ ⊂ Ω with β′′ & β′ so
that

|Qi,j | & R1R2

on Ω′ where

Qi,j(t1, . . . , zn) := A(uj − ui)2 + B(uj − ui)(vj − vi) + C(vj − vi)2.

Proof. Let z = zj − zi. Assume first that B2 − 4AC > 0.
If A 6= 0, we have

Qi,j = A(u−D+v)(u−D−v)

where

D+ =
−B +

√
B2 − 4AC

2A
, and D− =

−B −
√

B2 − 4AC

2A
.

Then taking w1 = (D+, 1) and w2 = (D−, 1) we may apply Lemma 4.1 twice
to find Ω′ with |u−D+v| & R2 and |u−D−v| & R1 on Ω′.

If A = 0, we have B 6= 0 and

Qi,j = v(Bu + Cv).

Then taking w1 = (1, 0), w2 = (−C,B), we may apply Lemma 4.1 twice to
find Ω′ with |v| & R2 and |Bu + Cv| & R1 on Ω′.

If B2 − 4AC < 0

|Qi,j | = |v|2
∣∣∣∣A(u

v

)2
+ B

u

v
+ C

∣∣∣∣ ≥ |v|2
∣∣∣∣B2 − 4AC

4A

∣∣∣∣ .
Similarly |Qi,j | & |u|2, and thus |Qi,j | & |z|. Then taking any w1, w2 we may
apply Lemma 4.1 twice to find Ω′ with |z| & max(R1, R2)2 on Ω′. �

We now assume the non-degeneracy condition (which is equivalent to the
condition from [4], as was pointed out to the second author by D. Oberlin)
B2− 4AC 6= 0. From Lemma 4.2, we may find an (α′, β′) tower Ω2 ⊂ Ω1 with
β′ & β so that

Q(z0) & R1R2

for (z0, z1) ∈ Ω2 where

Q(z0) =
∣∣∣∣(u0, v0)

(
A B

2
B
2 C

)(
u0

v0

)∣∣∣∣ .
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Choose i 6= j ∈ {1, 2} so that Ri ≥ Rj . Refining further, find Ω3 ⊂ Ω2 so that
|z0| ≈ |z2| ≈ Ri on Ω3.

Let

z1 =
(

0 −1
1 0

)(
A B

2
B
2 C

)(
u0

v0

)
.

Then, since |z0| ≈ |z1| ≈ Ri and

|det(z0, z1)| = Q(z0) & R1R2,

we have | sin(ρ)| & Rj

Ri
where ρ is the angle between z0 and z1.

Let ρ02 be the angle between z2 and z0 and let ρ12 be the angle between
z2 and z1. Then

Jz = |z0||z1||z2|2| sin(ρ02)|| sin(ρ12)|
≈ R4

i | sin(ρ02)|| sin(ρ12)|.

For each z0, choose Dz0 so that min(| sin(ρ02)|, | sin(ρ12)|) ≤ Dz0 for exactly
half of the z2. Note that Dz0 & β

R2
i
. If Dz0 & Rj

Ri
then, for the other half of the

z2, we have

| sin(ρ02)|| sin(ρ12)| &
R2

j

R2
i

and so Jz & (R1R2)2 ≥ R1R2β for half of the z2.
Since | sin(ρ)| & Rj

Ri
, we have | sin(ρ12)| & Rj

Ri
if | sin(ρ02)| � Rj

Ri
and we have

| sin(ρ02)| & Rj

Ri
if | sin(ρ12)| � Rj

Ri
. Thus, if Dz0 �

Rj

Ri
, we have

| sin(ρ02)|| sin(ρ12)| &
Rj

Ri
Dz0 &

Rj

Ri

β

R2
i

and thus
Jz & βR1R2

for half of the z2.
In either case, we may find an (α′, β′′) tower Ω4 ⊂ Ω3 with β′′ & β so that

Jz & βR1R2 on Ω4.

4.1.2. d=8. In this case, we assume that θ is of the form

θ(u, v) = (u, v, u2, uv, v2, u(u2 + v2), v(u2 + v2)).

We simplify1 the Jacobian (30) to

Jz =
∣∣ det(z2, z3) det(z1, z2)|z2|2

∣∣
×
∣∣ det(z3, z1+z2)|z2+z3|2+det(z2, z3)|z1+z2+z3|2+det(z1, z2+z3)|z3|2

∣∣,
where zj := zj−1 − zj for j = 1, 2, 3. Let ρij be the clockwise angle zi to zj .
After some algebra, we can rewrite

Jz = |z1|2|z2|5|z3|2| sin(ρ23) sin(ρ12)|

×
∣∣∣ sin(ρ12)|z3|+sin(ρ23)

|z1 + z2 + z3|2 − |z2 + z3|2

|z1|
+sin(ρ31)

|z2 + z3|2 − |z3|2

|z2|

∣∣∣.
1We used Maple to simplify the Jacobians
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Using that for any i, j, k, ρij+ρjk = ρik, 〈zi, zj〉 = |zi||zj | cos(ρij), and trigono-
metric identities we write

Jz = |z1|2|z2|5|z3|2| sin(ρ23) sin(ρ12)|
∣∣|z1| sin(ρ23)+|z2| sin(ρ23+ρ21)+|z3| sin(ρ21)

∣∣.
To obtain the required lower bound for Jz, it suffices to use a localiza-

tion to squares. Namely, in Lemma 2.1 and Lemma 4.1, we let w1, w2 be the
coordinate axis directions and require that R1 = R2 = R. Note that using
Lemma 4.1 as in Lemma 4.2, we can guarantee that we have an (α′, β′) tower
Ω2 ⊂ Ω1 with β′ & β so that

|zj | & R, and | sin(ρij)| & β/R2

on Ω2. This implies that

Jz & R5β2
∣∣|z1| sin(ρ23) + |z2| sin(ρ23 + ρ21) + |z3| sin(ρ21)

∣∣.
To estimate the remaining term we have to refine Ω2 once more. Note that
for each fixed z1, z2 and a fixed argument for z3, we have∣∣|z1| sin(ρ23) + |z2| sin(ρ23 + ρ21) + |z3| sin(ρ21)

∣∣ & (β/R)| sin(ρ21)| & β2/R3

for each value of |z3| except for |z3| in an interval of length� (β/R). Therefore
by removing a set of measure � β for z3, we can find an (α′, β′′) tower Ω ⊂ Ω2

with β′′ & β on which
Jz & R2β4 = R1R2β

4.

4.2. The case 3n = d + 2. One may calculate that for ω = (z1, . . . , tn, zn)
and zi = (ui, vi)

Φ(ω) =
(
zn, y0 +

n∑
i=1

ti(θ(zi−1)− θ(zi))
)
.

Thus,
J = |det(∂Φ/∂u1, v1, . . . , tn, un, vn)| = Jt · Jz

where

Jt =
n−1∏
i=1

(ti+1 − ti)2, and

(32) Jz = |det(θu(z1), θv(z1), . . . , θu(zn−1), θv(zn−1),

θ(z1)− θ(z2), . . . , θ(zn−1)− θ(zn))|.

On Ω1, we have Jt & α2(n−1). Thus, it remains to find an (α′, β′) tower
Ω ⊂ Ω1 with Jz & R1R2β

ld on Π and β′ & β.

4.2.1. d=7. In this case, we assume that θ is of the form

θ(u, v) = (u, v, u2, uv, v2, P (u, v)),

where P (u, v) = au3 + bu2v + cuv2 + dv3. We simplify the Jacobian (32) to

Jz =
∣∣ det(z1, z2)

∣∣2|P (z1)|,

where zj := zj+1 − zj . At this point we assume that |P (z1)| & |L(z1)||z1|2,
where L(z1) = 〈z1, (a, b)〉 for some vector (a, b). For example, with θ(u, v) =
(u, v, u2, uv, v2, u3 + v3) we may take (a, b) = (1, 1).
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We apply Lemma 3.2 and Lemma 4.1 with w1 = (a, b) and w2 ⊥ w1, and
refine further as in the previous cases to obtain a (α′, β′) tower Ω such that
β′ & β, and

|z1| & max(R1, R2),

|det(z1, z2)| & β,

|L(z1)| & min(R1, R2).

This implies that

Jz & β2R1R2 max(R1, R2) & β5/2R1R2.

4.3. The case 3n = d + 3. One may calculate that for ω =
(z1, t2, . . . , zn−1, tn) and zi = (ui, vi)

Φ(ω) = y0 +
n−1∑
i=1

ti(θ(zi−1)− θ(zi)) + tn(θ(zn−1) + ed).

Thus,

J = |det(∂Φ/∂u1, v1, . . . , un−1, vn−1, tn)| = Jt · Jz

where

Jt =
n−1∏
i=1

(ti+1 − ti)2, and

(33) Jz = |det(θu(z1), θv(z1), . . . , θu(zn−1), θv(zn−1),

θ(z1)− θ(z2), . . . , θ(zn−2)− θ(zn−1))|.

On Ω1, we have Jt & α2(n−1). Thus, it remains to find an (α′, β′) tower
Ω ⊂ Ω1 with Jz & R1R2β

ld on Π and β′ & β.

4.3.1. d=9. In this case, we assume that θ is of the form

θ(u, v) = (u, v, u2, uv, v2, u3 + v3, u2v, uv2),

We simplify the Jacobian (33) to

Jz =
∣∣ det(z1, z2)

∣∣4|u3u2u1 + v3v2v1|,

where z1 := z2 − z1, z2 := z3 − z1, and z3 := z3 − z2. We apply Lemma 3.2
and Lemma 4.1 with w1 = (0, 1) and w2 = (1,−1), and refine further as in
previous cases to obtain a (α′, β′) tower Ω2 such that β′ & β, and

|zj | ∼ max(R1, R2),(34)

|uj | ∼ R2,(35)

|1 + v1/u1| ≥ c1R1/R2,(36)

|ρ12| & β/ max(R1, R2)2,(37)

where ρij ∈ [−π/2, π/2] is the angle between zi and zj .
Case 1: R1 � R2. By (34) and (35), we have |vj | > 2|uj |, which implies that

|u3u2u1 + v3v2v1| & |v3v2v1| & R3
1.
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Also, by (34) and (37), we have |det(z1, z2)| & β. Therefore,

Jz & β4R3
1 & β9/2R1R2.

Case 2: R2 & R1, and β/R2
2 . |ρ12| ≤ c2R1/R2. Here c2 � c1 is a fixed small

constant.
Note that since |zj | ∼ R2 for each j, |ρ12| ≤ c2R1/R2, and z2 = z1 + z3, by

choosing c2 sufficiently small, we have |ρ13| ≤ c3R1/R2, where c3 � c1.
We have two subcases 1 + v1/u1 ≤ −c1R1/R2 and 1 + v1/u1 ≥ c1R1/R2.

In the former case, since |ρ13|, |ρ12| � c1R1/R2, we have

vj/uj ≤ −1− c4R1/R2,

for each j. Therefore,

J(z) & β4R3
2

∣∣1 +
v1

u1

v2

u2

v3

u3

∣∣ = β4R3
2

(
− v1

u1

v2

u2

v3

u3
− 1
)

(38)

≥ β4R3
2((1 + c4R1/R2)3 − 1) & β4R3

2R1/R2 & β9/2R1R2.

In the latter case, we can additionally assume that v1/u1 ≤ 1/4 (Otherwise
vj/uj & 1 for each j by the arguments above. This case can be handled as in
case 1). As above, we now have (if c2 is sufficiently small)

1/2 ≥ vj/uj ≥ −1 + c4R1/R2

for each j. As in (38), we have

J(z) & β4R3
2

∣∣1 +
v1

u1

v2

u2

v3

u3

∣∣ ≥ β4R3
2

(
1−

∣∣v1

u1

v2

u2

v3

u3

∣∣)
≥ β4R3

2

(
1−

∣∣v1

u1

∣∣) & β4R3
2R1/R2 & β9/2R1R2.

Case 3: R2 & R1, and |ρ12| & R1/R2. First note that

(39)
∣∣ det(z1, z2)

∣∣ & R2
2R1/R2 = R1R2.

Now we estimate the remaining term in J(z). With the previous notation
z1 := z2 − z1, z2 := z3 − z1, and z3 := z3 − z2, we have

|u3u2u1 + v3v2v1| = |u2 − u1|
∣∣u2

3 − u3(u2 + u1) + g(z1, z2, v3)
∣∣

∼ R2

∣∣u2
3 − u3(u2 + u1) + g(z1, z2, v3)

∣∣ =: R2|J̃(z)|.

By refining Ω2 once again, we have

(40)
∣∣2u3 − (u2 + u1)

∣∣ & R2.

Note that J̃ is a quadratic polynomial in u3 satisfying (by (40))

|J̃u3 | & R2.

Therefore, for each fixed z1, z2, and v3, by removing an interval of length
∼ β/R2 for u3, we have

|J̃ | & R2β/R2 = β.

Combining the above estimates, we obtain

J(z) & (R1R2)4R2β & β9/2R1R2.
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4.3.2. d=6. In this case the Jacobian turn out to be identically zero. To obtain
Lp → Lq estimates we utilize the inflation argument from [6, 7]. We only give
a sketch of the argument. First, we replace the parameter space tower Π (after
the change of variables) with the following “parameter space tree”:

Π̄ = {(z1, t12, z12, t13, z13, t22, z22, t23, z23) :

(t1, z1, t12, z12, t13, z13), (t1, z1, t22, z22, t23, z23) ∈ Ω}

which is a subset of R14 of measure & α4β5. We also define the inflated map
ϕ : Π̄ → F × F ⊂ R14 as

ϕ(z1, t12, . . . , z23) = (Φ∗
3(t1, z1, t12, z12, t13, z13),Φ∗

3(t1, z1, t22, z22, t23, z23)).

For the definition of Φ∗
3, see Section 3.1. As before we need to find a lower

bound for the Jacobian of ϕ which is valid on a subset of Π̄ of comparable
measure. One can write the Jacobian J as Jt · Jz where

Jt = (t12 − t1)(t22 − t1)(t13 − t12)2(t23 − t22)2,

Jz = det(z1 − z22, z1 − z12) det(z1 − z12, z13 − z12)2 det(z1 − z22, z23 − z22)2.

We can obtain the following lower bounds for Jt and Jz on a subset of π̄ of
measure & α4β5 by considerations as above:

|Jt| & α6,

|Jz| & β5.

This implies that

|F | =
√
|F × F | &

√
α4β5α6β5 = α5β5.

Using the definition of α and β, we obtain all Lp → Lq estimates for (1/p, 1/q)
in the interior of the convex hull of the points (1/2, 2/5), (0, 1), (1, 0), (1, 1),
which is essentially optimal.

Appendices

A. Multi-linear estimates

In this appendix, we present an extension of the method in [5] to the multi-
linear setting. We only discuss various model cases.

A.1. Restricted directions. Let θ be the moment curve θ(u) =
(u, u2, . . . , ud−1). Suppose I1 and I2 are disjoint compact intervals, and gj

is a function on Ij × Rd−1, j = 1, 2.
We can consider the (adjoint) bilinear X-ray estimate

‖T ∗[g1]T ∗[g2]‖
L

p′
2

. ‖g1‖Lq′‖g2‖Lq′ .

From the δ-ball counterexample, we have the usual necessary condition

(41)
d− 1

q′
≤ d

p′
.
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Given a set of points E ⊂ B(0, 1) ⊂ Rd and sets of lines F1 ⊂ I1 × Rd−1 and
F2 ⊂ I2 × Rd−1 consider the quantity

〈F1, F2, E〉T :=
∫

Rd

T ∗[χF1 ](x)T ∗[χF2 ](x)χE(x) dx.

Our aim is to obtain restricted weak type inequalities,

〈F1, F2, E〉T . |E|1−2/p′|F1|1/q′|F2|1/q′.

After pigeonholing and losing a log2, we can assume that T ∗[χF1 ] ≈ β1 on E
and T ∗[χF2 ] ≈ β2 on E (this slightly changes (p′, q′) that we obtain at the
end). Define

α1 :=
〈F1, F2, E〉T

β2|F1|
≈
∫

Rd χF1(x)T (χE)(x) dx.

|F1|
and

α2 :=
〈F1, F2, E〉T

β1|F2|
≈
∫

Rd χF2(x)T (χE)(x) dx.

|F2|
.

Note that

β1β2 ≈
〈F1, F2, E〉T

|E|
,

and, on average, TχE ≈ αj on Fj . We restrict ourself to the case when d = 2D
is even. Define

φ1(u1) = (u1, x0 − t0θ(u1)),

φ2(u1, t1) = x0 − t0θ(u1) + t1(θ(u1) + ed),
. . .

φd−1(u1, t1, . . . , tD−1, uD) =
(
uD, x0 − t0θ(u1) +

D−1∑
j=1

tj [θ(uj)− θ(uj+1)]
)
,

φd(u1, t1, . . . , uD, tD) = x0 − t0θ(u1) +
D−1∑
j=1

tj [θ(uj)− θ(uj+1)] + tD(θ(uD) + ed).

We can set up a parameter space tower Ω with |Ω| =
(β1α1)D−bD/2c(β2α2)bD/2c so that

φj → F1, if j = 1 (mod 4),

φj → F2, if j = 3 (mod 4),
φj → E, if j is even.

Then the Jacobian of φd, [9], is

|J | = cd

D∏
j=1

|tj − tj−1|
∏

1≤j<k≤D

|uj − uk|4.

Let p(j) := 1 if j is odd, and p(j) := 2 if j is even. By the transversality
|uj−uk| & 1 if p(j) 6= p(k). By refining Ω, we can assume that |uj−uk| & βp(k)

if p(j) = p(k), and |tj − tj−1| & αp(j). Thus

|E| & |Ω|αD−bD/2c
1 α

bD/2c
2

∏
1≤j<k≤D, p(j)=p(k)

β4
p(k).
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We can symmetrize this by switching the roles of α1, β1 and α2, β2 and obtain

|E| & (α1α2)D(β1β2)D/2
∏

1≤j<k≤D, p(j)=p(k)

(β1β2)2.

This gives us

|E| & (α1α2)D(β1β2)D(D−1)/2, if D is even,

|E| & (α1α2)D(β1β2)(D
2−D+1)/2, if D is odd.

Plugging in the notation, we have

〈F1, F2, E〉T . |E|
D2−3D+2

D2+D (|F1|F2|)
2

D+1 , if D is even,

〈F1, F2, E〉T . |E|
D2−3D+3

D2+D+1 (|F1|F2|)
2D

D2+D+1 , if D is odd.

This corresponds to p′ = D+1
2

d
d−1 , q′ = D+1

2 for even D, and p′ = D2+D+1
d−1 , q′ =

D2+D+1
d for odd D.

A.2. Unrestricted directions. For z ∈ Rd−1, we have the unrestricted X-
ray transform T = T θ where θ(z) = z. Perhaps the estimates of most interest
are the d-linear estimates

‖
d∏

j=1

T ∗[gj ]‖
L

p′
d

.
d∏

j=1

‖gj‖Lq′ .

where, say, each gj is supported on B(ξj ,
1

100), and where ξj = ej for j =
1, . . . , d − 1 and ξd = 0, see [1]. We give a sketch of the method when d = 3
for the weaker inequality

(42)
∣∣{x : T ∗[χFj ] ≥ βj , j = 1, . . . , d}

∣∣ . ( d∏
j=1

|Fj |1/q′

βj

)p′/d
,

which follows from∫ d∏
j=1

T ∗[χFj ](x)χE(x)dx . |E|1−d/p′
d∏

j=1

|Fj |1/q′

where E = {x : T ∗[χFj ] ≈ βj , j = 1, . . . , d}.
Consider the inflated map

φ(z1, t1,1, z1,1, t2,1, z2,1)

= ((z1,1, x0 + (t1,1 − t0)z1 − t1,1z1,1), (z2,1, x0 + (t2,1 − t0)z1 − t2,1z2,1))

which has Jacobian

|J | = |(t1,1 − t0)(t2,1 − t0) det(z1,1 − z1, z2,1 − z1)|.

We can construct a “Parameter space tree” Ω = {(z1, t1,1, z1,1, t2,1, z2,1)}
of measure α2

1β1β2β3 so that z1 ∈ B(ξ1,
1

100), z1,1 ∈ B(ξ2,
1

100), and z3 ∈
B(ξ3,

1
100), and

φ(Ω) ⊂ F2 × F3.
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Above,

α1 =
∫

T
∗
[χF1 ]T

∗
[χF2 ]T

∗
[χF3 ]χE

β2β3|F1|
, etc..

By our “trilinear” hypotheses on z1, z1,1, and z2,1, we have |det(z1,1 −
z1, z2,1 − z1)| & 1 on Ω. Thus

|F2||F3| & β1β2β3α
4
1.

Combined with the permuted estimates, we have

(|F1||F2||F3|)2 & (β1β2β3)3(α1α2α3)4.

This gives (42) for d = 3 with p = 7
3 , q = 7. These exponents are weaker than

those implied by [19], but nonetheless illustrate that the method of [9] may
yield estimates with unrestricted directions beyond those of [12] and [3].

A.3. The Loomis-Whitney inequality. For j = 1, . . . , d, let πj : Rd →
Rd−1 be the map πj(x1, . . . , xd) = (x1, . . . , xj−1, xj+1, . . . xd). The Loomis-
Whitney inequality [16] states that∫

Rd

d∏
j=1

fj(πj(x)) dx ≤
d∏

j=1

‖fj‖Ld−1

for functions f1, . . . , fd on Rd−1.
Below, we give (except for a constant factor) a “multilinear T ∗T” proof for

the case fj = χEj .

Suppose E1, . . . , Ed ⊂ Rd−1 with each |Ei| < ∞ and let

〈E1, . . . , Ed〉 =
∫

Rd

∏
j

χEj (πj(x)) dx.

Define

αj =
〈E1, . . . , Ed〉

|Ej |
,

and given y ∈ Rd−1 and a function g on Rd let

T i[g](y) =
∫

R
g(y + tei) dt.

so that ∫
Rd

∏
j

fj(πj(x)) dx =
∫

Rd−1

fi(y)T i
[∏

j 6=i

fj(πj(·))
]
(y) dy.

For i = 1, . . . , d let

E′
i =

{
y ∈ Ei : T i

[∏
j<i

χE′
j(πj(·))

∏
j>i

χEj (πj(·))
]
≥ αi

2i

}
and, by induction on i, note that

〈E′
1, . . . , E

′
i, Ei+1, . . . , Ed〉 ≥

〈E1, . . . , Ed〉
2i

.
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We may then find a parameter space tower Ω = {td, . . . , t1} ⊂ Rd and
y ∈ E′

d so that |Ω| ≥ 2−
d(d+1)

2
∏d

j=1 αi and so that

πi(y +
d∑

j=1

tjej) ∈ Ei

for every i and (t1, . . . , td) ∈ Ω.
Thus

〈E1, . . . , Ed〉 ≥ 2−
d(d+1)

2

d∏
j=1

αj ,

or in other words

〈E1, . . . , Ed〉 ≤ 2−
d(d+1)

2

d∏
j=1

|Ej |
1

d−1 .
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