Divergence in Coxeter groups

Ignat Soroko
University of North Texas
ignat.soroko@unt.edu
Joint work with
Pallavi Dani, Louisiana State University
Yusra Naqvi, University College London
Anne Thomas, University of Sydney
BG-UToledo joint Geometry and Topology seminar Septermber 8, 2022

Geometry of groups

Let G be a finitely presented group: $\quad G=\langle A \mid R\rangle$

$$
1 \longrightarrow\langle\langle R\rangle\rangle \longrightarrow F(A) \longrightarrow G \longrightarrow 1
$$

Geometry of groups

Let G be a finitely presented group: $\quad G=\langle A \mid R\rangle$

$$
1 \longrightarrow\langle\langle R\rangle\rangle \longrightarrow F(A) \longrightarrow G \longrightarrow 1
$$

Geometric models:

- Cayley graph: $\operatorname{Cay}_{A}^{1}(G)$:
- \{vertices\} $\longleftrightarrow G$
- \{directed edges $\} \longleftrightarrow G \times A$

- Cayley 2-complex: $\mathrm{Cay}_{\langle A \mid R\rangle}^{2}(G)$
- attach 2-cells to the Cayley graph $\operatorname{Cay}_{A}^{1}(G)$ equivariantly

Geometry of groups

Let G be a finitely presented group: $\quad G=\langle A \mid R\rangle$

$$
1 \longrightarrow\langle\langle R\rangle\rangle \longrightarrow F(A) \longrightarrow G \longrightarrow 1
$$

Geometric models:

- Cayley graph: $\operatorname{Cay}_{A}^{1}(G)$:
- \{vertices\} $\longleftrightarrow G$
- \{directed edges\} $\longleftrightarrow G \times A$

- Cayley 2-complex: $\operatorname{Cay}_{\langle A \mid R\rangle}^{2}(G)$
- attach 2-cells to the Cayley graph $\operatorname{Cay}_{A}^{1}(G)$ equivariantly
G acts on $\operatorname{Cay}_{A}^{1}(G)$ and $\operatorname{Cay}_{\langle A \mid R\rangle}^{2}(G)$ by isometries.

Examples:

$$
\mathbb{Z} \times \mathbb{Z}=\langle a, b \mid[a, b]\rangle:
$$

Examples:

Divergence

Let

- X be a 1-ended geodesic metric space
- e basepoint,
- $S(e, r)$ sphere of radius r around e

The divergence of X is:

$$
\operatorname{div}_{X}(r)=\sup _{x, y \in S(e, r)} \inf (\text { lengths of } r \text {-avoidant paths from } x \text { to } y)
$$

Divergence

Let

- X be a 1-ended geodesic metric space
- e basepoint,
- $S(e, r)$ sphere of radius r around e

The divergence of X is:

$$
\begin{gathered}
\operatorname{div}_{X}(r)=\sup _{x, y \in S(e, r)} \inf (\text { lengths of } r \text {-avoidant paths from } x \text { to } y) \\
\operatorname{div}_{G}(r)=\operatorname{div}_{\operatorname{Cay}_{A}^{1}(G)}(r) \quad \text { if } \quad \operatorname{Cay}_{A}^{1}(G) \quad \text { is 1-ended }
\end{gathered}
$$

Divergence

Let

- X be a 1-ended geodesic metric space
- e basepoint,
- $S(e, r)$ sphere of radius r around e

The divergence of X is:

$$
\begin{gathered}
\operatorname{div}_{X}(r)=\sup _{x, y \in S(e, r)} \inf (\text { lengths of } r \text {-avoidant paths from } x \text { to } y) \\
\operatorname{div}_{G}(r)=\operatorname{div}_{\operatorname{Cay}_{A}^{1}(G)}(r) \quad \text { if } \quad \operatorname{Cay}_{A}^{1}(G) \quad \text { is 1-ended }
\end{gathered}
$$

Up to equivalence \sim on functions, div_{G} does not depend on the choice of A.

Divergence

Let

- X be a 1-ended geodesic metric space
- e basepoint,
- $S(e, r)$ sphere of radius r around e

The divergence of X is:

$$
\begin{gathered}
\operatorname{div}_{X}(r)=\sup _{x, y \in S(e, r)} \inf (\text { lengths of } r \text {-avoidant paths from } x \text { to } y) \\
\operatorname{div}_{G}(r)=\operatorname{div}_{\operatorname{Cay}_{A}^{1}(G)}(r) \quad \text { if } \quad \operatorname{Cay}_{A}^{1}(G) \quad \text { is 1-ended }
\end{gathered}
$$

Up to equivalence \sim on functions, div_{G} does not depend on the choice of A.
Examples

- $\mathbb{R}^{2}: \quad \operatorname{div}_{\mathbb{R}^{2}}(r)=\pi r, \quad$ linear
- $\mathbb{H}^{2}: \quad \operatorname{div}_{\mathbb{H}^{2}}(r)=\pi \sinh (r) \sim \pi e^{r} / 2, \quad$ exponential

Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as $\mathrm{CAT}(0)$ spaces.

Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.

CAT(0):

Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT (0) spaces.

$$
d_{x}(p, q) \leq d_{\mathbb{R}^{2}}(\bar{p}, \bar{q})
$$

Gromov's expectation turned out to be false:

Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.
$\operatorname{CAT}(0): \underbrace{p}_{q} \mathbb{R}^{2}:<_{\bar{q}}^{\bar{p}} d_{x}(p, q) \leq d_{\mathbb{R}^{2}}(\bar{p}, \bar{q})$
Gromov's expectation turned out to be false: Examples of CAT(0) groups:

- Gersten (1994): $\operatorname{div}_{G} \sim r^{2}$

Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT (0) spaces.

CAT (0):

$$
d_{x}(p, q) \leqslant d_{\mathbb{R}^{2}}(\bar{p}, \bar{q})
$$

Gromov's expectation turned out to be false: Examples of CAT (0) groups:

- Gersten (1994): $\operatorname{div}_{G} \sim r^{2}$
- Macura (2002): $\operatorname{div}_{G} \sim r^{3}$
(2013): $\quad \operatorname{div}_{G} \sim r^{d} \quad$ for arbitrary $d>1$

Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.

CAT(0):

$$
d_{x}(p, q) \leq d_{\mathbb{R}^{2}}(\bar{p}, \bar{q})
$$

Gromov's expectation turned out to be false: Examples of CAT(0) groups:

- Gersten (1994): $\operatorname{div}_{G} \sim r^{2}$
- Macura (2002): $\operatorname{div}_{G} \sim r^{3}$

$$
\text { (2013): } \quad \operatorname{div}_{G} \sim r^{d} \quad \text { for arbitrary } d>1
$$

Non-CAT(0) groups exhibit even wilder behavior:

- Brady-Tran (2021): $\operatorname{div}_{G} \sim r^{\alpha}$ for α dense in $[2, \infty)$ $\operatorname{div}_{G} \sim r^{d} \log (r) \quad$ for $d \geq 2$.

Gromov (1991): Same dichotomy should be true for more general non-positively curved spaces, such as CAT(0) spaces.

CAT(0):

$$
d_{x}(p, q) \leq d_{\mathbb{R}^{2}}(\bar{p}, \bar{q})
$$

Gromov's expectation turned out to be false: Examples of CAT(0) groups:

- Gersten (1994): $\operatorname{div}_{G} \sim r^{2}$
- Macura (2002): $\operatorname{div}_{G} \sim r^{3}$ (2013): $\quad \operatorname{div}_{G} \sim r^{d} \quad$ for arbitrary $d>1$

Non-CAT(0) groups exhibit even wilder behavior:

- Brady-Tran (2021): $\operatorname{div}_{G} \sim r^{\alpha}$ for α dense in $[2, \infty)$ $\operatorname{div}_{G} \sim r^{d} \log (r) \quad$ for $d \geq 2$.

Q: Given your favorite class of groups, what spectrum of divergence functions does it have?

Coxeter groups

A Coxeter group W is given by:

- finite set S
- symmetric matrix $\left(m_{s t}\right)_{s, t \in S}$ such that:

$$
m_{s s}=1, m_{s t}=m_{t s} \in\{2,3,4, \ldots, \infty\}
$$

(W, S) is given by presentation:

$$
m_{s s}=1
$$

$$
\left.W=\langle S|(s t)^{m_{s t}}=1, \text { for all } s, t \in S\right\rangle \quad(s s)^{1}=1
$$

$m_{s t}=\infty$ means that $s t$ has infinite order.

Coxeter groups

A Coxeter group W is given by:

- finite set S
- symmetric matrix $\left(m_{s t}\right)_{s, t \in S}$ such that:

$$
m_{s s}=1, m_{s t}=m_{t s} \in\{2,3,4, \ldots, \infty\}
$$

(W, S) is given by presentation:

$$
\left.W=\langle S|(s t)^{m_{s t}}=1, \text { for all } s, t \in S\right\rangle
$$

$m_{s t}=\infty$ means that $s t$ has infinite order.
Encoded by a Coxeter graph (a.k.a. Dynkin graph) with edges lableled $m_{s t}$:

$$
\begin{array}{lll}
\bullet & m_{s t}=2 & \longmapsto
\end{array} m_{s t}=4
$$

Spherical Coxeter groups = finite

Here's the list of irreducible ones (Coxeter, 1935):

Spherical Coxeter groups = finite

Here's the list of irreducible ones (Coxeter, 1935):

Groups generated by reflections in
the faces of a simplex in \mathbb{S}^{n}

Affine Coxeter groups

$\widetilde{C}_{2}: \longleftarrow$

$\widetilde{E}_{8}: \bullet \square \square$

Affine Coxeter groups

the faces of a simplex in \mathbb{R}^{n}

Lannér's hyperbolic Coxeter groups

Lannér's hyperbolic Coxeter groups

Groups generated by reflections in the faces of a simplex in \mathbb{H}^{n}

Our results, part I

Theorem 1

Let (W, S) be a 1-ended Coxeter system. If (W, S) is irreducible and non-affine, then the divergence of W is at least quadratic.

Our results, part I

Theorem 1

Let (W, S) be a 1-ended Coxeter system. If (W, S) is irreducible and non-affine, then the divergence of W is at least quadratic.

As a corollary we get a complete characterization of linear divergence:
Corollary 2
Let (W, S) be a 1-ended Coxeter system. Then W has linear divergence if and only if $(W, S)=\left(W_{1}, S_{1}\right) \times\left(W_{2}, S_{2}\right)$ where either

1. both W_{1} and W_{2} are infinite, or $つ \mathbb{\pi}+\mathbb{Z}$
2. W_{1} is finite (possibly trivial) and W_{2} is irreducible affine of rank ≥ 3.

Our results, part I

Theorem 1

Let (W, S) be a 1-ended Coxeter system. If (W, S) is irreducible and non-affine, then the divergence of W is at least quadratic.

As a corollary we get a complete characterization of linear divergence:
Corollary 2
Let (W, S) be a 1-ended Coxeter system. Then W has linear divergence if and only if $(W, S)=\left(W_{1}, S_{1}\right) \times\left(W_{2}, S_{2}\right)$ where either

1. both W_{1} and W_{2} are infinite, or
2. W_{1} is finite (possibly trivial) and W_{2} is irreducible affine of rank ≥ 3.

Corollary 3

If a 1-ended Coxeter group has a super-linear divergence, then its divergence is at least quadratic.
I.e. there is a gap between r and r^{2}.
similar is true for Dehn functions

Our results, part II

Ivan Levcovitz introduced what he called a hypergraph index for RACGs, which is an integer ≥ 0 or ∞, computable directly from the Coxeter graph.
We generalize it for general Coxeter groups.
Theorem 4

1. $h=0 \quad \Longleftrightarrow \quad W$ has linear divergence.
2. $h=1 \quad \Longrightarrow \quad W$ has quadratic divergence.
3. h is finite \Longrightarrow the divergence of W is bounded above by a polynomial of degree $h+1$.
4. $h=\infty \quad \Longleftrightarrow \quad$ the divergence of W is exponential.

Our results, part II

Ivan Levcovitz introduced what he called a hypergraph index for RACGs, which is an integer ≥ 0 or ∞, computable directly from the Coxeter graph.
We generalize it for general Coxeter groups.
Theorem 4

1. $h=0 \quad \Longleftrightarrow \quad W$ has linear divergence.
2. $h=1 \quad \Longrightarrow \quad W$ has quadratic divergence.
3. h is finite \Longrightarrow the divergence of W is bounded above by a polynomial of degree $h+1$.
4. $h=\infty \quad \Longleftrightarrow \quad$ the divergence of W is exponential.

Conjecture

h is finite $\Longleftrightarrow \quad$ the divergence of (W, S) is polynomial of degree $h+1$.

Our results, part II

Ivan Levcovitz introduced what he called a hypergraph index for RACGs, which is an integer ≥ 0 or ∞, computable directly from the Coxeter graph.
We generalize it for general Coxeter groups.
Theorem 4

1. $h=0 \quad \Longleftrightarrow \quad W$ has linear divergence.
2. $h=1 \quad \Longrightarrow \quad W$ has quadratic divergence.
3. h is finite \Longrightarrow the divergence of W is bounded above by a polynomial of degree $h+1$.
4. $h=\infty \quad \Longleftrightarrow \quad$ the divergence of W is exponential.

Conjecture

h is finite $\Longleftrightarrow \quad$ the divergence of (W, S) is polynomial of degree $h+1$.
Levcovitz (2020): true for right-angled Coxeter groups ($m_{s, t} \in\{2, \infty\}$).

Our results, part II

Ivan Levcovitz introduced what he called a hypergraph index for RACGs, which is an integer ≥ 0 or ∞, computable directly from the Coxeter graph.
We generalize it for general Coxeter groups.
Theorem 4

1. $h=0 \quad \Longleftrightarrow \quad W$ has linear divergence.
2. $h=1 \quad \Longrightarrow \quad W$ has quadratic divergence.
3. h is finite \Longrightarrow the divergence of W is bounded above by a polynomial of degree $h+1$.
4. $h=\infty \quad \Longleftrightarrow \quad$ the divergence of W is exponential.

Conjecture

h is finite $\Longleftrightarrow \quad$ the divergence of (W, S) is polynomial of degree $h+1$.
Levcovitz (2020): true for right-angled Coxeter groups ($m_{s, t} \in\{2, \infty\}$).
We proved it for certain series of non-right-angled Coxeter groups.

Our results, part III

Theorem 5

Let (W, S) be a Coxeter system with the Coxeter graph $\Delta=\Delta(W, S)$ and hypergraph index $h=h(W, S)$. If h is finite then $h \leq \mathrm{b}_{1}(\Delta)+1$, where $\mathrm{b}_{1}(\Delta)$ is the 1-st Betti number of Δ.

Our results, part III

Theorem 5

Let (W, S) be a Coxeter system with the Coxeter graph $\Delta=\Delta(W, S)$ and hypergraph index $h=h(W, S)$. If h is finite then $h \leq \mathrm{b}_{1}(\Delta)+1$, where $\mathrm{b}_{1}(\Delta)$ is the 1-st Betti number of Δ.
$\mathrm{b}_{1}(\Delta)=e-v+k, \quad v=$ \#vertices,$\quad e=\#$ edges,$\quad k=\#$ components.

Our results, part III

Theorem 5

Let (W, S) be a Coxeter system with the Coxeter graph $\Delta=\Delta(W, S)$ and hypergraph index $h=h(W, S)$. If h is finite then $h \leq \mathrm{b}_{1}(\Delta)+1$, where $\mathrm{b}_{1}(\Delta)$ is the 1-st Betti number of Δ.
$\mathrm{b}_{1}(\Delta)=e-v+k, \quad v=$ \#vertices, $\quad e=$ \#edges, $\quad k=\#$ components.

Corollary 6

If a Coxeter group W is not relatively hyperbolic, then the divergence of W is bounded above by a polynomial of degree $\mathrm{b}_{1}(\Delta)+2$.

Corollary 7
If the Coxeter graph of (W, S) is a tree and W is 1-ended, then W has divergence linear, quadratic or exponential only. Moreover, each of these possibilities is realized.

Key idea

Behrstock-Caprace-Hagen-Sisto (2017): A Coxeter group W is either:

- relatively hyperbolic \Longrightarrow div \simeq exponential
- thick \Longrightarrow div is \preceq a polynomial

Key idea

Behrstock-Caprace-Hagen-Sisto (2017): A Coxeter group W is either:

- relatively hyperbolic \Longrightarrow div \simeq exponential
- thick \Longrightarrow div is \preceq a polynomial

Goal: Determine the exact upper bound.

Key idea

Behrstock-Caprace-Hagen-Sisto (2017): A Coxeter group W is either:

- relatively hyperbolic \Longrightarrow div \simeq exponential
- thick \Longrightarrow div is \preceq a polynomial

Goal: Determine the exact upper bound.
A relatively hyperbolic group H has a family of peripheral subgroups P_{i} :
(1) Each $\mathbb{Z} \times \mathbb{Z}$ subgroup of H must be contained in some of P_{i}
(2) Groups P_{i} and all their conjugates must intersect in finite subgroups

Key idea

Behrstock-Caprace-Hagen-Sisto (2017): A Coxeter group W is either:

- relatively hyperbolic \Longrightarrow div \simeq exponential
- thick \Longrightarrow div is \preceq a polynomial

Goal: Determine the exact upper bound.
A relatively hyperbolic group H has a family of peripheral subgroups P_{i} :
(1) Each $\mathbb{Z} \times \mathbb{Z}$ subgroup of H must be contained in some of P_{i}
(2) Groups P_{i} and all their conjugates must intersect in finite subgroups

Plan: Build candidates for peripheral subgroups $P_{i} \subseteq W$ forced by (1) and (2). Start with obvious subgroups containing $\mathbb{Z} \times \mathbb{Z}$ and take their joins if they intersect infinitely. Once the process stops:

- if no subgroup P_{i} equal W : we get an honest peripheral structure and W is relatively hyperbolic $\Longrightarrow \quad$ div \simeq exponential
- if some $P_{i}=W$, the Coxeter group W is thick, and the number of steps before stabilization is our hypergraph index $h \Longrightarrow \operatorname{div} \preceq r^{h+1}$.

More formally:

$$
S \text { : set of gees } s_{1}=0=0
$$

Wide subsets: $\Omega(S)=$ maximal sets of the form $A \times B$ where

- A, B both nonspherical, or
- A irreducible affine of $\mathrm{rk} \geq 3, B$ spherical (or empty)
obviously
contain $\mathbb{Z} \times \mathbb{Z}$
Slab subsets: $\Psi(S)=$ maximal sets of the form: $A \times K$, such that
- A is minimal nonspherical
- K is maximal nonempty spherical, commuting with A
- there does not exist $T \in \Omega(S)$ such that $A \times K \subseteq T$. Define: $\Lambda_{0}(S)=\Omega(S) \cup \Psi(S)$,
\} a tool to defect when two peripheral intersect in an infinite subgroup. $\Lambda_{i+1}(S)=$ set of all unions of elements in \equiv_{i} equivalence class on $\Lambda_{i}(S)$, generated by the condition " $T \cap T^{\prime}$ is nonspherical"
Then the hypergraph index h is:
- if $\quad S \in \Lambda_{h}(S) \backslash \Lambda_{h-1}(S)$ and $\quad \Omega(S) \neq \varnothing: \quad h \in \mathbb{N}$
- otherwise $h=\infty$
(d)

$$
\Lambda_{0}=\left\{T_{1}, T_{2}, T_{3}\right\}
$$

$$
\begin{array}{r}
T_{i} \cap T_{j}=0 \times 0 \times 0 \text {, spherical } \\
\begin{array}{r}
C_{2} \\
\end{array} \begin{array}{l}
C_{2}
\end{array} \quad A_{1} \text { ie. } \\
\text { finite! }
\end{array}
$$

$\Lambda_{1}=\Lambda_{0}$, relatively hyperbolic with peripheral subgroups $\left\{W_{T_{1}}, W_{T_{2}}, W_{T_{3}}\right\} \quad h=\infty$
(b)

$$
T_{1} \cap T_{2}:{\stackrel{s}{1} s_{2} s_{3}}_{s_{0}}^{s_{0}}{ }_{0}^{s_{0}^{s}}{ }_{0}^{s_{6}}=\widetilde{C}_{2} \times B_{2}
$$

$T_{1}(0) T_{2}$: all of $S \quad h=1$
(c)

$$
\begin{aligned}
& T_{4}:=T_{1}(\cup) T_{2}=S \backslash\left\{s_{1}\right\} \\
& T_{3}=S \backslash\left\{s_{2}, s_{a}\right\}=\underset{s_{3}}{=0-0} s_{4} s_{5} s_{6} s_{7} s_{8} \times s_{1}=\widetilde{c_{5}} \times A_{1}
\end{aligned}
$$

$$
T_{3} \cap T_{4}=\widetilde{C}_{5} \text {, wonspleical, } T_{5}:=T_{3}\left(0 T_{4}=S\right.
$$

