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Abstract Stable parameter estimation is an ongoing challenge within biomathemat-
ics, especially in epidemiology. Oftentimes epidemiological models are composed
of large numbers of equations and parameters. Due to high dimensionality, classic
parameter estimation approaches, such as least square fitting, are computationally
expensive. Additionally, the presence of observational noise and reporting errors that
accompany real-time data can make these parameter estimation problems ill-posed
and unstable. The recent COVID-19 pandemic highlighted the need for efficient pa-
rameter estimation tools. In this paper, we develop a modified version of a regularized
predictor-corrector algorithm aimed at stable low-cost reconstruction of infectious
disease parameters. This method is applied to a new compartmental model describ-
ing COVID-19 dynamics, which accounts for vaccination and immunity loss (from
vaccinated and recovered populations). Numerical simulations are carried out with
synthetic and real data for COVID-19 pandemic. Based on the reconstructed dis-
ease transmission rates (and known mitigation measures), observations on historical
trends of COVID-19 in the states of Georgia and California are presented. Such
observations can be used to provide insights into future COVID policies.
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1 Introduction

Compartmental disease models, which track progression of individuals between
different disease stages and risk levels, remain at the kernel of epidemic theory
[39]. A simple example of a compartmental framework is the Susceptible-Infected-
Recovered (SIR) model proposed in [21]. This model has been extended to in-
clude other states, such as the Susceptible-Infectious-Recovered-Deceased (SIRD)
[3] and the Susceptible-Infectious-Recovered-Vaccinated (SIRV) models [35]. Re-
cently, generalizations of SIR models have been implemented to study the spread
of COVID-19 with the adherence and non-adherence of social behavior protocols
such as masking, social distancing, and the enforcement of closures and lockdowns
[27, 26, 37, 34, 10]. Earlier models described the spread of the disease in uncon-
trolled systems, and in the presence of different mitigation strategies such as social
distancing and lockdown restrictions.

Since the development and widespread distribution of vaccines, incorporation of
vaccination into such models has been an important development [48, 1]. However,
few models have accounted for differing disease transmission within vaccinated and
unvaccinated individuals. Here, we propose a new compartmental model of COVID-
19 transmission that takes into consideration some of these important dynamics
by including the vaccination status of both susceptible and infected humans. We
also include the possibility of losing immunity and becoming reinfected within
both vaccinated and unvaccinated populations. Thus, our new model incorporates
important disease dynamics that have not been covered by previous COVID-19
models. Additionally, the proposed model can easily be adjusted to other seasonal
outbreaks. With new variants of COVID-19 and other viruses occurring regularly,
along with fluctuations of vaccine efficacy among these variants, this new model will
help to understand past and current disease dynamics and make predictions about
future cases.

Another important novel feature of our compartmental model is the use of time-
dependent transmission rate. Oftentimes, a transmission rate of a disease is the most
challenging parameter to estimate [22]. The emerging new variants of COVID-19
make stable estimation of disease transmission even more complicated. To simplify
this, many previous COVID-19 models incoporated constant transmission rates found
in the literature. To better assess the efficiency of control and prevention and to
account for new COVID-19 strains, in our proposed model, we introduce a time-
dependent transmission rate for vaccinated and unvaccinated individuals. This rate is
reconstructed from noise contaminated data on new incidence cases and daily deaths
by solving a parameter estimation inverse problem.

A commonly used method for estimating parameters of ODEs from noisy data is
the nonlinear least squares (NLS), where model predictions for an invading pathogen
are fitted to reported incidence cases and daily new deaths [4, 36, 6, 30]. In the NLS,
a numerical method, such as Runge–Kutta or similar, is used to approximate the
solution of a given ODE system given a trial set of values for parameters and
initial conditions. The fit value is then input into an optimization algorithm that
updates parameter estimates. As a result, the NLS framework can be computationally
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expensive when noisy data is considered or a highly nonlinear model is being used
to describe a complex biological process. In [47, 24], a two-stage approach for this
method is proposed, which first fits a smooth curve to given noisy data, and then
estimates the unknown parameters in the ODE system. Ramsay et al. expanded on this
method by proposing to alternate the two procedures and by imposing a smoothness
penalty on curve fitting [31]. To that end, Ramsay et al. developed a novel profiling
estimation procedure where the data fitting and the fidelity to the ODE are combined
into a penalized log-likelihood criterion, which provided the statistical inference for
the ODE parameters. For other prior work on alternating minimization, also known
as (block) coordinate descent, one may consult [2, 5, 18, 29, 14, 11] and references
therein.

A more general nonlinear constrained minimization problem was studied in [38],
where parameter estimation is carried out in a predictor-corrector manner. In [38],
one updates the epidemiological parameters by a regularized second-order method
while freezing the state variables, and then the state variables are modified while the
system (epidemiological) parameters are fixed. These updates are iterated until con-
vergence. In this paper, we propose a new predictor-corrector algorithm (PCA) that
extends the earlier version to the case of parameter-dependent nonlinear observation
operators. The new algorithm successfully mitigates the associated computational
costs and incorporates an extra layer of stability in the optimization process. In
what follows, the proposed version of the PCA is used to get stable estimates of a
time-dependent transmission rate and effective reproduction number from our new
compartmental model, which is applied to the study of COVID-19 dynamic in a
post-vaccination stage.

The paper is organized as follows. In Section 2, we introduce our SVIRD model.
In Section 3, we describe the new computational algorithm for estimating disease
parameters in the proposed epidemic model. In Sections 4 and 5, the method is
evaluated on synthetic and real data sets, respectively. Possible directions of future
work are outlined in Section 6.

2 Mathematical Model: SVIRD

Prior studies have underscored stable parameter estimation related to infectious
disease transmission models based on ordinary or partial differential equations [16,
32, 44]. Lack of stable parameter estimation, which is evident when parameter
estimates are associated with large uncertainties, may be attributed to the model
structure or to the lack of information in a given data set, which could be linked to
the number of observations and to the spatial granularity of the data [32].

Within epidemiology, stable estimation of the effective reproduction num-
ber, R𝑒 (𝑡), and its underlying transmission rate, 𝛽(𝑡), is particularly important
[17, 33, 43]. Unlike other system parameters, i.e., incubation and recovery rates,
the effective reproduction number and the transmission rate of the disease are di-
rectly influenced by mitigation measures. Therefore, it is critical to develop both
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suitable epidemic models and regularized computational methods to reliably quan-
tify disease-specific parameters, especially in the face of noise contaminated data
and substantial uncertainty in approximate solutions.

Fig. 1: Diagram of the SVIRD model used. Susceptible individuals get vaccinated at
a rate 𝑝, and become infected at a time dependent transmission rate, 𝛽 (𝑡 ) . A constant
parameter, 0 < 𝛼 < 1, is a measure of vaccine efficacy. The lower values correspond
to less efficacy, and (1 − 𝛼)𝛽 (𝑡 ) is the rate of disease transmission for vaccinated
individuals. Both infected unvaccinated and vaccinated can recover at rates 𝛾𝑠,𝑟 and
𝛾𝑣,𝑟 , and die at rates 𝛾𝑠,𝑑 and 𝛾𝑣,𝑑 , respectively. We account for loss of immunity by
considering movement back to susceptible class from vaccinated and recovered classes
at rates 𝛿𝑣 and 𝛿𝑟 .

In this paper, to model the COVID-19 dynamics and estimate the effective repro-
duction number, R𝑒 (𝑡), and its underlying transmission rate, 𝛽(𝑡), we propose the
following system of differential equations

𝑑𝑆

𝑑𝑡
= −𝛽(𝑡) 𝑆(𝑡)

𝑁 − 𝐷 (𝑡) (𝐼𝑠 (𝑡) + 𝐼𝑣 (𝑡)) − 𝑝𝑆(𝑡) + 𝛿𝑟𝑅(𝑡) + 𝛿𝑣𝑉 (𝑡) (2.1)

𝑑𝑉

𝑑𝑡
= 𝑝𝑆(𝑡) − (1 − 𝛼)𝛽(𝑡) 𝑉 (𝑡)

𝑁 − 𝐷 (𝑡) (𝐼𝑠 (𝑡) + 𝐼𝑣 (𝑡)) − 𝛿𝑣𝑉 (𝑡) (2.2)

𝑑𝐼𝑠

𝑑𝑡
= 𝛽(𝑡) 𝑆(𝑡)

𝑁 − 𝐷 (𝑡) (𝐼𝑠 (𝑡) + 𝐼𝑣 (𝑡)) − (𝛾𝑠,𝑟 + 𝛾𝑠,𝑑)𝐼𝑠 (𝑡) (2.3)

𝑑𝐼𝑣

𝑑𝑡
= (1 − 𝛼)𝛽(𝑡) 𝑉 (𝑡)

𝑁 − 𝐷 (𝑡) (𝐼𝑠 (𝑡) + 𝐼𝑣 (𝑡)) − (𝛾𝑣,𝑟 + 𝛾𝑣,𝑑)𝐼𝑣 (𝑡) (2.4)

𝑑𝑅

𝑑𝑡
= 𝛾𝑠,𝑟 𝐼𝑠 (𝑡) + 𝛾𝑣,𝑟 𝐼𝑣 (𝑡) − 𝛿𝑟𝑅(𝑡) (2.5)

𝑑𝐷

𝑑𝑡
= 𝛾𝑠,𝑑 𝐼𝑠 (𝑡) + 𝛾𝑣,𝑑 𝐼𝑣 (𝑡) (2.6)

System (2.1)-(2.6) includes susceptible unvaccinated (𝑆), susceptible vaccinated (𝑉),
infected vaccinated (𝐼𝑣), infected unvaccinated (𝐼𝑠), recovered (𝑅), and deceased (𝐷)
compartments. With 𝑁 denoting the population size at the beginning time point of
the study period, we use 𝑁 − 𝐷 (𝑡) as the total population size at time 𝑡. This is
based on the assumption that the population increase due to birth or immigration
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and population decrease due to reasons other than COVID-19 balance out and the
change in population size is just due to COVID-19 death. The diagram of the SVIRD
model (2.1)-(2.6) is given in Figure 1, which illustrates the transition of individuals
between various disease compartments. Susceptible humans become vaccinated at a
rate of 𝑝. Both vaccinated and unvaccinated individuals can be infected. The disease
transmission rate, 𝛽(𝑡), for susceptible individuals is assumed to be time dependent.
We assume that vaccinated individuals become infected at a slower rate, which is
taken into account by the incorporation of a vaccine efficacy parameter, denoted by
𝛼. That is, vaccinated individuals become infected at a rate of (1 − 𝛼)𝛽(𝑡), where
0 < 𝛼 < 1.

Motivated by the report that unvaccinated individuals are more likely to have
severe symptoms from COVID-19 infections leading to a higher risk of hospitaliza-
tion and death [20], we assume different death rates for vaccinated and unvaccinated
individuals, denoted by 𝛾𝑣,𝑑 and 𝛾𝑠,𝑑 , respectively. The severity in symptoms also
leads to differing recovery rates for vaccinated and unvaccinated populations. The
recovery rates for vaccinated and unvaccinated individuals are denoted by 𝛾𝑣,𝑟 and
𝛾𝑠,𝑟 , respectively.

We further consider the case of possible reinfection due to the loss of immunity
by vaccinated individuals at a rate of 𝛿𝑣 and recovered individuals at a rate of 𝛿𝑟 . We
note from equation (2.1) that the rate of transmission depends only on the number
of contacts between the living susceptible and infected individuals (described by the
division of 𝑁 − 𝐷 (𝑡), the total living population at any instance in time).

The disease transmission rate, 𝛽(𝑡), is an important underlying factor for the
effective reproduction number, R𝑒 (𝑡), which quantifies the number of secondary
cases per primary case in a completely susceptible population during the entire
course of the outbreak. Similar to the transmission rate, the effective reproduction
number is significantly impacted by environmental conditions and the behaviour of
the population. A sustainable reduction of R𝑒 (𝑡) to a level less than 1, would indicate
that mitigation measures are successful and the disease is contained because every
infected person, on average, can only transmit the virus to less than one other human.

Using the next-generation matrix [12, 46], one estimates the effective reproduction
number for compartmental model (2.1)-(2.6) as

R𝑒 (𝑡) =
𝛽(𝑡)

(𝛾𝑠,𝑟 + 𝛾𝑠,𝑑)
𝑆(𝑡)

𝑁 − 𝐷 (𝑡) +
(1 − 𝛼)𝛽(𝑡)
(𝛾𝑣,𝑟 + 𝛾𝑣,𝑑)

𝑉 (𝑡)
𝑁 − 𝐷 (𝑡) . (2.7)

From equation (2.7), we note that R𝑒 (𝑡) increases with increasing disease trans-
mission 𝛽(𝑡), as well as increasing numbers of susceptible individuals (vaccinated
and non vaccinated). In addition, R𝑒 (𝑡) decreases with increasing recovery rates.
Next, in Section 3, we describe our predictor-corrector algorithm that will be used to
reconstruct the disease transmission rate, 𝛽(𝑡), which allows to provide an estimate
for the effective reproduction number, R𝑒 (𝑡).
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3 Methodology and Algorithm

Let C and T be incidence data on new COVID-19 confirmed cases and deaths,
respectively, and 𝑛 be the number of data points in each set. Naturally, we assume
that both data sets are noise contaminated. According to our SVIRD model given by
(2.1)-(2.6), the daily number of new COVID-19 cases is

C(𝑡) := 𝛽(𝑡) 𝑆(𝑡) (𝐼𝑠 (𝑡) + 𝐼𝑣 (𝑡))
𝑁 − 𝐷 (𝑡) + (1 − 𝛼)𝛽(𝑡)𝑉 (𝑡) (𝐼𝑠 (𝑡) + 𝐼𝑣 (𝑡))

𝑁 − 𝐷 (𝑡) , (3.1)

which we define as the rate of new infections into the system. On the other hand, by
(2.6), the daily number of new deaths is

T(𝑡) := 𝛾𝑠,𝑑 𝐼𝑠 (𝑡) + 𝛾𝑣,𝑑 𝐼𝑣 (𝑡). (3.2)

Assume that in a particular region, the values 𝑎 = 𝑡1 and 𝑏 = 𝑡𝑛 are the first and
the last days of the study period. We note that, fortunately, the number of deceased
individuals is considerably smaller than infectious ones. So, we will multiply daily
new deaths, T, by a positive scaling parameter, 𝜆, to ensure that new deaths and new
cases have the same order of magnitude. Let the data, 𝑑, for new cases and deaths,
C and T , be reported on days 𝑡1, 𝑡2, ..., 𝑡𝑛. That is,

𝑑 := [C(𝑡1), ..., C(𝑡𝑛), 𝜆T (𝑡1), ..., 𝜆T (𝑡𝑛)]𝑇 . (3.3)

Combining (3.1) and (3.2), one can now introduce the observation operator as follows

B := [C(𝑡1), ...,C(𝑡𝑛), 𝜆T(𝑡1), ..., 𝜆T(𝑡𝑛)]𝑇 . (3.4)

Then our goal is to recover the unknown time-dependent transmission rate, 𝛽(𝑡),
from the nonlinear constrained minimization problem

min
𝛽,𝑆,𝑉,𝐼𝑠 ,𝐼𝑣 ,𝐷

𝑓 (𝛽, 𝑆,𝑉, 𝐼𝑠 , 𝐼𝑣, 𝐷) (3.5)

subject to system (2.1)-(2.6), where

𝑓 (𝛽, 𝑆,𝑉, 𝐼𝑠 , 𝐼𝑣, 𝐷) : = ∥B − 𝑑∥2

=

𝑛∑︁
𝑖=1

{
(C(𝑡𝑖) − C(𝑡𝑖))2 + 𝜆2 (T(𝑡𝑖) − T (𝑡𝑖))2} . (3.6)

To solve (3.5)-(3.6) numerically, we discretize unobserved state variables, 𝑆, 𝑉 ,
𝐼𝑠 , 𝐼𝑣, and the time-varying transmission rate, 𝛽(𝑡), using basis expansions. The
vector of expansion coefficients for the transmission rate, 𝛽(𝑡), is of our primary
interest. The vector of expansion coefficients for the state variables is of less practical
importance, and it is primarily needed for the estimation of 𝛽(𝑡). For this reason, in
statistics literature, the expansion coefficients for state variables are often referred to



Title Suppressed Due to Excessive Length 7

as nuisance parameters [31]. Upon discretization, we iteratively update both sets of
unknown expansion coefficients using alternating minimization as described below.

In order to obtain the discrete approximation of 𝛽(𝑡), we consider a finite subset
spanned by shifted Legendre polynomials of degree 0, 1, ..., 𝑚−1, which are orthog-
onal on the interval [𝑎, 𝑏] with respect to 𝐿2 inner product, defined recursively as
follows

𝑥 =
2𝑡 − 𝑎 − 𝑏

𝑏 − 𝑎
, 𝑃0 (𝑥) = 1, 𝑃1 (𝑥) = 𝑥, 𝑡 ∈ [𝑎, 𝑏],

( 𝑗 + 1)𝑃 𝑗+1 (𝑥) = (2 𝑗 + 1)𝑥𝑃 𝑗 (𝑥) − 𝑗𝑃 𝑗−1 (𝑥), 𝑗 = 1, 2, ..., 𝑚 − 2.

This gives rise to the following finite dimensional approximation of the transmission
rate

𝛽𝑖 [𝜃] =
𝑚−1∑︁
𝑗=0

𝜃 𝑗+1𝑃 𝑗 (𝑡𝑖), 𝑖 = 1, 2, ..., 𝑛. (3.7)

Likewise, we express the state variables, 𝑆,𝑉, 𝐼𝑠 , and 𝐼𝑣 as

𝑆𝑖 [𝑢] =
𝑙−1∑︁
𝑗=0

𝑢 𝑗+1𝑃 𝑗 (𝑡𝑖), �̄�𝑖 [𝑢] =
𝑙−1∑︁
𝑗=0

𝑢𝑙+ 𝑗+1𝑃 𝑗 (𝑡𝑖), 𝐼𝑠,𝑖 [𝑢] =
𝑙−1∑︁
𝑗=0

𝑢2𝑙+ 𝑗+1𝑃 𝑗 (𝑡𝑖),

𝐼𝑣,𝑖 [𝑢] =
𝑙−1∑︁
𝑗=0

𝑢3𝑙+ 𝑗+1𝑃 𝑗 (𝑡𝑖), (3.8)

which generates discretized daily rates of incidence and death, C̄𝑑,𝑖 [𝜃, 𝑢] and T̄𝑑,𝑖 [𝑢],
respectively, if one substitutes 𝛽𝑖 [𝜃], 𝑆𝑖 [𝑢], �̄�𝑖 [𝑢], 𝐼𝑠,𝑖 [𝑢], and 𝐼𝑣,𝑖 [𝑢] for 𝛽(𝑡𝑖),
𝑆(𝑡𝑖), 𝑉 (𝑡𝑖), 𝐼𝑠 (𝑡𝑖), and 𝐼𝑣 (𝑡𝑖) in equations (2.1)-(2.6) and (3.1)-(3.2). Clearly, the
derivatives of 𝑆,𝑉, 𝐼𝑠 , and 𝐼𝑣 get discretized by replacing 𝑃 𝑗 (𝑡𝑖) with 𝑃′

𝑗
(𝑡𝑖) in the

identities above.
Next, we define vectors for the unknown parameters, 𝜃 and 𝑢, from the discrete

approximation of the transmission rate, 𝛽(𝑡𝑖), in identity (3.7) and from the discrete
approximation of the state variables, 𝑆(𝑡𝑖), 𝑉 (𝑡𝑖), 𝐼𝑠 (𝑡𝑖), and 𝐼𝑣 (𝑡𝑖), 𝑖 = 1, 2, ..., 𝑛, in
equations (3.8) as

𝜃 := [𝜃1, ..., 𝜃𝑚]𝑇 and 𝑢 := [𝑢1, ..., 𝑢𝑙 , 𝑢𝑙+1, ..., 𝑢2𝑙 , 𝑢2𝑙+1, ..., 𝑢3𝑙 , 𝑢3𝑙+1, ..., 𝑢4𝑙]𝑇 .

This enables us to introduce the observation operator, 𝐵:

𝐵(𝜃, 𝑢) :=
[
C̄𝑑,1 [𝜃, 𝑢], ..., C̄𝑑,𝑛 [𝜃, 𝑢], 𝜆T̄𝑑,1 [𝜃, 𝑢], ..., 𝜆T̄𝑑,𝑛 [𝜃, 𝑢]

]𝑇
, (3.9)

and the operator 𝐺, to account for the constraints,

𝐺𝑖 (𝜃, 𝑢) := 𝑆′𝑖 [𝑢] + 𝛽𝑖 [𝜃]
𝑆𝑖 [𝑢] (𝐼𝑠,𝑖 [𝑢] + 𝐼𝑣,𝑖 [𝑢])

𝑁 − �̄�𝑖 [𝑢]
+ 𝑝𝑆𝑖 [𝑢] − 𝛿𝑟 �̄�𝑖 [𝑢] − 𝛿𝑣�̄�𝑖 [𝑢]

𝐺𝑛+𝑖 (𝜃, 𝑢) := �̄� ′
𝑖 [𝑢] − 𝑝𝑆𝑖 [𝑢] + (1 − 𝛼)𝛽𝑖 [𝜃]

�̄�𝑖 [𝑢] (𝐼𝑠,𝑖 [𝑢] + 𝐼𝑣,𝑖 [𝑢])
𝑁 − �̄�𝑖 [𝑢]

+ 𝛿𝑣�̄�𝑖 [𝑢]
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𝐺2𝑛+𝑖 (𝜃, 𝑢) := 𝐼 ′𝑠,𝑖 [𝑢] − 𝛽𝑖 [𝜃]
𝑆𝑖 [𝑢] (𝐼𝑠,𝑖 [𝑢] + 𝐼𝑣,𝑖 [𝑢])

𝑁 − �̄�𝑖 [𝑢]
+ (𝛾𝑠,𝑟 + 𝛾𝑠,𝑑)𝐼𝑠,𝑖 [𝑢]

𝐺3𝑛+𝑖 (𝜃, 𝑢) := 𝐼 ′𝑣,𝑖 [𝑢] − (1 − 𝛼)𝛽𝑖 [𝜃]
�̄�𝑖 [𝑢] (𝐼𝑠,𝑖 [𝑢] + 𝐼𝑣,𝑖 [𝑢])

𝑁 − �̄�𝑖 [𝑢]
+ (𝛾𝑣,𝑟 + 𝛾𝑣,𝑑)𝐼𝑣,𝑖 [𝑢]

for 𝑖 = 1, 2, ..., 𝑛. Here �̄�𝑖 [𝑢] is the reported cumulative number of deaths on day 𝑡𝑖
and

�̄�𝑖 [𝑢] := 𝑁 − (𝑆𝑖 [𝑢] + �̄�𝑖 [𝑢] + 𝐼𝑠,𝑖 [𝑢] + 𝐼𝑣,𝑖 [𝑢] + �̄�𝑖 [𝑢]). (3.10)

We can now recast the constrained minimization problem as follows

minimize ∥𝐵(𝜃, 𝑢) − 𝑑∥2 with respect to 𝜃 and 𝑢

subject to 𝐺 (𝜃, 𝑢) = 0. (3.11)

Note that the data-fitting operator, 𝐵, also depends on the input data, �̄�, the cumu-
lative number of deceased individuals. However, the cumulative data, as opposed to
daily number of cases and deaths in the right-hand side, are smooth, and the noise
in cumulative data is consistent with discretization and modeling errors.

To reconstruct the transmission rate, 𝛽(𝑡), we employ a predictor-corrector algo-
rithm (PCA), where one updates 𝜃 while freezing 𝑢, and then 𝑢 is modified while 𝜃

is kept unchanged. The process is repeated until a desired tolerance level is achieved.

More specifically, given
(
𝜃𝑘
𝑢𝑘

)
, one transitions from 𝜃𝑘 to 𝜃𝑘+1 by applying one step

of the iteratively regularized Gauss-Newton (IRGN) procedure:

𝜃𝑘+1 = 𝜃𝑘 − [𝐺′∗
𝜃 (𝜃𝑘 , 𝑢𝑘)𝐺′

𝜃 (𝜃𝑘 , 𝑢𝑘) + 𝐵′∗
𝜃 (𝜃𝑘 , 𝑢𝑘)𝐵′

𝜃 (𝜃𝑘 , 𝑢𝑘) + 𝜏𝑘 𝐼]−1

{𝐺′∗
𝜃 (𝜃𝑘 , 𝑢𝑘)𝐺 (𝜃𝑘 , 𝑢𝑘) + 𝐵′∗

𝜃 (𝜃𝑘 , 𝑢𝑘) (𝐵(𝜃𝑘 , 𝑢𝑘) − 𝑑) + 𝜏𝑘 (𝜃𝑘 − 𝜃)}, (3.12)

where 𝜏𝑘 is the regularization parameter needed to incorporate stability in the op-

timization process, and 𝜃 is a prior value of 𝜃. Then, given
(
𝜃𝑘+1
𝑢𝑘

)
, one computes

𝑢𝑘+1 using the classical Gauss-Newton scheme

𝑢𝑘+1 = 𝑢𝑘 − [𝐺′∗
𝑢 (𝜃𝑘+1, 𝑢𝑘)𝐺′

𝑢 (𝜃𝑘+1, 𝑢𝑘) + 𝐵′∗ (𝜃𝑘+1, 𝑢𝑘)𝐵′ (𝜃𝑘+1, 𝑢𝑘)]−1

{𝐺′∗
𝑢 (𝜃𝑘+1, 𝑢𝑘)𝐺 (𝜃𝑘+1, 𝑢𝑘) + 𝐵′∗ (𝜃𝑘+1, 𝑢𝑘) (𝐵(𝜃𝑘+1, 𝑢𝑘) − 𝑑)}. (3.13)

A simpler version of this algorithm was introduced and analyzed in [38]. In [38],
the data-fitting operator, 𝐵, does not depend on the system parameter, 𝜃, and is a
function of the state variable only, i.e., 𝐵 = 𝐵(𝑢). One can see that IRGN scheme
(3.12) originates from variational regularization in the form

min
𝜃∈R𝑚

{
1
2
| |𝐺 (𝜃, 𝑢𝑘) | |2 +

1
2
| |𝐵(𝜃, 𝑢𝑘) − 𝑑 | |2 + 𝜏𝑘

2
| |𝜃 − 𝜃 | |2

}
. (3.14)

Method (3.13), on the other hand, is the classical Gauss-Newton algorithm applied
to the nonlinear minimization problem
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min
𝑢∈R4𝑙

{
1
2
| |𝐺 (𝜃𝑘+1, 𝑢) | |2 +

1
2
| |𝐵(𝜃𝑘+1, 𝑢) − 𝑑 | |2

}
. (3.15)

The Gauss-Newton procedure (3.13) does not need to be regularized, since solving
the ODE system of equations (2.1)-(2.6), with respect to 𝑆,𝑉, 𝐼𝑠 , 𝐼𝑣, 𝑅, and 𝐷, is a
forward problem, which is not generally ill-posed. Thus, its discrete approximation
is also stable (as our numerical experiments below confirm).

Algorithm (3.12)-(3.13) was coded in MATLAB, using the optimization and par-
allel toolboxes. The code, along with figures, simulated data and parameter estimates,
can be found in this GitHub repository.

For all numerical simulations (with synthetic and real data), the unobserved state
variables, 𝑆,𝑉, 𝐼𝑠 , and 𝐼𝑣, were normalized, that is, in place of 𝑆,𝑉, 𝐼𝑠 , and 𝐼𝑣, we
reconstruct the expansion coefficients for 𝑆/𝑁, 𝑉/𝑁, 𝐼𝑠/𝑁 , and 𝐼𝑣/𝑁 , where 𝑁 is
the total population of the region.

To select the number of base functions for 𝛽(𝑡) and for the unobserved state
variables (𝑚 and 𝑛, respectively), we start with 𝑚 = 𝑛 = 5 and keep increasing them
until the reconstructed functions, 𝛽(𝑡), 𝑆(𝑡), 𝑉 (𝑡), 𝐼𝑠 (𝑡), and 𝐼𝑣 (𝑡), no longer visibly
change.

An important part of parameter estimation is the choice of 𝜆 in (3.3)-(3.4), which
allows to ensure that the two data sets, reported daily new cases and deaths, are
well-balanced. In all our experiments, the value of 𝜆 is equal to 1000. For 𝜆 = 1,
the misfit in daily new deaths is perceived as part of noise in incidence data, and the
process is less sensitive to daily new deaths as compared to new incidence cases.

4 Numerical Experiments with Synthetic Data

In this section, we test our proposed predictor-corrector algorithm (3.12)-(3.13) using
two synthetic data sets for incidence cases and deaths. The first synthetic data set
was generated using the transmission rate 𝛽(𝑡) shown in Figure 2 which represents a
case when initial success in disease prevention is followed by some setbacks causing
the transmission rate to fluctuate. Specifically, this transmission rate was chosen
to model a ”non effective mitigation” scenario where R𝑒 (𝑡) remains above 1 for
multiple time periods showing that the disease persists and spreads quickly. This
is illustrated in the graph of R𝑒 (𝑡) in Figure 2. The second synthetic data set was
generated using the transmission rate shown in Figure 4 and represents an ”effective
mitigation” scenario where the disease transmission rate is reduced during the study
period and where R𝑒 (𝑡) stays below 1 more consistently.

In what follows, we evaluate the performance of the proposed method in recon-
structing the unknown time-dependent transmission rate, 𝛽(𝑡), given synthetic daily
rates of incidence cases and new deaths over a certain period of time. To that end,
two model transmission rates, described above, were selected (see Figures 2 and 4).
Each model transmission rate was used to solve the forward problem, that is, the
system of ODEs (2.1)-(2.6), and to generate clean data on incidence cases, C(𝑡), and

https://github.com/donajialej/WIMB2022team5.git
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Fig. 2: Reconstruction of disease transmission 𝛽 (𝑡 ) (along with coefficients), and
the effective reproduction number R𝑒 (𝑡 ) for Scenario 1 (non-effective mitigation)
from synthetic noisy data on new daily cases and deaths in Figure 3. Simulations are
carried out with 10 base functions for the transmission rate 𝛽 (𝑡 ) and 40 base functions
for each unobserved state variable, 𝑆, 𝑉, 𝐼𝑠 , and 𝐼𝑣, that is, 160 base functions for all state
variables combined. The regularization sequence 𝜏𝑘 = 1010/(𝑘 + 1)15, and the iterations
are stopped when 𝑘 = 43. This stopping time is determined by the goodness of fit to both
data sets.

daily new deaths, T (𝑡), on a given time interval [𝑡1, 𝑡𝑛] according to expressions
(3.1) and (3.2), respectively. Then, random Gaussian noise (with 0 mean and a rather
aggressive standard deviation) was added to epidemic data in order to mimic noise
contaminated data in a real-life setting, as shown in the top panels of Figures 3 and
5. Since real incidence cases and deaths are known to be positive, uniform noise was
added if incidence became negative at any point.

Given ”real” data for incidence cases and daily new deaths, we employ the regular-
ized algorithm (3.12)-(3.13) to simultaneously reconstruct the unknown transmission
rate, 𝛽(𝑡), and the state variables, 𝑆,𝑉, 𝐼𝑠 , and 𝐼𝑣, with discrete approximation given
by (3.7) and (3.8). In order to quantify uncertainty in the extracted transmission
rate, we refit the model (using parallel programming - parfor option in Matlab) to
𝑀 = 100 additional data sets for incidence cases and daily deaths assuming Poisson
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Fig. 3: Synthetic study of Scenario 1: non-effective mitigation. Top to bottom: syn-
thetic data (dots) and model fit (solid line) for daily new cases and daily new deaths; true
synthetic values (dash line) and model reconstructions (solid line) for 𝑆 (𝑡 ) (blue), 𝑉 (𝑡 )
(green), 𝐼𝑠 (𝑡 ) (red), and 𝐼𝑣 (𝑡 ) (pink). There are 100 bootstraps model reconstructions
and the mean of them is a darker line of the color corresponding to each compartment.

error structure. The resulting 𝑀 best-fit parameter sets are used to build the his-
togram for each Legendre coefficient, 𝜃 𝑗 , 𝑗 = 1, 2, ..., 𝑚, representing the frequency
distribution of the reconstructed values.

To ensure an unbiased choice of the initial guess for 𝛽(𝑡), we take [𝛽0, 0, ..., 0]𝑇
to serve as initial approximation for [𝜃1, 𝜃2, ..., 𝜃𝑚]𝑇 at every bootstrap iteration,
where 0.1 < 𝛽0 < 1. To find initial approximations for 𝑢, we solve the system of
ODEs (2.1)-(2.6) with 𝛽(𝑡) = 𝛽0 one time before the start of the iterative process,
and then evaluate Legendre expansion coefficients for the computed 𝑆,𝑉, 𝐼𝑠 , and 𝐼𝑣
to form the initial vector 𝑢 := [𝑢1, ..., 𝑢𝑙 , 𝑢𝑙+1, ..., 𝑢2𝑙 , 𝑢2𝑙+1, ..., 𝑢3𝑙 , 𝑢3𝑙+1, ..., 𝑢4𝑙]𝑇 .

For the non-effective mitigation scenario (Scenario 1) with transmission rate 𝛽(𝑡)
shown in Figure 2, the fitting procedure is initiated with 𝛽0 = 0.5 and is carried
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out using 𝑚 = 10 base functions for the transmission rate, 𝛽(𝑡), and 𝑛 = 40 base
functions for each unobserved state variable, 𝑆, 𝑉 , 𝐼𝑠 , and 𝐼𝑣, giving a total of 160
base functions for all state variables combined.

With no regularization, the iterative process to estimate the transmission rate in
Scenario 1, Figure 2, turns out to be divergent. However, the process can be stabilized
with a broad range of initial values, 𝜏0, as long as they are consistent with the rate of
decay of the regularization sequence, 𝜏𝑘 . In our experiment, we selected 𝜏0 = 1010

and the regularization sequence, 𝜏𝑘 = 1010/(𝑘 + 1)15, the fastest rate of decrease
that gives rise to a convergent iterative process. Iterations (3.12)-(3.13) are stopped
when 𝑘 = 43. This stopping time is determined by the goodness of fit to both data
sets, C and T .

Fig. 4: Reconstruction of disease transmission 𝛽 (𝑡 ) (along with coefficients), and
the effective reproduction number R𝑒 (𝑡 ) in Scenario 2 (effective mitigation) from
synthetic data on new daily cases and deaths in Figure 5. Simulations are carried out with
10 base functions for the transmission rate 𝛽 (𝑡 ) , and 40 base functions for each unobserved
state variable, 𝑆, 𝑉, 𝐼𝑠 , and 𝐼𝑣, that is, 160 base functions for all state variables combined.
The regularization sequence 𝜏𝑘 = 1010/(𝑘 + 1)15, and the iterations are stopped when
𝑘 = 19. This stopping time is determined by the goodness of fit to both data sets.
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Fig. 5: Synthetic study of Scenario 2: effective mitigation. Top to bottom: synthetic
data (dots) and model fit (solid line) for daily new cases and daily new deaths; true
synthetic values (dash line) and model reconstructions (solid line) for 𝑆 (𝑡 ) (blue), 𝑉 (𝑡 )
(green), 𝐼𝑠 (𝑡 ) (red), and 𝐼𝑣 (𝑡 ) (pink). There are 100 bootstraps model reconstructions
and the mean of them is a darker line of the color corresponding to each compartment.

For the effective mitigation case (Scenario 2), where the transmission rate 𝛽(𝑡)
is presented in Figure 4, the parameter estimation process is initiated with 𝛽0 = 0.3.
As before, the reconstruction is done with 𝑚 = 10 and 𝑛 = 40, 𝜏0 = 1010 and
the regularization sequence is driven to zero at the rate 1010/(𝑘 + 1)15. But in this
scenario, the iterative process is terminated when 𝑘 = 19.

Figures 2 and 4 illustrate the connection between exact and reconstructed effective
reproduction numbers,R𝑒 (𝑡), for the two scenarios with different model transmission
rates. As stated in Section 2, R𝑒 (𝑡) > 1 describes time periods for which the disease
persists and spreads quickly, and R𝑒 (𝑡) < 1 describes time periods for which the
disease is contained (i.e., the disease is spreading slowly, eventually dying out). In
the non-effective mitigation scenario described in Figure 2, we see two approximate
month-long windows for which the disease persists, highlighting that after the first
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push to decrease transmission (R𝑒 (𝑡) falls to less than 1 mid August), mitigation
strategies where not successful at keeping the transmission rate low enough, and a
second wave begins in early October. For the effective mitigation scenario, described
in Figure 4, we see that although the effective reproduction rateR𝑒 (𝑡) was greater than
1 for an extended initial period of time, once it drops below 1 (close to September)
it stays below 1.

The top panels of Figures 3 and 5 show how the bundles of incidence curves for
daily new cases and deaths corresponding to the reconstructed transmission rates,
𝛽(𝑡), compare to the noisy synthetic data used for data fitting.

Reconstructed 𝑆(𝑡), 𝑉 (𝑡), 𝐼𝑠 (𝑡), and 𝐼𝑣 (𝑡) from these two scenarios can be viewed
in the lower panels of Figures 3 and 5, respectively. While there are inevitable errors
due to noise contamination in both data sets and due to accuracy loss stemming from
regularization, in all Figures 2-5 illustrating numerical experiments for synthetic
data the uncertainty is very low and the reconstruction of all unknown parameters
is very stable. Yet, as evident from Figures 3 and 5, it is harder to reconstruct
the dynamics of the vaccinated population compared to the susceptible one since
vaccinated individuals are less likely to contribute to new incidence cases (and
especially deaths).

When comparing the time series for the reconstructed state variables between our
two scenarios in the lower panels of Figures 3 and 5, we see that the progression of
the disease follows the trend of the disease transmission rates. In particular, we see
two infection peaks in the lower panel of Figure 3, which follow the peaks in the
transmission rate and effective reproduction number curves in Figure 2. A similar
trend for a single infected peak is described in the lower panel of Figure 5, which
follows the peaks in the transmission rate and effective reproduction number curves
in Figure 4. We also note that in the non-effective mitigation scenario (Figure 3) the
initial population is assumed to be 𝑁 = 39, 237, 836, and for the effective mitigation
scenario (Figure 5) 𝑁 = 10, 799, 566.

Our simulated data and the inversion results for both experiments with synthetic
data largely depend on the values of pre-estimated parameters, 𝑝, 𝛼, 𝛾𝑠,𝑟 , 𝛾𝑣,𝑟 , 𝛾𝑠,𝑑 ,
𝛾𝑣,𝑑 , 𝛿𝑣, 𝛿𝑟 , and the initial values for 𝑆,𝑉, 𝐼𝑠 , and 𝐼𝑣. In both scenarios, we simulated
for 140 days with the parameters as those from the real epidemic listed in Table 2.
For initial values of 𝑆,𝑉, 𝐼𝑠 , and 𝐼𝑣, one may consult the lower panels of Figures 3
and 5.

5 Simulations with Real Data for COVID-19 Pandemic

In this section, we apply our SVIRD model (2.1)-(2.6) and regularized computational
algorithm (3.12)-(3.13) to real data on incidence cases and new daily deaths for the
second wave of USA COVID-19, when the Delta variant was one of the more widely
spread strains[8]. Most states experienced this second wave during an approximate
four-month period between July 9 and November 25, 2021, while vaccines were
distributed to the US general population starting from early 2021. So we can study
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the progression of the pandemic under the effect of vaccination. For our experiments,
we choose data sets for two states, Georgia and California, as both have different
population sizes (Georgia is much smaller with approximately 11 million people ver-
sus the near 40 million living in California), had different proportions of vaccinated
individuals between July 9 and November 25 2021, and both had different COVID-
19 protocols. In particular, California had more vaccinated people at the onset and
at the end of this time window [8], and California had stricter masking protocols;
masks were required indoors in most places during this time period, whereas they
were only recommended in the state of Georgia. The model variables and initial
conditions corresponding to the population sizes in Georgia and California at the
onset of the second wave, are given in Table 1. Initial conditions were found using
Census and CDC data [41, 8, 42, 9]. Here, 𝐼 (0) = 𝐼𝑠 (0) + 𝐼𝑣 (0) is the number of
cases within the most recent week of the onset of the second wave, as most people
with COVID-19 are no longer contagious 5 days after they first have symptoms and
have been fever-free for at least 3 days.

Variable Meaning
𝑆 (𝑡 ) Number of susceptible unvaccinated individuals
𝑉 (𝑡 ) Number of susceptible vaccinated individuals
𝐼𝑠 (𝑡 ) Number of infectious unvaccinated individuals
𝐼𝑣 (𝑡 ) Number of infectious vaccinated individuals
𝑅 (𝑡 ) Number of recovered individuals
𝐷 (𝑡 ) Number of deceased individuals

Initial condition Georgia California
𝑆 (0) 10,799,566-V(0)-I(0) 39,237,836-V(0)-I(0)
V(0) 3,942,002 20,086,693
I(0) 3,580 25,039
𝐼𝑣 (0) 731 (=3580*5116/25039) 5,116
R(0) 0 0
D(0) 0 0

Table 1: Initial conditions used in the SVIRD model for the GA and CA data. Population
size was based on the 7/1/2021 data from https://www.census.gov/quickfacts/GA and
https://www.census.gov/quickfacts/CA.

System parameter values used for California and Georgia during the second wave
of the pandemic are presented in Table 2. The rationale for the selection of these
values is as follows.

• Vaccination rate 𝑝: Based on the CDC data [9], during the selected time win-
dow, the proportion of fully vaccinated people changed from 37.5% to 49.8%
in Georgia and from 51.1% to 63.1% in California, both of which resulted in
about 12% increase in vaccination. Dividing this by our 140-day window gives
the approximate daily vaccination rate 𝑝 of 0.00086 day−1.

• Vaccine effectiveness 𝛼: We choose 𝛼 = 0.8 as the age-standardized crude vac-
cine effectiveness (VE) for infection was reported at 80% during July–November
of 2021 [7].

• Death rate 𝛾𝑠,𝑑: We calculate 𝛾𝑠,𝑑 = 0.005/18.5 = 0.00027 days−1 as the
infectious fatality ratio (IFR) was reported as 0.5% from [28] and the median
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time from illness onset to death is 18.5 days (reported number for vaccinated vs
unvaccinated [15]).

• Death rate 𝛾𝑣,𝑑: We take 𝛾𝑣,𝑑 = (0.005/12.7)/18.5 = 0.000021 days−1 as during
October–November, unvaccinated persons had 12.7 times the risks for COVID-
19–associated death compared with those that were vaccinated without booster
doses [20].

• Recovery rate 𝛾𝑠,𝑟 : Assuming that individuals infected with COVID-19 either
recover or die, and using a recovery rate of 10 days, we conclude that the recovery
rate for unvaccinated individuals is 𝛾𝑠,𝑟 = (1 − 0.005)/10 = 0.0995 days−1.

• Recovery rate 𝛾𝑣,𝑟 : With similar rationale as above, we estimate the recovery
rate for vaccinated individuals as 𝛾𝑣,𝑟 = (1 − 0.005/12.7)/10 = 0.09996 days−1.

• Loss of immunity rate for recovered individuals 𝛿𝑟 : We set 𝛿𝑠 = 1/90 = 0.011
days−1

• Loss of immunity rate for vaccinated individuals 𝛿𝑣: We use 𝛿𝑣 = 0 as the
Moderna and Pfizer-BioNTech vaccines offer immunity against COVID-19 for at
least six months, and most people in the US got fully vaccinated in the end of
April, 2021, or later. Therefore, they still had immunity against COVID-19 during
most of the study period.

Parameter Meaning Value Source
𝛽 (𝑡 ) Transmission rate
𝑝 Vaccination rate 0.00086 day−1 [41],[42][9]
𝛼 Vaccine dose efficacy 0.8 [23][25][7]
𝛾𝑠,𝑟 Recovery rate of unvaccinated 0.0995 day−1 -
𝛾𝑣,𝑟 Recovery rate for vaccinated 0.09996 day−1 -
𝛾𝑠,𝑑 Case-fatality for unvaccinated 0.00027 day−1 [45]
𝛾𝑣,𝑑 Case-fatality for vaccinated 0.000021

day−1
-

𝛿𝑣 Loss of immunity for vaccinated 0 day−1 [13]
𝛿𝑠 Loss of immunity for unvacci-

nated
0.011 day−1

Table 2: Parameter values recorded for California and Georgia during the second wave
of the pandemic, July 9th to November 25th, 2021 (approximately 4 months). The bars
‘-’ in the last column mean that these values were calculated using 𝛾𝑠,𝑑 , as described in
the parameter description below.

In the case of real data, apart from the measurement errors, which were incorpo-
rated in our earlier experiments, we also encounter modeling errors, which make the
process considerably more unstable. Thus, apart from the penalty term, 𝜏𝑘

2 | |𝜃 − 𝜃 | |2,
the iterative scheme also needs to be regularized by discretization. For this reason,
fewer base functions are used for the state variables. Specifically, we take 6 base
functions for each unobserved state variable, 𝑆,𝑉, 𝐼𝑠 , and 𝐼𝑣, for the Georgia data,
and 12 bases functions for each unobserved state variable for the California data. To
further stabilize the process, we also introduce a smaller step size, 𝜁 = 0.1, as we
update 𝑆(𝑡), 𝑉 (𝑡), 𝐼𝑠 (𝑡), and 𝐼𝑣 (𝑡). This calls for more iterations needed to achieve the
desirable data fit. The iterative process is terminated when 𝑘 = 130 for the Georgia
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Fig. 6: Reconstructed effective reproduction numbers, R𝑒 (𝑡 ) , for various assumed
reporting rates in the state of Georgia: Simulations are carried out with 10 base
functions for the transmission rate, 𝛽 (𝑡 ) , and 6 base functions for each unobserved state
variable, 𝑆, 𝑉, 𝐼𝑠 , and 𝐼𝑣, that is, 24 base functions for all state variables combined. The
regularization sequence 𝜏𝑘 = 1/(𝑘 + 1)10, and the iterations are stopped when 𝑘 = 130.
This stopping time is determined by the goodness of fit to Georgia data set.
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Fig. 7: Reconstructed effective reproduction numbers, R𝑒 (𝑡 ) , for various assumed
reporting rates in the state of California: Simulations are carried out with 10 base
functions for the transmission rate, 𝛽 (𝑡 ) , and 12 base functions for each unobserved state
variable, 𝑆, 𝑉, 𝐼𝑠 , and 𝐼𝑣, that is, 48 base functions for all state variables combined. The
regularization sequence 𝜏𝑘 = 103/(𝑘 + 1)7, and the iterations are stopped when 𝑘 = 58.
This stopping time is determined by the goodness of fit to California data set.

data with regularization sequence 𝜏𝑘 = 1/(𝑘 +1)10 and 𝑘 = 58 for the California data
with 𝜏𝑘 = 103/(𝑘 + 1)7. Overall, the time until convergence remains the same as for
the case of synthetic data since the increase in the number of iterations is balanced
by the reduction in the number of base functions.
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Another important aspect is the reporting rate of new cases. While it is natural to
assume that the reporting rate for deaths due to COVID-19 is high, the reporting rate
for daily new COVID-19 cases is unlikely to be anywhere close to 100% considering
the large number of mild and asymptomatic cases (”silent spreaders” [19]). Figures 6
and 7 compare reconstructed time-dependent effective reproduction numbers, R𝑒 (𝑡),
for various assumed reporting rates of daily new cases in Georgia and California,
respectively (for both states, the reporting rate for daily new deaths due to COVID-
19 is fixed at 90%). We know that at the onset of Delta variant wave of COVID-19
pandemic, the reproduction number must have been above 1 for some period of
time. Thus, Figure 6 suggests that the reporting rate of new COVID-19 incidence
cases in the state of Georgia is between 10 - 30%. For California, we see that the
reporting rate is between 10 - 60% as illustrated in Figure 7. This is consistent with
the estimation of COVID-19 incidence reporting rate carried out in [40]. In [40],
the reporting rate was cast as one of the unknown parameters in the model and had
to be reconstructed by the optimization algorithm. For the initial pre-vaccination
stage of COVID-19 pandemic in the state of Georgia, the reporting rate for new
incidence cases was estimated to be 0.23 (95% 𝐶𝐼 : [0.22, 0.24]). For the reasons
listed above and as suggested by our numerical study, in simulations presented in
Figures 8-9 and Figures 10-11, we assume a 90% reporting rate for new daily deaths
due to COVID-19 and a 20% reporting rate for new incidence cases in the states of
Georgia and California.

In Figures 8 and 10, we show the transmission rate, 𝛽(𝑡), and the effective
reproduction number, R𝑒 (𝑡), reconstructed from daily data on new cases and deaths
for the states of Georgia and California, respectively, for the period from July 9 to
November 25, 2021. Top panels of Figures 9 and 11 show how incidence curves
for daily new cases and deaths in the states of Georgia and California compare to
actual real data used for parameter estimation in optimization process (3.12)-(3.13).
Reconstructed 𝑆(𝑡), 𝑉 (𝑡), 𝐼𝑠 (𝑡), and 𝐼𝑣 (𝑡) for the states of Georgia and California
can be viewed in the lower panel of the same figures. One may notice that the
California incidence data top panel of Figure 11) are more ”spread out” than the
Georgia incidence data top panel of Figure 9). This is because, for the Georgia data,
a rolling seven day average was recorded each week since in Georgia new cases
were often not reported on the weekends when the Delta variant was dominant. So,
the approximation of unobserved state variables for the state of California is more
uncertain as compared to Georgia and to the sets of synthetic data.

The parameter estimation process is initiated with 𝛽0 = 0.5 for both Georgia and
California. The reconstruction is done with 𝑚 = 10 in both cases (the number of
base functions for the transmission rate). For Georgia, the number of base functions
for each unobserved state variables is 𝑛 = 6 (that is, 24 base functions for all state
variables, 𝑆, 𝑉 , 𝐼𝑠 , and 𝐼𝑣, combined). The iterative process started with 𝜏0 = 1. The
regularization sequence is driven to zero at the rate 1/(𝑘 + 1)10. Like in the case of
Georgia, for the California data set the number of base functions for 𝑆, 𝑉 , 𝐼𝑠 , and 𝐼𝑣
is significantly reduced (from 𝑛 = 40 to 𝑛 = 12), as compared to reconstructions with
synthetic data in order to further stabilize predictor-corrector algorithm (3.12)-(3.13)
in the presence of modeling error.
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Fig. 8: Reconstruction of disease transmission 𝛽 (𝑡 ) (along with coefficients), and
the effective reproduction number R𝑒 (𝑡 ) for the state of Georgia.

By comparing Figures 8 and 10, one can see that the start of Delta variant in the
state of California was more rapid as compared to Georgia, but it took longer for
Georgia to get the virus under control (as compared to California). In California, the
effective reproduction number, R𝑒 (𝑡), dropped under 1 around mid-August, while
in Georgia R𝑒 (𝑡) remained greater than 1 until early September 2021. However,
in California, the effective reproduction number almost bounced back to 1 in late
October before going down again towards the end of the study period. In Georgia,
on the other hand, R𝑒 (𝑡) remained very low after the end of September.

Looking at the top panel of Figures 9 and 11, we note the peak of around 9, 000
new incidence cases in the state of Georgia in early September, and the peak in
mid August of approximately 13, 000 new incidence cases in the state of California.
In both states the daily reported new deaths are under 150 people. The peaks in
deaths follow the peaks of incidence cases, in early October in Georgia and in
early September in California. Reconstructed curves, 𝐼𝑠 (𝑡) and 𝐼𝑣 (𝑡), are consistent
with the reported percentage of vaccinated individuals in the states of Georgia and
California, respectively (Figures 9 and 11).
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Fig. 9: State of Georgia case study. Top to bottom: state data (dots) and model fit (solid
line) for daily new cases and daily new deaths; 100 bootstrap model reconstructions for
𝑆 (𝑡 ) (blue), 𝑉 (𝑡 ) (green), 𝐼𝑠 (𝑡 ) (red), and 𝐼𝑣 (𝑡 ) (pink). The bootstraps’ mean is a darker
line of the color corresponding to each compartment.

6 Conclusions and Future Work

In this paper, we propose a new dynamic model of COVID-19 transmission that
takes into account the vaccination status of both susceptible and infected humans. It
also includes a possible loss of immunity and reinfection within both vaccinated and
unvaccinated populations. To estimate the unknown disease parameters, we develop
a novel computational algorithm, which employs a parameter cascade approach. The
proposed method is used to reconstruct time-dependent transition rates, 𝛽(𝑡), and
effective reproduction numbers, R𝑒 (𝑡), from synthetic and real data for COVID-19
pandemic. Apart from COVID-19, the proposed compartmental model and iteratively
regularized optimization method can be applied to the study of other infectious
diseases.
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Fig. 10: Reconstruction of disease transmission 𝛽 (𝑡 ) (along with coefficients), and
the effective reproduction number R𝑒 (𝑡 ) for the state of California.

In the course of our numerical study, the new optimization technique has emerged
as a reliable alternative to more traditional trust-region and gradient-descent algo-
rithms that are commonly used in parameter estimation. The efficiency of these
algorithms is limited when a complex biological model (which may be a system
of nonlinear ordinary or partial differential equations), constraining the underlying
minimization problem, does not have a closed form-solution and has to be solved
numerically at every step of the iterative process. Our new method, on the other hand,
does not require either exact or approximate solution to the constraining system.

In reconstructing time-dependent transmission rates, 𝛽(𝑡), in order to reduce
the computational load and to improve the estimate efficiency, we pre-specified
the values of other system parameters by conducting a thorough review of litera-
ture. To assess the sensitivity of reconstructed transmission rates to slight variations
in pre-estimated parameters, one can build a Bayesian model to assign priors to
pre-specified parameters, and the posterior distributions of transmission rates will
incorporate the uncertainty in these parameters. This is an important topic of future
work. Note that for a simpler SIRD model corresponding to a pre-vaccination stage
of the COVID-19 pandemic, the sensitivity analysis has been conducted in [40]. In
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Fig. 11: State of California case study. Top to bottom: state data (dots) and model fit
(solid line) for daily new cases and daily new deaths; 100 bootstrap model reconstructions
for 𝑆 (𝑡 ) (blue), 𝑉 (𝑡 ) (green), 𝐼𝑠 (𝑡 ) (red), and 𝐼𝑣 (𝑡 ) (pink). The bootstraps’ mean is a
darker line of the color corresponding to each compartment.

[40], for every bootstrap iteration, the recovery rate, 𝛾, and the fatality rate, 𝜈, have
been sampled from normal distributions, 𝑁 (0.20, 0.02) and 𝑁 (0.005, 0.001), re-
spectively. The normal distribution, 𝑁 (0.20, 0.02), for the recovery rate, 𝛾, reflected
an average infectious period between 3 and 20 days, while the normal distribution
𝑁 (0.005, 0.001) for the fatality rate, 𝜈, accounted for the variation of this parameter
within different risk groups. The reconstructed values of 𝛽(𝑡) with normally dis-
tributed 𝛾 and 𝜈 were almost identical to those reconstructed with constant (mean)
values of these pre-estimated parameters showing a very low sensitivity of 𝛽(𝑡) to
inevitable variations in COVID-19 infectious periods and fatality rates.

With a considerable portion of mild and asymptomatic cases, the number of re-
ported daily new cases is much lower than the actual value. In this paper, we change
the reporting rates of new incidence cases and investigate how different reporting
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rates affect the reconstruction of effective reproduction numbers, R𝑒 (𝑡), in our nu-
merical simulations. Thus, another important direction of future research will be to
modify our reconstruction process to include the estimation of the unknown percent-
ages of new incidence cases along with the unknown time-dependent transmission
rate, 𝛽(𝑡), and other system parameters. The problem of the reporting rate can also
be addressed by extending the model to include the compartment of asymptomatic
spreaders.

We also plan to add line search routines and incorporate nonnegativity constraints
for unobserved state variables, 𝑆,𝑉, 𝐼𝑠 , and 𝐼𝑣, in iteratively regularized predictor-
corrector algorithm (3.12)-(3.13). This will allow to further improve accuracy and
stability of the proposed optimization method.

Last but not least, the methodology must be extended to provide near real-time
forecasting of future incidence cases and deaths (among vaccinated and unvaccinated
individuals) from early data for an unfolding outbreak. This research is crucial
for control and prevention, in particular, for the assessment of various vaccination
strategies.
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