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Geometry of groups

Let G be a finitely presented group: G = (A | R)

1— ((R)) — F(A) — G —1

Geometric models:

* o
e Cayley graph:  Cay}(G): a
- {vertices} ++— G o- T o
- {directed edges} +— Gx A
& x4
e Cayley 2-complex: Cay% n R>(G)

- attach 2-cells to the Cayley graph Cay,(G) equivariantly

G acts on Cay’y(G) and Cay?A‘m (G) by isometries.
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Divergence
Let
- X be a 1-ended geodesic metric space
- e basepoint,

- S(e, r) sphere of radius r around e

The divergence of X is:

divx(r) = sup inf(lengths of r-avoidant paths from x to y)
x,YE€S(e,r)

dive(r) = diveggt ) (7) if Cay4(G) 1is1-ended

Up to equivalence ~ on functions, divs does not depend on the choice of A.

Examples
> RZ: divgz(r) = wr, linear
> H: divyz(r) = wsinh(r) ~ me" /2, exponential
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Gromov (1991):  Same dichotomy should be true for more general
non-positively curved spaces, such as CAT(0) spaces.

CAT(0): X: 4 & Ax(f,a,}é An?z(F.ﬁ)

Gromov’s expectation turned out to be false: Examples of CAT(0) groups:
e Gersten (1994):  divg ~ r?
e Macura (2002): divg ~ 13 Fﬂ% Z-
(2013):  divg ~ r?  for arbitrary d > 1 R
o . . Qe A \A*Qzﬂ}
Non-CAT(0) groups exhibit even wilder behavior:

e Brady-Tran (2021): divg ~ r® for a dense in [2, 00)
divg ~ r?log(r) ford > 2.

Q: Given your favorite class of groups, what spectrum of divergence
functions does it have?
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A Coxeter group W is given by:
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Coxeter groups

A Coxeter group W is given by:
- finite set S
- symmetric matrix (mg) s,tes such that:
mgs =1, mg = mys € {2,3,4,...,00}
(W, S) is given by presentation:
W ={(S|(st)™ =1, foralls,t € S)

mg = oo means that st has infinite order.

Encoded by a Coxeter graph (a.k.a. Dynkin graph) with edges lableled my:

° ° mg = 2 —» mg = 4

m
—o mg =3 — ' o mg > 5



Spherical Coxeter groups = finite
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Spherical Coxeter groups = finite

Here’s the list of irreducible ones (Coxeter, 1935):

A, (n>1): .- Ee:
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Affine Coxeter groups
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Affine Coxeter groups

Zn, (HZ 2) - Al:

B2 ) S

(n>5): > < Dy:

Eé: E7:

>.:.

Cp (n>3); e=—--——— Cp =
>
|

F4:

Groups generated by reflections in
the faces of a simplex in R"
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Our results, part I

Theorem 1
Let (W, S) be a 1-ended Coxeter system. If (W, S) is irreducible and
non-affine, then the divergence of W is at least quadratic.

As a corollary we get a complete characterization of linear divergence:

Corollary 2

Let (W, S) be a 1-ended Coxeter system. Then W has linear divergence if and
only if (W, S) = (W1, S;) X (Wa, S,) where either

1. both Wy and W are infinite, or

2. Wy is finite (possibly trivial) and W, is irreducible affine of rank > 3.

Corollary 3

If a 1-ended Coxeter group has a super-linear divergence, then its divergence

is at least quadratic. 4 swlar s w for
Le. there is a gap between r and r2. BDen T ckiow



Our results, part II ma= 2.7
Ivan Levcovitz introduced what he called a hypergraph index for RACGs,
which is an integer > 0 or oo, computable directly from the Coxeter graph.

We generalize it for general Coxeter groups.

Theorem 4
1. h=0 <= W has linear divergence.
2. h=1 = W has quadratic divergence.

3. hisfinite = the divergence of W is bounded above by a
polynomial of degree h + 1.

4. h=o00 <= thedivergence of W is exponential.
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Our results, part II
Ivan Levcovitz introduced what he called a hypergraph index for RACGs,
which is an integer > 0 or oo, computable directly from the Coxeter graph.

We generalize it for general Coxeter groups.

Theorem 4
1. h=0 <= W has linear divergence.
2. h=1 = W has quadratic divergence.

3. hisfinite = the divergence of W is bounded above by a
polynomial of degree h + 1.

4. h=o00 <= thedivergence of W is exponential.

Conjecture
his finite <=  the divergence of (W, S) is polynomial of degree h + 1.

Levcovitz (2020): true for right-angled Coxeter groups (m;; € {2, 00}).

We proved it for certain series of non-right-angled Coxeter groups.
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Theorem 5

Let (W, S) be a Coxeter system with the Coxeter graph A = A(W,S) and
hypergraph index h = h(W,S). If h is finite then h < by (A) + 1, where
by (A) is the 1-st Betti number of A.
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Our results, part III

Theorem 5

Let (W, S) be a Coxeter system with the Coxeter graph A = A(W,S) and
hypergraph index h = h(W,S). If h is finite then h < b;(A) + 1, where
by (A) is the 1-st Betti number of A.

bi(A) =e—v+k, v=#vertices, e= #edges, k= F#components.

Corollary 6

If a Coxeter group W is not relatively hyperbolic, then the divergence of W is
bounded above by a polynomial of degree b, (A) + 2.

Corollary 7

If the Coxeter graph of (W, S) is a tree and W is 1-ended, then W has
divergence linear, quadratic or exponential only. Moreover, each of these
possibilities is realized.
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Key idea

Behrstock—Caprace-Hagen-Sisto (2017): A Coxeter group W is either:
e relatively hyperbolic = div =~ exponential
e thick = divis =X apolynomial

Goal: Determine the exact upper bound.

A relatively hyperbolic group H has a family of peripheral subgroups P;:
(1) Each Z x Z subgroup of H must be contained in some of P;

(2) Groups P; and all their conjugates must intersect in finite subgroups

Plan: Build candidates for peripheral subgroups P; C W forced by (1) and
(2). Start with obvious subgroups containing Z x Z and take their joins if
they intersect infinitely. Once the process stops:
» if no subgroup P; equal W: we get an honest peripheral structure and
W is relatively hyperbolic == div =~ exponential
» if some P; = W, the Coxeter group W is thick, and the number of

steps before stabilization is our hypergraph index h = div =< 1,



More formally: ¢ sk o R

5 %2 %3 5q
Wide subsets: 2(S) = maximal sets of the form A x B where

- A, B both nonspherical, or obviously
- Airreducible affine of rk > 3, B spherical (or empty) tontain ZrZ
Slab subsets: ¥(S) = maximal sets of the form: A x K, such that

- A is minimal nonspherical o deol {o
. : . : : dodect whe
- K is maximal nonempty spherical, commuting with A o \ohegad
- there does not exist T € Q(S) such that Ax K C T. W\\-“‘s(-?c;( t,\ -
Define: A(S) = Q(S) U ¥(S), mBwdc S*vt]oﬁfwr

Ai+1(S) = set of all unions of elements in =; equivalence class on
A;(S), generated by the condition “T N T’ is nonspherical”

Then the hypergraph index h is:
o if SE€ANS)\Ap—1(S) and Q(S)#@: heN

e otherwise h =
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