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6. Assurne that K1/ a < K2 and K2/ ß < K1• 

(a) Show that the equilibrium solution N1 =0, N2 =0 of (*) is unstable. 
(b) Show that the equilibrium solutions N2 =0 and N1=0, N 2=K2 of 

(*) are asymptotically stable. 
(c) Show that the equilibrium solution N1 = Nf, N 2 = Nf (see Exercise 5) of (*) 

is a saddle point. (This calculation is very cumbersome.) 
(d) It is not too difficult to see that the phase portrait of (*) must have the form 

described in Figure 3. 

4.12 The Threshold Theorem of epidemiology 
Consider the situation where a small group of people having an infectious 
disease is inserted into a large population which is capable of catching the 
disease. What happens as time evolves? Will the disease die out rapidly, or 
will an epidemic occur? How many people will ultimately catch the dis-
ease? To answer these questions we will derive a system of differential 
equations which govern the spread of an infectious disease within a popu-
lation, and analyze the behavior of its solutions. This approach will also 
lead us to the famous Threshold Theorem of epidemiology which states 
that an epidemic will occur only if the number of people who are suscept-
ible to the disease exceeds a certain threshold value. 

W e begin with the assumptions that the disease under consideration 
confers permanent immunity upon any individual who has completely re-
covered from it, and that it has a negligibly short incubation period. This 
latter assumption implies that an individual who contracts the disease be-
comes infective immediately afterwards. In this case we can divide the 
population into three classes of individuals: the infective class (/), the sus-
ceptible class (S) and the removed class (R). The infective class consists of 
those individuals who are capable of transmitting the disease to others. 
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The susceptible dass consists of those individuals who are not infective, 
but who are capable of catching the disease and becoming infective. The 
removed dass consists of those individuals who have had the disease and 
are dead, or have recovered and are permanently immune, or are isolated 
until recovery and permanent immunity occur. 

The spread of the disease is presumed to be governed by the following 
rules. 

Rule 1: The population remains at a fixed Ievel N in the time interval 
under consideration. This means, of course, that we neglect births, deaths 
from causes unrelated to the disease under consideration, immigration and 
emigration. 

Rule 2: The rate of change of the susceptible population is proportional 
to the product of the number of members of ( S) and the number of mem-
bers of (/). 

Rule 3: Individuals are removed from the infectious dass (/) at a rate 
proportional to the size of (I). 

Let S ( t),/ ( t), and R ( t) denote the number of individuals in classes ( S), 
(I), and (R), respectively, at timet. lt follows immediately from Rules l-3 
that S (t),l ( t), R (t) satisfies the system of differential equations 

dS = -rSI 
dt 
di 
dt =rSI-yi (1) 

dR =yi 
dt 

for some positive constants r and y. The proportionality constant r is 
called the infection rate, and the proportionality constant y is called the re-
moval rate. 

The first two equations of (1) do not depend on R. Thus, we need only 
consider the system of equations 

dS -= -rSI 
dt ' 

di - =rSI-yi 
dt 

(2) 

for the two unknown functions S (t) and I (t). Once S (t) and I (t) are 
known, we can solve for R (t) from the third equation of (1). Alternately, 
observe that d(S+I+R)/dt=O. Thus, 

S (t)+ I (t) + R (t) =constant= N 
so that R ( t) = N- S ( t)- I ( t). 

The orbits of (2) are the solution curves of the first-order equation 

di rSI-yi y 
dS = - rSI = - l + rS . (J) 

Integrating this differential equation gives 
s I(S)= I0 + S0 - S+plns, 

0 
(4) 
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Figure 1. The orbits of (2) 

where S0 and I0 are the number of susceptibles and infectives at the initial 
timet= t0 , and p = y Ir. To analyze the behavior of the curves (4), we com-
pute I'(S)= -1 +PIS. The quantity -1 +PIS is negative for S > p, and 
positive for S < p. Hence, I (S) is an increasing function of S for S < p, and 
a decreasing function of S for S > p. 

N ext, observe that I (0) = - oo and I ( S0) = I 0 > 0. Consequently, there 
exists a unique point with 0< < S0, suchthat and I(S) 
> 0 for S < S ,.;; S 0. The point ( S 0) is an equilibrium point of (2) since 
both dS I dt and di I dt vanish when I= 0. Thus, the orbits of (2), for t0 ..; t 
< oo, have the form described in Figure I. 

Let us see what all this implies about the spread of the disease within 
the population. Astruns from t0 to oo, the point (S(t),/(t)) travels along 
the curve (4), and it moves along the curve in the direction of decreasing S, 
since S (t) decreases monotonically with time. Consequently, if S0 is less 
than p, then I ( t) decreases monotonically to zero, and S ( t) decreases 
monotonically Thus, if a small group of infectives I0 is inserted into 
a group of susceptibles S0, with S0 < p, then the disease will die out rapid1y. 
On the other hand, if S0 is greater than p, then I ( t) increases as S ( t) de-
creases to p, and it achieves a maximum value when S = p. lt only starts 
decreasing when the number of susceptibles falls below the threshold value 
p. From these results we may draw the following conclusions. 

Conclusion 1: An epidemic will occur only if the number of susceptibles 
in a population exceeds the threshold value p = y Ir. 

Conclusion 2: The spread of the disease does not stop for lack of a sus-
ceptible population; it stops only for lack of infectives. In particular, some 
individuals will escape the disease altogether. 

Conclusion 1 corresponds to the general observation that epidemics 
tend to build up more rapidly when the density of susceptibles is high due 
to overcrowding, and the removal rate is low because of ignorance, inade-
quate isolation and inadequate medical care. On the other hand, outbreaks 
tend to be of only limited extent when good social conditions entaillower 
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densities of susceptibles, and when removal rates are high because of good 
public health vigilance and control. 

If the number of susceptibles S0 is initially greater than, but close to, the 
threshold value p, then we can estimate the number of individuals who 
ultimately contract the disease. Specifically, if S0 - p is small compared to 
p, then the number of individuals who ultimately contract the disease is ap-
proximately 2( S0 - p ). This is the famous Threshold Theorem of epidemiol-
ogy, which was first proven in 1927 by the mathematical biologists 
Kermack and McKendrick. 

Theorem 7 (Threshold Theorem of epidemiology). Let S0 = p + v and 
assume that v / p is very small compared to one. Assurne moreover, that the 
number of initial infectives / 0 is very small. Then, the number of individu-
als who ultimately contract the disease is 2v. In other words, the Ievel of 
susceptibles is reduced to a point as far below the Ihreshold as it origina/ly 
was above it. 

PROOF. Letting t approach infinity in (4) gives 

soo 
0= 10 + S0 - S 00 + plny. 

0 

If / 0 is very small compared to S0, then we can neglect it, and write 

s<YJ 
0= S0 - S<YJ +plnSo 

Now, if S0 - pissmall compared top, then S0 - S<YJ will be small compared 
to S0. Consequently, we can truncate the Taylor series 

[ _ ( So- S <YJ ) l = _ ( S0 - S <YJ ) _ _!_ ( S0 - S 00 )
2 

In 1 S S 2 S + ... 
0 0 0 

after two terms. Then, 

= (S0 - S<YJ )[ 1- ; 0 - 2; 5 (So- Soo) J. 
461 



4 Qualitative theory of differential equations 

Solving for S0 - S 00 , we see that 

So-Soo=2S0 ( : 0 -1)=2(p+v)[ p;v -1] 

=2(p+ =2p(l + ;;;;2v. 
p p p 0 

During the course of an epidemic it is impossible to accurately ascertain 
the number of new infectives each day or week, since the only infectives 
who can be recognized and removed from circulation are those who seek 
medical aid. Public health statistics thus record only the number of new re-
movals each day or week, not the number of new infectives. Therefore, in 
order to compare the results predicted by our model with data from actual 
epidemics, we must find the quantity dR/ dt as a function of time. This is 
accomplished in the following manner. Observe first that 

Second, observe that 

dR dt = y/= y(N- R- S). 

dS dSjdt -rSI -S 
dR = dRjdt = -y! = -p-

Hence, S(R)=S0e-R/p and 

=y(N-R-S0e-RIP). (5) 

Equation (5) is separable, but cannot be solved explicitly. However, if the 
epidemic is not very large, then R j p is small and we can truncate the 
Taylor series 

2 

+ ... 

after three terms. With this approximation, 

=y[N-R-s0 [ 1-Rjp+t(Rjp)2 ]] 

The solution of this equation is 

(6) 
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where 

1 1 (So ) <j>=tanh- P-I 

and the hyperbolic tangent function tanhz is defined by 
ez-e-z 

tanhz= z z. 
e +e 

lt is easily verified that 

Hence, 

4 . 
dz (ez+e-z)2 

dR ya_2p2 2( 1 ) dt = 2S
0 sech 2ayt-<j> . (7) 

Equation (7) defines a symmetric bell shaped curve in the t-dR/ dt plane 
(see Figure 2). This curve is called the epidemic curve of the disease. lt 
illustrates very weil the common observation that in many actual epidem-
ics, the number of new cases reported each day climbs to a peak value and 
then dies away again. 

dR 
dt 

2</>ltXY 
Figure 2 

Kermack and McKendrick compared the values predicted for dR/ dt 
from (7) with data from an actual plague in Bombay which spanned the 
last half of 1905 and the firsthalf of 1906. They set 

dR dt = 890sech2(0.2t- 3.4) 

with t measured in weeks, and compared these values with the number of 
deaths per week from the plague. This quantity is a very good approxima-
tion of dR/ dt, since almost all cases terminated fatally. As can be seen 
from Figure 3, there is excellent agreement between the actual values of 
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Figure 3 

dR/ dt, denoted by •, and the values predicted by (7). This indicates, of 
course, that the system of differential equations (I) is an accurate and reli-
able model of the spread of an infectious disease within a population of 
fixed size. 
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EXERCISES 

1. Derive Equation (6). 

2. Suppose that the members of (S) are vaccinated agairrst the disease at a rate ll. 
proportional to their number. Then, 

dS -= -rSI-li.S 
dt ' 

(a) Find the orbits of (*). 

dl - =rSI-yl dt . (*) 

(b) Conclude from (a) that S (t) approaches zero as t approaches infinity, for ev-
ery solution S ( t), I ( t) of (*). 
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