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Geometry of groups

Let G be a �nitely presented group: G = hA | Ri

1 �! hhRii �! F(A) �! G �! 1

Geometric models:

• Cayley graph: Cay1A(G):
· {vertices}  ! G
· {directed edges}  ! G ⇥ A

• Cayley 2-complex: Cay2hA|Ri(G)
· attach 2-cells to the Cayley graph Cay1A(G) equivariantly

G acts on Cay1A(G) and Cay2hA|Ri(G) by isometries.
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Examples:
Z⇥ Z = ha, b | [a, b]i:

Z2 ⇤ Z3 = ha | a2i ⇤ hb | b3i:
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Divergence
Let

· X be a 1-ended geodesic metric space
· e basepoint,
· S(e, r) sphere of radius r around e

The divergence of X is:

divX (r) = sup
x,y2S(e,r)

inf
�
lengths of r-avoidant paths from x to y

�

divG(r) = divCay1A(G)
(r) if Cay1A(G) is 1-ended

Up to equivalence ⇠ on functions, divG does not depend on the choice of A.

Examples
I R

2: divR2(r) = ⇡r , linear
I H

2: divH2(r) = ⇡ sinh(r) ⇠ ⇡er/2, exponential

x.Tiny
.
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Gromov (1991): Same dichotomy should be true for more general
non-positively curved spaces, such as CAT(0) spaces.

CAT(0):

Gromov’s expectation turned out to be false: Examples of CAT(0) groups:

• Gersten (1994): divG ⇠ r2

• Macura (2002): divG ⇠ r3

(2013): divG ⇠ rd for arbitrary d > 1

Non-CAT(0) groups exhibit even wilder behavior:
• Brady–Tran (2021): divG ⇠ r↵ for ↵ dense in [2,1)

divG ⇠ rd log(r) for d � 2.

Q: Given your favorite class of groups, what spectrum of divergence
functions does it have?
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Coxeter groups

A Coxeter group W is given by:
· �nite set S
· symmetric matrix (mst)s,t2S such that:

mss = 1, mst = mts 2 {2, 3, 4, . . . ,1}

(W , S) is given by presentation:

W = hS | (st)mst = 1, for all s, t 2 Si

mst =1 means that st has in�nite order.

Encoded by a Coxeter graph (a.k.a. Dynkin graph) with edges lableled mst :

mst = 2

mst = 3

mst = 4
mst mst � 5

Mss=L

⇐STIL



Coxeter groups

A Coxeter group W is given by:
· �nite set S
· symmetric matrix (mst)s,t2S such that:

mss = 1, mst = mts 2 {2, 3, 4, . . . ,1}

(W , S) is given by presentation:

W = hS | (st)mst = 1, for all s, t 2 Si

mst =1 means that st has in�nite order.

Encoded by a Coxeter graph (a.k.a. Dynkin graph) with edges lableled mst :

mst = 2

mst = 3

mst = 4
mst mst � 5



Spherical Coxeter groups = �nite

Here’s the list of irreducible ones (Coxeter, 1935):

An, (n � 1):

Bn, (n � 2):

Dn, (n � 4):

E6:

E7:

E8:

F4:

5H4: 5H3: mI2(m),
(m � 5,m 6=1) :

Groups generated by re�ections in
the faces of a simplex in S

n
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A�ne Coxeter groups
eAn, (n � 2): 1eA1:

eBn, (n � 4): eB3:

eCn, (n � 3): eC2:

eDn, (n � 5): eD4:
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eF4:
eE8: 6eG2:

Groups generated by re�ections in
the faces of a simplex in R
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Lannér’s hyperbolic Coxeter groups
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Our results, part I

Theorem 1
Let (W , S) be a 1-ended Coxeter system. If (W , S) is irreducible and
non-a�ne, then the divergence of W is at least quadratic.

As a corollary we get a complete characterization of linear divergence:

Corollary 2
Let (W , S) be a 1-ended Coxeter system. Then W has linear divergence if and
only if (W , S) = (W1, S1)⇥ (W2, S2) where either
1. both W1 and W2 are in�nite, or
2. W1 is �nite (possibly trivial) and W2 is irreducible a�ne of rank � 3.

Corollary 3
If a 1-ended Coxeter group has a super-linear divergence, then its divergence
is at least quadratic.
I.e. there is a gap between r and r2.
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Dehn function,



Our results, part II
Ivan Levcovitz introduced what he called a hypergraph index for RACGs,
which is an integer� 0 or1, computable directly from the Coxeter graph.
We generalize it for general Coxeter groups.

Theorem 4
1. h = 0 () W has linear divergence.
2. h = 1 =) W has quadratic divergence.
3. h is �nite =) the divergence of W is bounded above by a

polynomial of degree h+ 1.
4. h =1 () the divergence of W is exponential.

Conjecture
h is �nite () the divergence of (W , S) is polynomial of degree h+ 1.

Levcovitz (2020): true for right-angled Coxeter groups (ms,t 2 {2,1}).
We proved it for certain series of non-right-angled Coxeter groups.

Mst
= 2,9

-
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Our results, part III

Theorem 5
Let (W , S) be a Coxeter system with the Coxeter graph � = �(W , S) and
hypergraph index h = h(W , S). If h is �nite then h  b1(�) + 1, where
b1(�) is the 1-st Betti number of �.

b1(�) = e� v + k, v = #vertices, e = #edges, k = #components.

Corollary 6
If the Coxeter graph of (W , S) is a tree and W is 1-ended, then W has
divergence linear, quadratic or exponential only. Moreover, each of these
possibilities is realized.
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If a Coxeter group W is not relatively hyperbolic, then the divergence of W is
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Key idea
Behrstock–Caprace–Hagen–Sisto (2017): A Coxeter groupW is either:
• relatively hyperbolic =) div ' exponential
• thick =) div is � a polynomial

Goal: Determine the exact upper bound.

A relatively hyperbolic group H has a family of peripheral subgroups Pi:
(1) Each Z⇥ Z subgroup of H must be contained in some of Pi
(2) Groups Pi and all their conjugates must intersect in �nite subgroups

Plan: Build candidates for peripheral subgroups Pi ✓ W forced by (1) and
(2). Start with obvious subgroups containing Z⇥ Z and take their joins if
they intersect in�nitely. Once the process stops:
I if no subgroup Pi equalW : we get an honest peripheral structure and

W is relatively hyperbolic =) div ' exponential
I if some Pi = W , the Coxeter group W is thick, and the number of

steps before stabilization is our hypergraph index h =) div � rh+1.
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More formally:

Wide subsets: ⌦(S) = maximal sets of the form A⇥ B where
· A, B both nonspherical, or
· A irreducible a�ne of rk � 3, B spherical (or empty)

Slab subsets:  (S) = maximal sets of the form: A⇥ K , such that
· A is minimal nonspherical
· K is maximal nonempty spherical, commuting with A
· there does not exist T 2 ⌦(S) such that A⇥ K ✓ T .

De�ne: ⇤0(S) = ⌦(S) [ (S),
⇤i+1(S) = set of all unions of elements in ⌘i equivalence class on

⇤i(S), generated by the condition “T \ T 0 is nonspherical”
Then the hypergraph index h is:
• if S 2 ⇤h(S) \ ⇤h�1(S) and ⌦(S) 6= ?: h 2 N

• otherwise h =1

S : set of gens oxo-0=0

S, Sz S g Sy

/
obviously
contain 2×2

limit Intwo peripheral
intersect in an

infinite subgroup.
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No = Hi
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