
4.10 Predator-prey prob1ems 

EXERCISES 

Find the bifurcation points of each of the following systems of equations. 

l.x={! 
3. x={ ;)x 
5. x =( E )x 

2.x={! 
4. x = ( 

In each of Problems 6-8, show that more than one equilibrium solutions 
bifurcate from the equilibrium solution x = 0 when e = 0. 

6. x1 = EX 1 - EX 2 - x? + xi 
Xz = EXz + x 1x 2 

8. x1 = EX 2 + x 1x 2 

Xz =- EX 1 + EXz + xf + xi 

9. Consider the system of equations 
x1 = 3Ex 1-5Ex2 - xf + xi 
x2 = 2Ex 1 - EX 2 . 

7. x]=Ex]-x?-x!x1 
x2 = -2Ex1 +2Ex2 + x 1x 2 - xi 

(a) Show that each point on the lines x 2 = x 1 

points of ( *) for E = 0. 
and x 2 = - x 1 are equilibrium 

(b) Show that 

(XI) _ ( 0) ( X1) _ 7 ( 1) Xz - 0 and Xz -"JE 2 . 

are the only equilibrium points of ( *) for E =!= 0. 

10. Show that 

are eigenvectors of the matrix { _:. 1 ) with eigenvalues v"f+f and - v"f+f 
respectively. 

4.10 Predator-prey problems; or why the 
percentage of sharks caught in the 
Mediterranean Sea rose dramatically 
during World War I 

In the mid 1920's the ltalian biologist Umberto D'Ancona was studying 
the population variations of various species of fish that interact with each 
other. In the course of his research, he came across some data on per-
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4 Qualitative theory of differential equations 

centages-of-total-catch of several species of fish that were brought into dif-
ferent Mediterranean ports in the years that spanned World War I. In par-
ticular, the data gave the percentage-of-total-catch of selachians, (sharks, 
skates, rays, etc.) which are not very desirable as food fish. The data for 
the port of Fiume, Italy, during the years 1914-1923 is given below. 

1914 
11.9% 

1919 
27.3% 

1915 
21.4% 

1920 
16.0% 

1916 
22.1% 

1921 
15.9% 

1917 
21.2% 

1922 
14.8% 

1918 
36.4% 

1923 
10.7% 

D' Ancona was puzzled by the very large increase in the percentage of 
selachians during the period of the war. Obviously, he reasoned, the in-
crease in the percentage of selachians was due to the greatly reduced Ievel 
of fishing during this period. But how does the intensity of fishing affect 
the fish populations? The answer to this question was of great concern to 
D' Ancona in bis research on the struggle for existence between competing 
species. It was also of concern to the fishing industry, since it would have 
obvious implications for the way fishing should be done. 

Now, what distinguishes the selachians from the food fish is that the 
selachians are predators, while the food fish are their prey; the selachians 
depend on the food fish for their survival. At first, D' Ancona thought that 
this accounted forthelarge increase of selachians during the war. Since the 
Ievel of fishing was greatly reduced during this period, there were more 
prey available to the selachians, who therefore thrived and multiplied 
rapidly. However, this explanation does not hold any water since there 
were also more food fish during this period. D' Ancona's theory only shows 
that there are more selachians when the Ievel of fishing is reduced; it does 
not explain why a reduced Ievel of fishing is more beneficial to the preda-
tors than to their prey. 

After exhausting all possible biological explanations of this phenome-
non, D'Ancona turned to his colleague, the famous ltalian mathematician 
Vito Volterra. Hopefully, Volterra would formulate a mathematical model 
of the growth of the selachians and their prey, the food fish, and this 
model would provide the answer to D' Ancona's question. Volterra began 
bis analysis of this problern by separating all the fish into the prey popula-
tion x(t) and the predator populationy(t). Then, he reasoned that the food 
fish do not compete very intensively among themselves for their food 
supply since this is very abundant, and the fish population is not very 
dense. Hence, in the absence of the selachians, the food fish would grow 
according to the Malthusian law of population growth x = ax, for some 
positive constant a. Next, reasoned Volterra, the nurober of contacts per 
unit time between predators and prey is bxy, for some positive constant b. 
Hence, x = ax- bxy. Similarly, Volterra concluded that the predators have 
a natural rate of decrease - cy proportional to their present number, and 
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4.10 Predator-prey problems 

that they also increase at a rate dxy proportional to their present number y 
and their food supply x. Thus, 

dx -=ax-bxy 
dt ' 

dy 
dt = - cy + dxy. (1) 

The system of equations (1) governs the interaction of the selachians 
and food fish in the absence of fishing. W e will carefully analyze this sys-
tem and derive several interesting properties of its solutions. Then, we will 
include the effect of fishing in our model, and show why a reduced level of 
fishing is more beneficial to the selachians than to the food fish. In fact, we 
will derive the surprising result that a reduced level of fishing is actually 
harmful to the food fish. 

Observe first that (1) has two equilibrium solutions x(t)=O,y(t)=O and 
x(t)= cl d, y(t) = al b. The first equilibrium solution, of course, is of no in-
terest to us. This systemalso has the family of solutions x(t) = x0ea1, y(t) = 
0 and x(t)=O,y(t)=y0e-c1• Thus, both the x andy axes are orbits of (1). 
This implies that every solution x(t), y(t) of (1) which starts in the first 
quadrant x > 0, y > 0 at time t = t0 will remain there for all future time t 
lo. 

The orbits of (1), for x,y;FO are the solution curves of the first-order 
equation 

dy -cy+dxy y(-c+dx) 
dx = ax - bxy x ( a - by) · 

(2) 

This equation is separable, since we can write it in the form 

a-by dy -c+dx 
y dx x 

Consequently, a lny- by + clnx- dx = k 1, for some constant k 1• Taking 
exponentials of both sides of this equation gives 

(3) 

for some constant K. Thus, the orbits of (1) are the family of curves de-
fined by (3), and these curves are closed as we now show. 

Lemma 1. Equation (3) defines a family of closed curves for x, y > 0. 

PROOF. Our first step is to determine the beha vior of the functions f (y) = 

y a I eby and g(x) = xc I edx for x and y positive. To this end, observe that 
f(O) = 0, f( oo) = 0, and f(y) is positive for y > 0. Computing 

aya-l_bya ya-l(a-by) 
f' (y) = by = by ' 

e e 
we see thatf(y) has a single critical point aty=alb. Consequently,j(y) 
achieves its maximum value My=(albtlea aty=alb, and the graph of 
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4 Qualitative theory of differential equations 

f(y) 

alb 
(a) 

g(x) 

c/d 
(b) 

Figure 1. (a) Graph off(y)=yae-hY; (b) Graph of g(x)=xce-dx 

j(y) has the form described in Figure la. Similarly, g(x) achieves its maxi-
mum value Mx =(cl dY I ec at x = cl d, and the graph of g(x) has the form 
described in Figure 1 b. 

From the preceding analysis, we conclude that Equation (3) has no solu-
tion x,y>O for K>MxMy, and the single solution x=cld,y=alb for K 
=Mx MY. Thus, we need only consider the case K = A.MY, where A. is a posi-
tive number less than Mx. Observe first that the equation xcledx=A. has 
one solution x = xm < c I d, and one solution x = xM > c I d. Hence, the 
equation 

has no solutiony when x is less than xm or greater than xM. It has the sin-
gle solutiony = al b when x =xm or xM, and it has two solutionsy 1(x) and 
h(x) for each x between xm and xM. The smaller solution y 1(x) is always 
less than al b, while the larger solution h(x) is always greater than a/ b. 
As x approaches either xm or xM, bothy 1(x) andyix) approach al b. Con-
sequently, the curves defined by (3) are closed for x and y positive, and 
have the form described in Figure 2. Moreover, none of these closed curves 
(with the exception of x = c I d, y = a I b) contain any equilibrium points of 
(1). Therefore, all solutions x(t), y(t) of (1), with x(O) and y(O) positive, 
are periodic functions of time. That is to say, each solution x(t), y(t) of 
(1), with x(O) andy(O) positive, has the property that x(t+ T)=x(t) and 
y(t + T) = y(t) for some positive T. 0 

Now, the data of D'Ancona is really an average over each one year 
period of the proportion of predators. Thus, in order to compare this data 
with the predictions of (1), we must compute the "average values" of x(t) 
and y(t), for any solution x(t), y(t) of (1). Remarkably, we can find these 
average values even though we cannot compute x(t) andy(t) exactly. This 
is the content of Lemma 2. 
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4.10 Predator-prey problems 

y 

o/b • 

xm c/d 

Figure 2. Orbits of (1) for x,y positive 

Lemma 2. Let x( t), y ( t) be a periodic solution of (I), with period T > 0. De-
fine the average values of x and y as 

I (T 
x= T Jo x(t)dt, 

I (T 
y = T Jo y(t)dt. 

Then, x=cld andy=alb. In other words, the average values of x(t) and 
y(t) are the equilibrium values. 

PRooF. Dividing both sides of the first equation of (1) by x gives .X I x = 
a-by, so that 

I (T i(t) I (T 
T }

0 
x(t)dt= T)o [a-by(t)]dt. 

Now, JoTx(t)lx(t)dt=Inx(T)-Inx(O), and this equals zero since x(T)= 
x(O). Consequently, 

l. (Tby(t)dt= l. (Tadt=a, 
T Jo T Jo 

so that y = a I b. Similarly, by dividing both sides of the second equation of 
(I) by Ty ( t) and integrating from 0 to T, we obtain that .X= c I d. D 

We are now ready to include the effects of fishing in our model. Ob-
serve that fishing decreases the population of food fish at a rate u(t), and 
decreases the population of selachians at a rate ey(t). The constant e re-
flects the intensity of fishing; i.e., the number of boats at sea and the num-
ber of nets in the water. Thus, the true state of affairs is described by the 
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4 Qualitative theory of differential equations 

modified system of differential equations 

dx = ax- b.xy- ex= (a- e)x- b.xy 
dt 
dy 
dt = - cy + dxy - ey = - ( c + e) y + dxy. 

(4) 

This system is exactly the same as (1) (for a- e > 0), with a replaced by 
a-e, and c replaced by c+e. Hence, the average values of x(t) andy(t) 
are now 

- c+e x=--d , 
- a-e 
y=-b-. (5) 

Consequently, a moderate amount of fishing (e < a) actually increases the 
number of food fish, on the average, and decreases the number of 
selachians. Conversely, a reduced Ievel of fishing increases the number of 
selachians, on the average, and decreases the number of food fish. This re-
markable result, which is known as Volterra's principle, explains the data 
of D' Ancona, and completely solves our problem. 

Volterra's principle has spectacular applications to insecticide treat-
ments, which destroy both insect predators and their insect prey. lt implies 
that the application of insecticides will actually increase the population of 
those insects which are kept in control by other predatory insects. A re-
markable confirmation comes from the cottony cushion scale insect 
(Icerya purchasi), which, when accidentally introduced from Australia in 
1868, threatened to destroy the American citrus industry. Thereupon, its 
natural Australian predator, a ladybird beetle (Novius Cardinalis) was in-
troduced, and the beetles reduced the scale insects to a low Ievel. When 
DDT was discovered to kill scale insects, it was applied by the orchardists 
in the hope of further reducing the scale insects. However, ·in agreement 
with Volterra's principle, the effect was an increase of the scale insect! 

Oddly enough, many ecologists and biologists refused to accept 
Volterra's model as accurate. They pointed to the fact that the oscillatory 
behavior predicted by Volterra's model is not observed in most pre-
dator-prey systems. Rather, most predator-prey systems tend to 
equilibrium states as time evolves. Our answer to these critics is that the 
system of differential equations (I) is not intended as a model of the gen-
eral predator-prey interaction. This is because the food fish and selachians 
do not compete intensively among themselves for their available resources. 
A more general model of predator-prey interactions is the system of dif-
ferential equations 

x=ax-bxy-ex2, y=-cy+d.xy-jy2• (6) 

Here, the term ex2 reflects the internal competition of the prey x for their 
limited external resources, and the termjy2 reflects the competition among 
the predators for the limited number of prey. The solutions of (6) are not, 
in general, periodic. Indeed, we have already shown in Example 1 of Sec-
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tion 4.8 that all solutions x(t), y(t) of (6), with x(O) and y(O) positive, 
ultimately approach the equilibrium solution x = a I e, y = 0 if c I d is 
greater than al e. In this situation, the predators die out, since their availa-
ble food supply is inadequate for their needs. 

Surprisingly, some ecologists and biologists even refuse to accept the 
moregenerat model (6) as accurate. As a counterexample, they cite the ex-
periments of the mathematical biologist G. F. Gause. In these experiments, 
the population was composed of two species of protozoa, one of which, Di-
dinium nasatum, feeds on the other, Paramecium caudatum. In all of 
Gause's experiments, the Didinium quickly destroyed the Paramecium and 
then died of starvation. This situation cannot be modeled by the system of 
equations (6), since no solution of (6) with x(O)y(O)*O can reach x=O or 
y = 0 in finite time. 

Our answer to these critics is that the Didinium are a special, and atypi-
cal type of predator. On the one hand, they are ferocious attackers andre-
quire a tremendous amount of food; a Didinium demands a fresh Para-
mecium every three hours. On the other hand, the Didinium don't perish 
from an insufficient supply of Paramecium. They continue to multiply, but 
give birth to smaller offspring. Thus, the system of equations (6) does not 
accurately model the interaction of Paramecium and Didinium. A better 
model, in this case, is the system of differential equations 

dx ,c -=ax-bvxy 
dt ' 

dy = { dYx y, 
dt -cy, 

x*O 
x=O 

(7) 

lt can be shown (see Exercise 6) that every solution x(t), y(t) of (7) with 
x(O) andy(O) positive reaches x=O in finite time. This does not contradict 
the existence-uniqueness theorem, since the function 

g(x,y)= { dYx y, x*O 
-cy, x=O 

does not have a partial derivative with respect to x or y, at x = 0. 
Finally, we mention that there are several predator-prey interactions in 

nature which cannot be modeled by any system of ordinary differential 
equations. These situations occur when the prey are provided with a refuge 
that is inaccessible to the predators. In these situations, it is impossible to 
make any definitive Statements about the future number of predators and 
prey, since we cannot predict how many prey will be stupid enough to 
leave their refuge. In other words, this process is now random, rather than 
deterministic, and therefore cannot be modeled by a system of ordinary dif-
ferential equations. This was verified directly in a famous experiment of 
Gause. He placed five Paramecium and three Didinium in each of thirty 
identical test tubes, and provided the Paramecium with a refuge from the 
Didinium. Two days later, he found the predators dead in four tubes, and 
a mixed population containing from two to thirty-eight Paramecium in the 
remaining twenty-six tubes. 
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Reference 
Volterra, V: "Leyons sur la theorie mathematique de la lutte pour la vie." Paris, 

1931. 

EXERCISES 

1. Findall biologically realistic equilibrium points of (6) and determine their stabil-
ity. 

2. We showed in Section 4.8 thaty(t) ultimately approaches zero for all solutions 
x(t),y(t) of (6), if c/d>aje. Show that there exist solutions x(t),y(t) of (6) for 
whichy(t) increases at first to a maximum value, and then decreases to zero. (To 
an observer who sees only the predators without noticing the prey, such a case 
of a population passing through a maximum to total extinction would be very 
difficult to explain.) 

3. In many instances, it is the adult members of the prey who are chiefly attacked 
by the predators, while the young members are better protected, either by their 
smaller size, or by their living in a different station. Let x 1 be the number of 
adult prey, x2 the number of young prey, and y the number of predators. Then, 

.X1= -a1x 1+a2x 2-bx1y 

x2= nxl- (al + a2)x2 

y= -cy+dx1y 

where a2x2 represents the number of young (per unit time) growing into adults, 
and n represents the birth rate proportional to the number of adults. Find all 
equilibrium solutions of this system. 

4. There are several situations in nature where species 1 preys on species 2 which in 
turn preys on species 3. One case of this kind of population is the Island of 
Komodo in Malaya which is inhabited by giant carnivorous reptiles, and by 
mammals-their food-which feed on the rieb vegetation of the island. We 
assume that the reptiles have no direct influence on the vegetation, and that only 
the plants compete among themselves for their available resources. A system of 
differential equations governing this interaction is 

.XI= -alxl- b12x1x2+c13x1x3 

X2 =- Q2X2 + b21XIX2 

X3= a3X3 C31X1X3 

Find all equilibrium solutions of this system. 

5. Consider a predator-prey system where the predator has alternate means of sup-
port. This system can be modelled by the differential equations 

.X1 = a 1x 1 ( ß1 - x 1) + y 1x 1x 2 

X2= a2x2( ß2- X2)- 'Y2X1X2 

where x 1(t) and x2(t) are the predators and prey populations, respectively, at 
timet. 
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4.11 The principle of competitive exclusion in population biology 

(a) Show that the change of coordinates ß;Y;(t)=x;(t/a;ß;) reduces this system 
of equations to 

YJ = Y1 (1-YJ)+aiYJY2• h= Y2(1-Y2)- a2Y1Y2 

where a 1 = Y1 ß2/ 01.1 ß1 and a2 = Y2 ßd 01.2 ß2· 
(b) What are the stable equilibrium populations when (i) 0 < a2 < I, (ii) a2 > l? 
( c) It is observed that a 1 = 3a2 ( a2 is a measure of the aggressiveness of the pre-

dator). What is the value of a2 if the predator's instinct is to maximize its 
stable equilibrium population? 

6. (a) Let x(t) be a solution of .X= ax- MVx, with M > a Vx{tJ . Show that 

aVx =M-(M-aVx{iJ )ea(t-to)/2. 

(b) Conclude from (a) that x(t) approaches zeroinfinite time. 
(c) Let x(t), y(t) be a solution of (7), with by(t0) > a Vx(tJ . Show that x(t) 

reaches zero in finite time. Hint: Observe that y(t) is increasing fort> t0• 

( d) It can be shown that by ( t) will eventually exceed a -v-;(i) for every solu-
tion x(t), y(t) of (7) with x(t0) and y(t0) positive. Conclude, therefore, that 
all solutions x(t), y(t) of (7) achieve x=O in finite time. 

4.11 The principle of competitive exclusion 
in population biology 

lt is often observed, in nature, that the struggle for existence between two 
similar species competing for the same limited food supply and living 
space nearly always ends in the complete extinction of one of the species. 
This phenomenon is known as the "principle of competitive exclusion." lt 
was first enunciated, in a slightly different form, by Darwin in 1859. In his 
paper 'The origin of species by natural selection' he writes: "As the species 
of the same genus usually have, though by no means invariably, much sim-
ilarity in habits and constitutions and always in structure, the struggle will 
generally be more severe between them, if they come into competition with 
each other, than between the species of distinct genera." 

There is a very interesting biological explanation of the principle of 
competitive exclusion. The cornerstone of this theory is the idea of a 
"niche." A niche indicates what place a given species occupies in a com-
munity; i.e., what are its habits, food and mode of life. It has been ob-
served that as a result of competition two similar species rarely occupy the 
same niche. Rather, each species takes possession of those kinds of food 
and modes of life in which it has an advantage over its competitor. If the 
two species tend to occupy the same niche then the struggle for existence 
between them will be very intense and result in the extinction of the 
weaker species. 

An excellent illustration of this theory is the colony of terns inhabiting 
the island of Jorilgatch in the Black Sea. This colony consists of four diffe-
rent species of terns: sandwich-tern, common-tern, blackbeak-tern, and lit-
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tle-tern. These four species band together to chase away predators from the 
colony. However, there is a sharp difference between them as regards the 
procuring of food. The sandwich-tern flies far out into the open sea to hunt 
certain species, while the blackbeak-tern feeds exclusively on land. On the 
other hand, common-tern and Iittle-tern catch fish close to the shore. They 
sight the fish while flying and dive into the water after them. The Iittle-tern 
seizes his fish in shallow swampy places, whereas the common-tern hunts 
somewhat further from shore. In this manner, these four similar species of 
tern living side by side upon a single small island differ sharply in all their 
modes of feeding and procuring food. Each has a niche in which it has a 
distinct advantage over its competitors. 

In this section we present a rigorous mathematical proof of the law of 
competitive exclusion. This will be accomplished by deriving a system of 
differential equations which govern the interaction between two similar 
species, and then showing that every solution of the system approaches an 
equilibrium state in which one of the species is extinct. 

In constructing a mathematical model of the struggle for existence be-
tween two competing species, it is instructive to Iook again at the logistic 
law of population growth 

(1) 

This equation governs the growth of the population N ( t) of a single species 
whose members compete among themselves for a limited amount of food 
and living space. Recall (see Section 1.5) that N (t) approaches the limiting 
population K = a I b, as t approaches infinity. This limiting population can 
be thought of as the maximum population of the species which the micro-
cosm can support. In terms of K, the logistic law (I) can be rewritten in the 
form 

Equation (2) has the following interesting interpretation. When the 
population N is very low, it grows according to the Malthusian law dN I dt 
=aN. The term aN is called the "biotic potential" of the species. It is the 
potential rate of increase of the species under ideal conditions, and it is re-
alized if there are no restrictions on food and living space, and if the indi-
vidual members of the species do not excrete any toxic waste products. As 
the population increases though, the biotic potential is reduced by the fac-
tor (K- N)l K, which is the relative number of still vacant places in the 
microcosm. Ecologists call this factor the environmental resistance to 
growth. 

Now, Iet N 1(t) and N 2(t) be the population at timet of species 1 and 2 
respectively. Further, Iet K 1 and K 2 be the maximum population of species 
1 and 2 which the microcosm can support, and 1et a1N 1 and a2N 2 be the 
biotic potentials of species 1 and 2. Then, N 1(t) and Nit) satisfy the sys-
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(3) 

where m2 is the total number of places of the first species which are taken 
up by members of the second species, and m 1 is the total number of places 
of the second species which are taken up by members of the first species. 
At first glance it would appear that m2 = N2 and m 1 = N 1• However, this is 
not generally the case, for it is highly unlikely that two species utilize the 
environment in identical ways. Equal numbers of individuals'of species I 
and 2 do not, on the average, consume equai quantities of food, take up 
equal amounts of living space and excrete equal amounts of waste prod-
ucts of the same chemical composition. In general, we must set m2 = a.N1 

and m 1 = ßN1, for some constants a. and ß. The constants a. and ß indicate 
the degree of influence of one species upon the other. If the interests of the 
two species do not clash, and they occupy separate niches, then both a. and 
ß are zero. If the two species lay claim to the same niche and are very sim-
ilar, then a. and ß are very close to one. On the other hand, if one of the 
species, say species 2, utilizes the environment very unproductively; i.e., it 
consumes a great deal of food or excretes very poisonous waste products, 
then one individual of species 2 takes up the place of many individuals of 
species l. In this case, then, the coefficient a. is very large. 

We restriet ourselves now to the case where the two species are nearly 
identical, and lay claim to the same niche. Then, a. = ß = 1, and N 1(t) and 
Nit) satisfy the system of differential equations 

(4) 

In this instance, we expect the struggle for existence between species I and 
2 to be very intense, and to result in the extinction of one of the species. 
This is indeed the case as we now show. 

Theorem 6 (Principle of competitive exclusion). Suppose that K 1 is greater 
than K2• Then, every solution N 1(t), Nit) of (4) approaches the 
equilibrium solution N 1 = K1, N2 = 0 as t approaches infinity. In other 
words, if species I and 2 are very nearly identical, and the microcosm can 
support more members of species 1 than of species 2, then species 2 will 
ultimately become extinct. 

Our first step in proving Theorem 6 is to show that N 1(t) and Nit) can 
never become negative. To this end, recall from Section 1.5 that 
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is a solution of (4) for any choice of NI(O). The orbit of this solution in the 
NI-N2 plane is the point (0,0) for NI(O)=O; the line 0< NI< KI, N2=0 for 
O<NI(O)<KI; the point (KI,O) for NI(O)=KI; and the line KI <NI <oo, 
N2 =0 for NI(O)> KI. Thus, the NI axis, for NI;;;. 0, is the union of four dis-
tinct orbits. Similarly, the N 2 axis, for N 2 ;;;. 0, is the union of four dis-
tinct orbits of (4). This implies that all solutions NI(t), N2(t) of (4) which 
start in the first quadrant (NI >0,N2 >0) of the NI-N2 plane must remain 
there for all future time. 

Our second step in proving Theorem 6 is to split the first quadrant into 
regions in which both dNI/ dt and dNd dt have fixed signs. This is accom-
plished in the following manner. Let /I and /2 be the lines KI- NI- N 2 = 0 
and K 2 - NI- N2 = 0, respectively. Observe that dNI/ dt is negative if 
(NI,N2) lies above /I, and positive if (NI,N2) lies below /I. Similarly, 
dN2/dt is negative if (NI,N2) lies above /2> and positive if lies be-
low /2. Thus, the two parallellines /I and /2 split the first quadrant of the 
NI-N2 plane into three regions (see Figure I) in which both dNI/ dt and 
dNd dt have fixed signs. Both NI(t) and Nit) increase with time (along 
any solution of (4)) in region I; NI(t) increases, and Nit) decreases, with 
time in region II; and both NI(t) and Nit) decrease with time in region 
III. 

lii 

I 
0 

N2>o 
N, 

K, 
Figure l 

Lemma l. Any solution NI(t), Nit) of (4) which starts in region I at t = t0 

must leave this region at some later time. 

PROOF. Suppose that a solution NI(t), Nit) of (4) remains in region I for 
all time t;;;. t0 • This implies that both NI(t) and Nit) are monotonic in-
creasing functions of time for t;;;. t0, with NI(t) and Nit) less than K2• 

Consequently, by Lemma I of Section 4.8, both NI(t) and N2(t) have Iimits 
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'IJ respectively, as t approaches infinity. Lemma 2 of Section 4.8 implies 
that is an equilibrium point of (4). Now, the only equilibrium points 
of (4) are (0,0), (K1,0), and (O,K2), and obviously cannot equal any of 
these three points. We conclude therefore, that any solution N 1(t), N2(t) of 
(4) which starts in region I must leave this region at a later time. 0 

Lemma 2. Any solution N 1(t), N2(t) of (4) which starts in region II at time 
t = t0 will remain in this region for all future time t ;> t0, and ultimately ap-
proach the equilibrium solution N 1 =K1, N2 =0. 

PR.ooF. Suppose that a solution N1(t), N2(t) of (4) leaves region II at time 
t = t*. Then, either N 1(t*) or Nit*) is zero, since the only way a solution of 
(4) can leave region II is by crossing /1 or /2• Assurne that N1(t*)=O. Dif-
ferentiating both sides of the first equation of (4) with respect tot and set-
ting t = t* gives 

-a1N 1 (t*) dN2 (t*) 

K 1 dt 
This quantity is positive. Hence, N 1(t) has a minimum at t=t*. Butthis is 
impossible, since N 1(t) is increasing whenever a solution N 1(t), N2(t) of (4) 
is in region II. Similarly, if Nit*)=O, then 

d 2N 2 (t*) -a2N 2 (t*) dN1 (t*) 

dt 

This quantity is negative, implying that N2(t) has a maximum at t= t*. But 
this is impossible, since N2(t) is decreasing whenever a solution N 1(t), N2(t) 
of (4) is in region II. 

The previous argument shows that any solution N 1(t), N2(t) of (4) which 
starts in region II at time t = t0 will remain in region II for all future time 
t > t0• This implies that N 1(t) is monotonic increasing and N2(t) is mono-
tonic decreasing for t;>t0, with N 1(t)<K1 and N2(t)>K2• Consequently, 
by Lemma 1 of Section 4.8, both N 1(t) and N2(t) have limits respec-
tively, as t approaches infinity. Lemma 2 of Section 4.8 implies that 'IJ) is 
an equilibrium point of (4). Now, 'IJ) obviously cannot equal (0, 0) or 
(O,K2). Consequently, and this proves Lemma 2. 0 

Lemma 3. Any so/ution N 1(t), N2(t) of (4) which starts in region 111 at time 
t = t0 and remains there for all future time must approach the equilibrium 
solution N 1(t)=K1, N2(t)=O as t approaches infinity. 

PR.ooF. If a solution N1(t), N2(t) of (4) remains in region 111 fort> t0, then 
both N 1(t) and N2(t) are monotonic decreasing functions of timefort ;> tO> 
with N 1(t)>O and N2(t)>O. Consequently, by Lemma 1 of Section 4.8, 
both N 1(t) and N2(t) have limits respectively, as t approaches infinity. 
Lemma 2 of Section 4.8 implies that is an equilibrium point of (4). 
Now, obviously cannot equal (0,0) or (O,KJ. Consequently, 
(K1,0). 0 
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PRooF OF THEOREM 6. Lemmas I and 2 above state that every solution 
N1(t), N2(t) of (4) which starts in regions I or II at time t=t0 must ap-
proach the equilibrium solution N1 = K1, N2 =0 as t approaches infinity. 
Similarly, Lemma 3 shows that every solution N1(t), N2(t) of (4) which 
starts in region 111 at time t = t0 and remains there for all future time must 
also approach the equilibrium solution N1 = K1, N2 = 0. Next, observe that 
any solution N 1(t), Nit) of (4) which starts on /1 or /2 must immediately 
afterwards enter region II. Finally, if a solution N1(t),N2(t) of (4) leaves re-
gion 111, then it must cross the line /1 and immediately afterwards enter re-
gion II. Lemma 2 then forces this solution to approach the equilibrium 
solution N 1 = K1, N2 = 0. D 

Theorem 6 deals with the case of identical species; i.e., a = ß = 1. By a 
similar analysis (see Exercises 4-6) we can predict the outcome of the 
struggle for existence for all values of a and ß. 

Reference 
Gause, G. F., 'The Struggle for Existence,' Dover Publications, New York, 1964. 

EXERCISES 

1. Rewrite the system of equations (4) in the form 

K 1 dN1 K2 dN2 
----=K1-N1-N2, ----=K2-N1-N2• 
a 1N 1 dt a2N 2 dt 

Then, subtract these two equations and integrate to obtain directly that N2(t) 
approaches zero for all solutions N1(t), N2(t) of (4) with N1(t0)>0. 

2. The system of differential equations 

dN1 
dt =N1 [ -al +c1(l-b1N1 -b2N2 )] 

dN2 dt =N2 [ -a2 + c2 (l-b1N 1 -b2N2 )] 

(*) 

is a model of two species competing for the same limited resource. Suppose that 
c1 > a1 and c2 > a2• Deduce from Theorem 6 that N1(t) ultimately approaches 
zero if a1c2 >a2c1, and N2(t) ultimately approaches zero if a1c2 <a2c1• 

3. In 1926, Volterra presented the following model of two species competing for 
the same limited food supply: 

dN1 
dt =[bJ-A1(h1N1+h2N2)]N1 

dN2 
dt =[b2-X2(h1N1 +h2N2 )]N2• 

Suppose that bJ/A1 > bdX2• (The coefficient b;/A; is called the susceptibility of 
species i to food shortages.) Prove that species 2 will ultimately become extinct if 
N1(t0)>0. 

456 



4.11 The princip1e of competitive exclusion in popu1ation bio1ogy 

Problems 4-6 are concerned with the system of equations 

dN1 a 1N 1 dN2 a2N2 
dt=K;""(KI-NI-aN2), dt= K2 (K2-N2-ßNI). (*) 

4. (a) Assurne that K1/ a > K2 and Kd ß < K1• Show that N2(t) approaches zero as 
t approaches infinity for every solution N 1(t), N 2(t) of (*) with N 1(t0) > 0. 

(b) Assurne that Kif a < K2 and K2/ ß > K1• Show that N 1(t) approaches zero as 
t approaches infinity for every solution N 1(t), N2(t) of (*) with N 1Nit0)>0. 
Hint: Draw the lines /1 :N1 +aN2 = K1 and /2 :N2 + ßN1 =K2, and follow the 
proof of Theorem 6. 

5. Assurne that K1/ a > K2 and K2/ ß > K1• Prove that all solutions N 1(t), N 2(t) of 
(*), with both N 1(t0) and Nit0) positive, ultimately approach the equilibrium 
solution 

Hint: 
(a) Draw the lines /1 :N1 + aN2 = K1 and /2 :N2 + ßN1 =K2• The two 1ines divide 

the first quadrant into four regions (see Figure 2) in which both N1 and N2 

have fixed signs. 

I 
N?O 
N>O 2 

K, 

Figure 2 

(b) Show that all solutions N 1(t), N 2(t) of (*) which start in either region II or 
III must remain in these regions and ultimately approach the equilibrium 
solution N 1 =NP, N2 =Nf. 

(c) Show that all solutions N 1(t), N2(t) of (*) which remain exclusively in region 
I or region IV for all time t ;;. t0 must ultimately approach the equilibrium 
solution N 1 =NP, N2 = Nr. 
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K/a 

Figure 3 

6. Assurne that K1/ a < K2 and K2/ ß < K1• 

(a) Show that the equilibrium solution N1 =0, N2 =0 of (*) is unstable. 
(b) Show that the equilibrium solutions N2 =0 and N1=0, N 2=K2 of 

(*) are asymptotically stable. 
(c) Show that the equilibrium solution N1 = Nf, N 2 = Nf (see Exercise 5) of (*) 

is a saddle point. (This calculation is very cumbersome.) 
(d) It is not too difficult to see that the phase portrait of (*) must have the form 

described in Figure 3. 

4.12 The Threshold Theorem of epidemiology 
Consider the situation where a small group of people having an infectious 
disease is inserted into a large population which is capable of catching the 
disease. What happens as time evolves? Will the disease die out rapidly, or 
will an epidemic occur? How many people will ultimately catch the dis-
ease? To answer these questions we will derive a system of differential 
equations which govern the spread of an infectious disease within a popu-
lation, and analyze the behavior of its solutions. This approach will also 
lead us to the famous Threshold Theorem of epidemiology which states 
that an epidemic will occur only if the number of people who are suscept-
ible to the disease exceeds a certain threshold value. 

W e begin with the assumptions that the disease under consideration 
confers permanent immunity upon any individual who has completely re-
covered from it, and that it has a negligibly short incubation period. This 
latter assumption implies that an individual who contracts the disease be-
comes infective immediately afterwards. In this case we can divide the 
population into three classes of individuals: the infective class (/), the sus-
ceptible class (S) and the removed class (R). The infective class consists of 
those individuals who are capable of transmitting the disease to others. 
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