1. The Scalar Conservation Law

1.1 Introduction and smooth solution

In this text we consider the initial value problem

— o< r<oo 0<t

u+ flu)e ::1;0) (1.1)

u(0,2) = uo(

where the function u(t, ) is the unknown and f(u) and ug(x) are given functions.
It is a generalization of the hyperbolic problem

urtau, =0 —oco<ax<oo 0<t

u(0,2) = ug(x) (12)

with which the reader is supposed to be familiar. Problem (1.2) is usually analyzed
using Fourier series. Since problem (1.1) is in general non linear, Fourier methods can
not be used.

The choice f(u) = u*/2 yields the inviscid Burger’s equation, an equation interest-
ing because of its resemblance to the equations of fluid dynamics. It is widely used as
a model problem.

The equation u; + f(u), = 0 is called a conservation law. By integrating over
—o0 < z < 00 one gets
d >0
— u(z,t)de =0
dt J_

assuming that f(u) vanishes as |x| — co. Thus the name derives from the fact that the
integral of u is conserved in time.
The function f(u) is called fluz function. By integrating over a < @ < b one gets

b

G [ utende = st - s ) (1.3)

which can be given the interpretation that the integral of u over a finite interval can
change due to in- or outflow at the boundaries + = ¢ and = = b.
If we carry out the = differentiation we get

ur +a(u)uy, =0
where a(u) = f'(u). In the same way as for problem (1.2), we can make the definition

Definition 1.1. The characteristics are the curves in the x-t plane defined by
dx(t)/dt = a(u(t,z(t))) (1.4)

We have a theorem similar to the one for the linear case.



Theorem 1.2. If the solution u(t,x) is differentiable, it is constant along the charac-
teristics.

Proof: The chain rule is used to evaluate the derivative of u along a characteristic
curve

du(t,z(t)) dx(t)
o "

using (1.4). The derivative is zero and the solution constant.

Uy = ug + alu)uy, =0

The theorem and (1.4) implies that the characteristics are straight lines. The
following theorem further shows that there are many similarities between (1.1) and

(1.2).
Theorem 1.3. The solution, u, to problem (1.1) satisfies

u = ug(x — a(u)t) (1.5)
if 1t 1s differentiable.

Proof: Insert (1.5) into the PDE and use the chain rule. The result from doing this
18
(1 +up(z — alu)t)a' (u)t)(us + a(u)uy ) =0
We differentiate (1.5) with respect to time and obtain

ur = ug(x — a(u)t)(—a' (u)tuy — a(u))

Solve for u;
upa
1+ uga't

Uy =

Since we assume that u has continous derivative, the denominator 1 4+ uja't must be
different from zero, and thus the factor multiplying u; + a(u)u, can be divided out and
the proof is complete.

If the above non linear algebraic equation has a unique solution, a very efficient
solution procedure for problem (1.1) is to solve (1.5) by Newton’s method.



1.2 Non smoothness, Jump condition

The major difference between the linear and the non linear equations is that for the
latter, the solution in the class of continuous functions may fail to exist after a finite
time, no matter how smooth the initial data are. We give three examples to show how
this failure occurs.

Example 1.1 (Geometric description of smoothness failure)
ug+(u?)2), =0 —oco<z<oo 0<t
u(0,2) =sinx

By differentiation a(u) = u and thus the slope of the characteristics are u. Initially
in the point © = 7/2, the slope and the solution are 1 and in the point = 37/2 the
slope and function are -1.

u=1 u=-1 X

Figure 1.1. Values are transported along the characteristics

The value 1 is transported to the right and the value -1 to the left, at some time
they will meet, thereby causing a failure of smoothness in the solution.

Example 1.2 (Algebraic description of smoothness failure) Consider (1.5). By
implicit differentiation with respect to t we get

ur = ug(z — a(u)t)(—a (u)tuy — a(u))

Solve for u;
upa

___"e® 1.6
1+ uja't (1.6)

Uy =

if a'ug is < 0 at some point, we see from (1.6) that there will be a blow up of the
derivative at t = —1/(uga').
Example 1.2 shows that under certain conditions, such as e.g. a'(u) > 0 and
ug(x) > 0, a smooth solution does exist.

Example 1.3 (Dynamic description of smoothness failure) The same problem as
in example 1.1 is considered

ug+(u?)2), =0 —oco<z<oo 0<t

u(0,2) =sinx



The differential equation can be written
Uy +uu, =0

and v can, in analogy with the linear hyperbolic equation, be interpreted as the speed
with which the initial data propagates. For the sine wave below, the maxima travels
to the right with speed 1 and the minima to the left with speed -1. This causes a
gradual sharpening of the gradients with time,
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Fig. 1.2. A solution to Burgers’ equation.

and finally the waves break into discontinuities.
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The examples shows the necessity to extend the solutions into the class of func-
tions with discontinuities. The partial differential equation does not make sense for
non differentiable functions. We can however interpret the derivatives in the sense of
distributions. More specifically this means that the equation is multiplied by a smooth
test function, ¢ € CS°(R*T x R), and then integrated in time and space. Integration by
parts afterwards moves the derivatives to the smooth test functions. Doing this yields

/0°° /_Z oru + @p f(u)de dt + /_O:o ©(0,2)ug(0,z)dr =0 (1.7)

The boundary terms at t,|x| = oo does not contribute, since ¢ is assumed to have
compact support. We define



J

Definition 1.4. A weak solution to (1.1) is a function u(t,x) satisfying (1.7) for all
smooth test functions ¢ € C§°.

In the specific case of one discontinuity, separating two smooth parts of the solution
we can use the conservation property of the original problem (1.1) to obtain the following
theorem.

Theorem 1.5. (Rankine-Hugoniot) Assume that a discontinuity is moving with speed
s and that the value of u to the left of the jump is vy and to the right wp. The the
following holds

s(ur, —ug) = f(ur) — f(ur)
Proof: Use the integrated form (1.3)
d b

% ] udr = f(u(tv a)) - f(u(tv b)) (1'8)

assume there is one discontinuity moving on the curve x(#) and that the solution is
smooth otherwise. Separate (1.8) into smooth parts

z(t) b
%(/a wdz + /I(t)udx) = f(u(t,a)) = f(u(t,b))

The differentiation can now be carried out, giving

b

z(t)
/ wp dx + u(t, z(t)—)2'(t) + /(t) up de — u(t, z(t)+)2' (t) = flu(t,a)) — f(u(t, b))

Now use uy = —f, in the integrals. Performing the integration gives
flu(t,a)) = flu(t,o(t)=)) + u(t, w(t)=)x" (1) + flult, 2(t)+))—
Flu(t, ) —ult, 2(t)+)2' (1) = flu(t,a)) — flu(t, b))

The desired result is obtained by rearranging this expression, and using the notations
u(t,x(t)—) =ur, u(t,x(t)—l—) = UR, xl(t) = s.



1.3. Uniqueness, Entropy condition

When we extend the class of admissible solution from the differentiable functions to
non differentiable functions, we unfortunately loose uniqueness. The extended class of
functions is too large.

We therefore impose an extra condition the so called entropy condition which tells
us, in case of multiple solutions, which solution is the correct one. The name derives
from application to gas dynamics, in which case there is only one solution satisfying the
physically correct condition of entropy decrease.

As we will see later, entropy conditions are important when we study numerical
methods, since some convergent numerical methods does not converge to the solution
singled out by the entropy condition.

The theory is considerably simplified if the flux function is convex (f"(u) > 0).
Therefore we start with that case. The typical example of non uniqueness is the following

Example 1.4 Two possible solutions to the problem

ug+(u?)2), =0 —oco<z<oo 0<t
0 z<0
u(O,:z;):{l x>0

are
0 x<t/2

it e) = { 1 o >1/2

The jump is moving with the speed s = 1/2 obtained from the Rankine-Hugoniot
condition, and

0 xz <0
uz(t,x):{x/t 0< <t
1 T >t

The second solution is a so called expansion wave (or rarefaction wave). It is easy
to see that these functions solves the problem, by inserting them into the differential
equation. By looking at the characteristics in the = — ¢ plane, we get the following
picture of the solution 1 in the example above

X

Fig. 1.3. Diverging characteristics.

This solution is not a good one for the following reasons
1. Sensitivity to perturbations. A small disturbance in the discontinuity will propagate
out into the solution and affect the smooth parts.



2. There are characteristics emanating from the discontinuity. We would like the
solution to be determined by the initial data. Consequently, if at some time ¢ we
trace a characteristics backwards we should end at some point at the time zero.
This is not true for this solution.

For the following example point one and two are resolved in a satisfactory way.

Example 1.5 The problem

ug+(u?)2), =0 —oco<z<oo 0<t
1 <0
u(O,:L'):{O x>0

has a solution

1 x<t/2
u(t,:z;):{o v >t/

The jump is moving with the speed s = 1/2 obtained from the Rankine-Hugoniot
condition. The characteristics are pointing into the jump

X

Fig. 1.4. Converging characteristics.

Here a small disturbance in the jump will immediately disappear into the discon-
tinuity, and at a given time, we can always follow a characteristic backwards to time
ZeTo.

Example 1.5 gives a motivation for the following definition.

Definition 1.6. A discontinuity with left state uy and right state ugr, moving with
speed s for a conservation law with convex flux function is entropy satisfying if

fl(ur) > s> f'(ur) (1.9)

This means that the characteristics are going towards the discontinuity as time increases.

An entropy satisfying discontinuity is also called a shock. The significance of the
above definition can be seen in the following theorem

Theorem 1.7. The initial value problem (1.1) with convex flux function and arbitrary
integrable initial data has a unique weak solution in the class of functions satisfying
(1.9) across all jumps.

Proof: The proof of existence uses the exact solution formula which we describe in
the next section. We refer to [17] for the details, and the uniqueness.



o

For the non convex conservation law the condition (1.9) has to be satisfied for all
u between uy and upr. The flux function could look like in fig. 1.5.

(u)

Ur L|| u

Fig. 1.5. Non convex flux function.

Here a jump between vy, and u g, satisfies condition (1.9), but is still not the correct
solution. It has turned out that it is necessary to require the following entropy condition
for a general non convex conservation law

flur) — f(u) < flur) — flur)

UL — U - UR — Uy,

all v € [ur,ur] or [ug,ur] (1.10)

It is important that all values u between uj and upr are involved. Intuitively we can
understand (1.10) as requiring the characteristics to go into the shock for the entire
family of shocks between vy, and u, u € [ur,ur]. Geometrically (1.10) can be interpreted
as the graph v — f(u) must lie below the chord between (ur, f(ur)) and (ug, f(ugr)) if
ur > up, and above if uy, < ug. (1.10) can be derived from the inviscid limit of the
problem

U+ fu)y = €ugy (1.11)

where € is a positive parameter. (1.11) has a unique smooth solution. The physically
relevant solution of (1.1) is defined as the solution of (1.11) as ¢ — 0. We give a
derivation of (1.10) later in this section.

There is a result similar to theorem 1.7 for the entropy condition (1.10).

Theorem 1.8. The initial value problem (1.1) with arbitrary integrable initial data
has a unique weak solution in the class of functions satisfying (1.10) across all jumps.

Proof: Not given here. We refer to [16].

An example of a conservation law with non convex flux function is the so called
Buckley-Leverett equation

u2

u? + (1 —u)?/4

ug + ( )e =0

which occurs in the theory of flow through porous media.
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There is an alternative way of getting entropy conditions which we now describe.
First the equation

Uy + f(u)w = €Ugyg

and E'(u) are multiplied. E(u) is a strictly convex (E"(u) > 0), differentiable function,
which we will call the entropy function.

't B f(u)y = B/ ()
Define F'(u) = E'(u)f'(u), the equation takes a form similar to the original one
E(u)i+ F(u), = eE' (u)ug,.
Using the identity
E(u)ee = E"(u)(ue)® + E'(W)uss

we rewrite the viscosity term and get
Blu)i + F(u)s = el E(u)ss — E"(w)()?) < eE(u)as

where the last inequality follows from the fact that E(u) is convex. Let now ¢ — 0 and
we arrive at

BE(u)e + F(u), <0 (1.12)

where the inequality should be understood to be valid in the sense of distributions.

Thus we have showed that if u(t, ) is a solution to the original conservation law,
obtained as the vanishing viscosity limit solution of (1.11), the additional inequality
(1.12) is valid. As previously mentioned, the vanishing viscosity solution is the physically
relevant one which we want an entropy condition to choose for us. As an entropy
condition we take (1.12), or across jump discontinuities

S(B(ur) — Blur)) — (F(ug) - F(ur)) = 0 (1.13)

which follows from (1.12) by calculations similar to the proof of theorem 1.5. We have
now three different entropy conditions, (1.9), (1.10) and (1.13), we finish by investigating
the relationship between them. By using the definition E'f' = F' it is easy to prove
the identity

uUR

s(E(ur) — E(ur)) = (F(ur) = Flur)) = / E"(u)(sur, — flur) = (su— f(u))) du

ur

The function inside the integral is familiar, using the definition of s, the shock speed,
we can rewrite entropy condition (1.10) as

su— f(u) <sup — f(ur) up <ug
su— f(u) > sup — f(ur) wup >ug

thus we immediately get (1.10)= (1.13) from

/ ) E"(u)(sug, — flug) — (su— f(u)))du > 0.

L



and E"(u) > 0. For the implication in other direction it is necessary to assume that
(1.13) is valid for all convex E(u), or at least a class sufficiently large to assure that

/E”(u)g(u) du > 0= g(u) > 0.

One example of such a class is given in exercise 5. In the special case f(u) convex the
sign of sur, — f(ur) — (su — f(u)) does not change over the interval [ur,upr], and one
convex entropy function is sufficient. Summary:

(1.10) = (1.13) for any convex entropy function.
(1.13) for a “large” class of entropy functions=-(1.10).
(1.13) with one entropy function < (1.9).

(110)= (L9),

(1.9) = (1.10) if f(u) convex.

Here the last two implications are easily shown and left as an exercise

1.3 Exact solution formulas

For reference we here give some analytic solution formulas without proving them. The
equation

uy + (uz/Z)I = €Uy

can be solved exactly [15], the formula is not given here. A similar result has been
obtained for the problem

ur+ flu)y =0 —oco<a<oo 0<t
u(0,2) = up(x)

with f(u) convex. The solution at a fixed point (¢, ) is obtained from

(1.14)

Theorem 1.9. The solution to (1.14) is given by

u(t,x) =b((x —y)/t) (1.15)

where b(u) is the inverse function of f'(u), (which exists since f(u) is convex) and y is
the value which minimizes ((t,x) are still kept fixed )

Gz, y,t) = /?J uo(s)ds +th((x —y)/t).

Here h(u) is a function determined from h'(u) = b(u), and h(f'(0)) = 0.

We refer to [17] for a derivation of the formulas.

The problem with piecewise constant initial data, will be of importance to some of
the numerical methods encountered later on. In the scalar case it is possible to solve
the problem

ur +(f(u))e, =0 —oco<ax<oo 0<t

up, =<0
u(O’x):{uR x>0



analytically for any differentiable flux function f(u). wy and ug are constants. First
one proves that the solution only depends on x/t. Let the solution be u(t,z) = u(x/t) =
u(¢). The following formulas then give a closed expression for u(().

d .
~ et Jmin (flw) —Cw)) v <ug

d
_d_C weﬁifm](f(w) - Cw)) uyp > UR

u(¢) =
(1.16)

u(¢) =

The differentiation is made in the sense of distributions. We refer to [20] for a derivation
of these formulas.

Exercises

1. In [17] the following entropy condition is given
flaup + (1 —a)ur) < af(urp)+ (1 —a)f(ur) wur <ug
flaup + (1 —a)ur) > af(ur) + (1 —a)f(ur) wur > ug

all « € [0,1]. Show that this entropy condition is equivalent to (1.10). What is
geometrical interpretation of the above entropy condition 7

2. The formula (1.5) can not be used to solve the problems

ug+(u)2), =0 —oco<z<oo 0<t
(1 <0
u(O,:L')—{O x>0
and
ur+(u?/2), =0 —co<z<oo 0<t
(0 =<0
u(O,:z;)—{l x>0

Try to use it anyway, to investigate how the formula fails. Use then formula (1.15)
in the last section to obtain a correct solution.

3. Consider the problem

ur+ (f(u))e, =0 —oco<ax<oo 0<t

(1 <0
u(O,:L')—{O x>0

with f(u) = 1.1u* — 2u® + u?. One possible solution is

1 z<0.1¢
ta) = .
u(t, ) {0 ¢ > 0.1t

Show that this solution satisfies the entropy condition (1.9) but not (1.10).



4. Solve the problem

ut—l—(u3/3)x:0 —o <z <o 0<t

1 x <0
u(O’x)_{—l x>0

using the exact formula (1.16).

5. Show that the entropy condition
E(u)i+ F(u), <0

for all <
En={ Lz
o= -5

with ¢ a real constant, implies the entropy condition (1.10). Thus instead of re-
quiring (1.13) for all convex E(u), the subclass above can be used.



2. Numerical Methods for the Scalar Conservation Law

2.1 Notations

We will describe some numerical methods applied to a one dimensional problem using
a uniform grid. This is for clarity of exposition, the changes required for more space
dimensions and curvilinear grids are straightforward.

We consider a discretization of the = axis

r; j=...,—2,-1,0,1,2,...
The uniform spacing is Az = z;41 — x;. We divide the time into time levels ¢y =
0,t1,t2,.... The time step At =t,41 — t, will be constant.

We here avoid boundaries by considering the problem on the entire domain —oo <
x < 00. The analysis below could have been done, using periodicity instead, as is usually
done in the linear case. In practical computations it is, of course, not possible to use an
infinite number of grid points. Thus, in order to verify numerically the results below, it
is necessary to use a periodic problem.

The following notations will be used

u? = The numerical solution at the point (t,,z;)

Dyuj = (ujrr —uj)/Aw
Ajuj =ujp1 —uj
D_uj=Dyiu;_

A_u; = Ajuj

1
Douj = 5(D+ + D-)u,

1
Aouj = S(At +A-)u;

The operators Dy and D_ approximates d/0z to first order accuracy, Dy gives second
order accuracy. We write this as

Diu; = uz(x;)+ O(Ax)
Douj = uz(x;) + O(Az?)

Thus e=O(Az?) denotes a quantity which goes to zero with the same rate as Az? when

Az goes to zero i.e.
0<C; < Alim le]/Ax? < Oy
z—0

with | and C5 positive constants.



2.2 Definitions and General Results

We now consider the method

ugl) =uj — AtD_f(u])
u;z) = ugl) — AtD+f(u§1))

J

which approximates the scalar conservation law

ur+ flu)y, =0

uttt = (ugz) + uy)/Q

to second order accuracy in both time and space. The method is popular in computa-

tional aerodynamics where it is known as MacCormack’s scheme. We use this scheme to

demonstrate how the numerical solution can misbehave when the solution to the partial

differential equation is discontinuous.

Example 2.1 The solution to the problem

ut—l—(u2/2)$:0
1 <0
x>0

u(0,2) = {0

—o<r<oo 0<t

is a translation of the initial step function with velocity 1/2 (from the Rankine Hugo-
niot condition). The solution satisfies the entropy condition. Below the solution
obtained using MacCormack’s scheme is displayed. The solid line is the exact solu-

tion, the circles are the numerical solution.

1
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Fig.2.1. MacCormack

10
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Fig.2.2. Leapfrog

The scheme does not behave well near the shock. The oscillations around the
shock are related to the well known Gibb’s phenomenon in Fourier analysis. There

is a small amount of numerical viscosity in this scheme, which keeps the oscillations
near the shock. With a scheme, like leapfrog, which only has dispersive errors and no

numerical damping, the oscillations spread out all over the computational domain. This
text describes how difference schemes which gives a solution without these erroneous

oscillations can be designed.



Example 2.2 The problem

ug+(u?)2), =0 —oco<z<oo 0<t
-1 <0
“(O’x):{l © >0

has the following solution
-1 <t
u(t,z) =19 x/t —t<az<t
1 x>t
However using MacCormack’s scheme, we instead get the solution

u(t,:z;):{_l x <0

1 x>0

which also is a weak solution to the problem, but which does not satisfy the entropy
condition. The result is plotted in fig. 2.3..

1

0.5

-0.5-
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) 10 20 30 40 50 60 70 80 90 100

Fig.2.3. MacCormack fails to produce entropy solution.

The consistency with the conservation law does not guarantee that a scheme picks
up the entropy satisfying solution. We will try to find difference schemes were such a
guarantee is available.

One usual standard form for difference approximations to the conservation law is
the conservative form,

The notation A = At/Axz is used. The function h(uj_ ..., u}, ) is called the numerical
fluz function. By Taylor expansion one can show that consistency with the conservation

law requires
flu) = h(u,u, ... u).

Here we mean consistency in the sense that a smooth solution inserted into the difference
formula gives a truncation error proportional to At(At? + Ax?), with p > 0,¢ > 0. The
conservative form implies that ( if u? — 0 as j — Fo0)

[e%e) [e%e)
n+1 __ n
> uitt= ) )

Jj=—o0 =0



the discrete counterpart of (1.3) holds.
We often write h” = h(u?

proximation becomes

u;‘_i_p), and thus the conservative ap-

um
j—1/2 — j—q> j—q—l—l?"'?

n+1 n hn
U — U

7 J+1/2

J /

At Az
It is possible to invent schemes that are consistent with the differential equation, but not
on conservative form. For such a scheme one can obtain solution were the shocks move
with incorrect speed. Consistency in the usual sense does not take in to account the
discontinuities, and therefore not the Rankine-Hugoniot condition. Loosely speaking,
we can say that the conservative form means consistency with the Rankine-Hugoniot

— R o,

condition. The following theorem states this more precisely

Theorem 2.1. If uj is computed with a consistent difference approximation on con-
servative form and u? — u(t,r) as At,Ar — 0 in L;, (RT R) then u(t,z) is a weak
solution to the conservation law.

Proof: We write the scheme (2.1)

hn

n+1 n
w; =y h j—1/2 —0

j U j+1/2
At T Az

Multiply with a test function ¢ € C§°(R*,R), and sum over n and j,

n—l—l 7? hn hn
n Jt1/2 Jj=1/2
nzoj_z_:oo c,o e i Az =0
Now, do partial summation using the rule E?:c a;ALh; = — E] o1 OjA_aj—ach.+
agbgy1. We get
n+1 n n 00 0,,0
_Z Z n+1‘f°J _‘fQJ_I_h ‘Pj+1_‘f°j)_ Y% _ g
p Sl At U A A

All boundary terms except the one at t = 0 disappears, since ¢ is compactly sup-
ported. Multiply AtAz and use the assumption that u7 — u. The sum will converge
towards the integral

—/ / wt+f(U)9%dxdt—/ uop dw =0
0 —o0 — 0

here the consistency h(u,u,...,u) = f(u) is used. Thus, by definition 1.4, the limit
function u 1s a weak solution of the conservation law.

Remark: The theorem is an if-then statement (implication in one direction). It
is possible to have non-conservative form, but still get a solution with correctly moving
shocks. An example is the approximation u;Dgu; on non conservative form to (u?/2),
u;Dou; =01if uj — 0 as 7 — £oo.

1s in fact conservative in the sense that E]__Oo



Example 2.1 showed that there might be problems near the shocks in certain differ-
ence methods. We now turn to the problem of characterize a good numerical solution
without oscillations around the shock.

The most popular measure for oscillations is

Definition 2.2. A difference method is called total variation decreasing (TVD) if it
produces a solution satisfying

(. @) (. @)

DA ) N VAT

for all n > 0.

We will sometimes use the notation TV (u™) = E;o:_oo [utyy —uf|. Originally the
concept was called total variation non-increasing (TVNI), but TVD has become the
standard term. We give an example to clarify the meaning of the definition.

Example 2.3 Consider the problem u; + (u?/2), = 0 with initial data

=1 j<0

J
=0 ;>0

[
u]

Approximate with the Lax-Wendroff scheme at some CFL number. After one time
step the solution is

uj=1 j<-1
up = 1.34
up = 0.23
ul=0 j>1

thus the scheme produced a small overshoot. The variation at ¢, was =1. The
variation at #1 1s ... +0+0.34 +1.114+0.23 +0 4+ ... = 1.68. The overshoot shows

as an increase in the total variation. Thus the Lax-Wendroff scheme is not TVD.

It is natural to require TVD, since the solution to the continuous problem u(t, x)
satisfies

d [ Ou
el e <0.
dt _Oo|8:1;|dx_0

It has turned out that the TVD criterion is sometimes too restrictive. We will later on
in some cases replace it with

Definition 2.3. A difference method is called essentially non oscillatory (ENO) if it
produces a solution satisfying

(. @) (. @)

S A< Y A+ 0(A)



for all n > 0 and some p > 1.

Example 2.2 shows that the numerical solution can fail to satisfy the entropy con-
dition. The theorem below provides one way to investigate whether a scheme is entropy
satisfying or not.

Theorem 2.4. If a difference method produces a solution, which also satisfies the
discrete entropy condition

(E(u?"’l) — E(u} )/ At + (H(uj_yyqy g pgy) — H(uj_ o osuly )/ Ae <0

with H(u;—g,...,u;4,) a numerical entropy flux consistent with the entropy flux of the
differential equation,

H(u,...,u)=F(u)
F'(u) = E'(u)f'(u)
then if uj converges the limit will satisfy
E(u)i+ F(u), <0
Proof: Similar to the proof of theorem 2.1.
There i1s an important class of schemes satisfying a discrete entropy condition.
Definition 2.5. The difference scheme

ol — g )

Uy j (Rt —hj1/2)

is called an E scheme if

h]‘_|_1/2 S f(u) all u € [u]‘,u]‘_|_1] 1fu] < Uj+1
Pivije > flu) allu € [ujpr,uj] if ujpy < uj

This definition is made because of the following theorem

Theorem 2.6. An E scheme satisfies the semi discrete entropy condition

dE(u;(t))

7 +DiH; 1/ <0

for all convex E(u). The numerical entropy flux is given by
Hj 12 = Fu;) + E'(uj)(hjo12 — f(u;)
Proof: Start from the difference method

Multiply by E'(u;), where E(u) is a convex function, so that we get the first term in
the semi discrete entropy condition

dE(u;)

AJ?T = —E'(uj)(hjy12 — hj_1/2)



where we also multiplied by Az. Introduce the entropy flux F'(u) = E'(u)f'(u) by

. dEcgtuj) b F(ue1) = F(uy) = —E'(u;)(hyer s — b1 o) + Flugen) — Fuj) (2.2)

We can write

/u“’1 E'(u)f'(u)du = [E' fli+t — /WJr1 E"(u)f(u)du

Using this expression for A F(u;) in the right hand side of (2.2) yields

dE(u,)

A
T

+F (1) = Fuj) = —E'(u;)(hjpipe — hjoi/2)+
uwjg1

B () (uyi) = B'w) i) = [ B0 f(w)d

Add and subtract E'(uj11)hjiq/2 to the right hand side
dE(u;)

Av—p =+ Fujyr1) — F(uj) = —E'(ujy1)(hjp12 — flujpr))+
i1

E'(uj)(hj_1js — fluj) + (E'(ujpr) — E'(uj)hjy1/s — / E"(u)f(u)du

which can be written

AW | Py = Fuy) + A (B )by jo — Flu)) =

dt
w41 Uji41
/ E"(u)duhjqq s — / E"(u)f(u)du

and thus by defining H;_ 3 = F(u;)+E'(u;)(h;j—1/2 — f(u;)) the result follows from
dE(u ; Wit1
Al‘ cgt ]) —|— A+Hj_1/2 = / E”(u)(hj_|_1/2 — f(u)) du

uj

The convexity of E(u) means that E"”(u) > 0, thus the right hand side is non positive
if hj41/2 satisfies the requirements in the theorem.

Remark: It is possible to prove the Entropy condition for the time discretized
approximation (forward Euler) as well. We gave the proof for the semi discrete approxi-
mation, because it gives a clear picture of how definition 2.5. enters into it, and because
the proof is considerably simpler than the proof for the fully discrete case.

It is possible to prove that an E scheme has at most order of accuracy one.

Note that in the definition of an E scheme, a statement is made about all values
of u between u;4; and u;. The theory in chapter one makes it probable that for non



convex flux functions it is necessary to have information of how the flux function behaves
between the grid points. We give an example to clarify this statement.
Example 2.4 The problem

ug+(u?)2), =0 —oco<z<oo 0<t
1 x <0
u(O,x):{_l x>0
has solution
1 x <0

u(t,:z;):{_l >0
Assume that a difference method is given which gives the steady solution profile

u?=1 j<-1

j
uy = 0.8

uy = —0.8
uj =-1 j5>2

for all n. Make a deformation of the flux function as in fig. 2.4. below.

f(u)

X

u

Fig.2.4. Deformed flux function

The steady shock does not satisfy the entropy condition for the deformed flux
function (cf. chapter 1). The deformed flux coincides with f(u) = u?/2 for |u| > 0.8,
and a scheme which only relies on flux values at the grid points, does not have sufficient
information to distinguish between the deformed flux and the quadratic one.

As an example we now give two classes of difference methods, monotone schemes
and three point schemes, where the TVD and entropy properties have been worked out.



2.3 Monotone Schemes

The TVD and ENO properties are usually difficult to investigate for a given scheme. We
therefore start analysing the subclass of monotone schemes, which is easy to distinguish.
We write an explicit difference method in general as

W = Gl ). (2.3)

With this notation we introduce the class of monotone schemes

Definition 2.7. The scheme (2.3) is monotone if the function G is an increasing func-
tion of all its arguments, 1.e.

8G(u_q, e ,up_|_1) >0

—qg << 1
Ou; - gsrspT

We let GG; denote the partial derivative of G with respect to its :th argument. Note
that it is implicitly assumed that G is a differentiable function.

Theorem 2.8. Monotone conservative schemes are TVD.

Proof:
>0 >0
Z uify —u T = Z |GQuG_ggrs s Ufgpya) = Gluf_gsufy )] =
j=—o0 Jj=—oo
>0
Z |G(U?_q + A+U§‘_q, e au?+p+1 + A+u‘77?+p+1) - G(u?_q, s 7u?—|—p+1)| =
j=—00

p+1

o0 1
Y /0 Gr(ul_, 4+ 0A4ul_ o uly o+ OA Ll AUl df] <

Jj=—00 k=—gq
Use the monitonicity and the triangle inequality

e%e} p+1

1
Z Z / Grluj_g +0A uf_ (oo ufyy g 08y )[Aqufy ] dE =
0

Jj=—o0k=—¢q

Change index from j to m = j + k

oo p+1
m=—oo k:—q

1
/ Grlupg g + 00 ug oo U pqprn + 08 ug, ) dOJA LU |
0

The result follows from the fact that

pt1

> Grlvm—k—gs- o Vmoktpr1) =1 (2.4)

k=—q



since we then get from above

(. @)

Z ufify =it <

oo p+1

2. 2.

m=—oo k:—q

1
/ Gr(upg, - ¢ TOA g, g qa---aunm—k+p+1‘|’9A+unm—k+p+1)d9|A+unm| =
0

> [ amspi= Y -l

m=—oC m=—oC

It remains to prove (2.4). To make the formulas simpler, we do this only for the three
point scheme

G(Vm=1,Vm,s Vm+1) = Um — A (O, Vmg1) — M(Om—1,0m))

where h(u,v) is the numerical flux function. If we denote the derivative of h with
respect to its first argument hq and let iy be the derivative with respect to the second
argument, we get

G—l(vm—lavmavm—i—l) = /\hl(vm 1,Um)

Go(vm—l,vm,va) /\( (vm,vm+1) - hz(vm—l,vm))
Gl(vm—l,vm,va) = —/\hz(vm,vm+1)
)

For the three point scheme (2.4) becomes

G_1(Vm, Vms1, Vmt2) + Go(Vm—1, Vm, Vmt1) + G1(Vm—2, Vm—1,0m ) =
A1 (Vs Vmg1) + 1= A R1 (Vs Vmg1) — ho(Vm—1,0m)) — A (Vm—1,0m) =1

and the proof is complete. The general (2.4) follows similarly by converting to deriva-
tives of the numerical flux function.

Theorem 2.9. Except for one trivial case, monotone schemes are at most first order
accurate.

To prove this we first state the following theorem, which does not use the monotonic-
ity of the scheme, and thus holds in general for all first order schemes on conservative
form.

Theorem 2.10. The truncation error of the method

u?""l = u — A(R"

n )
j+1/2 0 -1/2
1s

P = —Atz(q(u)uw)w + AtO(AtZ + A:L'Z)



where
o) = (57 S WGl ) = F1(w))2

and we denote u = u(t,, ;).

Proof: By definition the truncation error 7" is

7']” = u(tpt1,25) — Gultn, j—q), .., u(tn, Tjppy1)) =
u+ Atug + —5 i — (G(uy...,u)+ Z Gru, ..., u)(u(ty, zj4r) —u)+
k=—q
p+1 p+1

Z Z Z Grm(u, .. u)(u(tn, xjpr) — u)(u(tn, Tjgm) — u)+

k——q m=—q

O(AH(A? + Az?)))

where we use the notation v = u(t,, z;). We have here Taylor expanded the difference
scheme in u. Next we expand the functions u in @ and arrive at (modulo second order
terms)

2

A
7']” =u+ Atu; + TUH—

ptl N p+1 A p+1l  p+1
(u+ Avuy Y kG + ——ta Y EGr+ T(ug,;)2 Y kmGim)
k=—q k=—q k=—q m=—q

We use G to denote G(u,...,u), and similarly for the derivatives of G. Now add and

subtract the expression
p+1  p+1

A; )2 Y Y KGim (2.5)

k=—gm=—q

The reason for this is that the last term together with (2.5) becomes

p+1 p+1

P> Y (km— k)G =0 (2.6)

k=—qgm=—gq

We omit the proof that this sum is zero for the moment. If we accept (2.6) as a fact,
we get

k=—q
Ag? p+1 p+1  p+1
QUMZH XYY B Grm)

k=—q k=—g¢m=—gq



Now use
p+1

> kGi(u,...,u) = =\f'(u) (2.7)

k=—q

to eliminate the zero order terms. We omit the proof of (2.7) as well. The first order
terms remains

7-]?”‘ = TUtt — 5 Ugzz Z (szk)x) =
k=—q k=—q
2 > G,
k=—q

Finally we remove the time derivatives by substituting ws with ((f')%u,),. This can
be done because

it = —For = —~(F (u)ita)e =
- (f”(u)utuf + fl(u)uft) f ( )fﬂcuﬂc + f fxx —
(f' fo)e = ((f' ) uz)e

and the truncation error becomes

p+1

" At2
= S = g Y G0

k=—q

which is what we wanted to prove. It remains to prove (2.6) and (2.7). That can be
done by writing out the conservative form of the method and let the derivatives of G
instead become derivatives of the numerical flux function h. It is a straightforward
calculation similar to the one that was done in the last part of theorem 2.8., and we
do not give it here.

Finally we give the proof of theorem 2.9. By (2.7)

p+1 p+1

V() = (3 kG = (Y VGG

k=—q k=—q

were the monotonicity is used to split G into square roots. The Cauchy-Schwartz
inequality gives

p+1 p+1 p+1
PN RGE Y Gr= ) KGy
k=—¢ k=—q k=—q

by writing out the conservative form, it is easy to see that Ep+1_ G = 1. It follows
that

_ (é N k2 G(u,. . u) — f1(u)?)/2 < 0



where ¢(u) is the function defined in theorem 2.10.,
T = —At*(q(u)ug e

From Cauchy-Schwartz, we know that strict inequality (<) holds except if kG =
const.Gr = the method is a pure translation. This is the trivial case mentioned
in theorem 2.9. We conclude that strict inequality holds, except in this case, and
therefore the truncation error does not vanish. The accuracy is one.

Theorem 2.11. Monotone schemes satisfy the discrete entropy condition

(E(un—i—l) - E(“?))/At +( ;‘14-1/2 - ;‘1—1/2)/A$ <0

J

for the class of entropies E(u) = |u — ¢| all ¢ € R, and where the numerical entropy
flux, Hf+1/2 is consistent with the entropy flux

Fu) = sign(u — e)(f(u) — f(c))

Proof: Introduce the notation a V b = max(a,b) and a A b = min(a, b). Define the
numerical entropy flux as

Hj_ypy = H(uj_go- o sufyy) =
hleVul_,,...;eVuly ) —h(eAuj_,...;cAujy,)

where h is the numerical flux of the scheme. With this numerical entropy flux, we
obtain

B(u}) = AALH, = uf — |-

AALh(eV u?_ A, u?+p) — AALh(e A u?_q, co,CA u?+p)

q?

and since |u —¢| =uV ¢ — u A ¢, we arrive at

E(u}) = AALH! ) =ujVe—uj Ae—AALH! ),

(2.8)
=G(eVaul_g...,eVuly ) —GleAul_ oo e Aufy, 1)

From the monotonicity of the method we get

ntl n n n »
ui T = G(ui_ s yufypir) SGleVaul_oo,eVauly )

c=Glc,....,c) < GleVu]_,,...,eVuly, 1)

and thus
1
u?"’ Ve GleVaul_g,...,eVuly )

similarly we see that

_(u;?+1 A C) S _G(C A u;l_q7 NN & A u?—|—p+1)



Finally,
E(u?"’l) = |u;‘+1 —c|=u"TtVe— u;ﬂ'l Ne <

G(eVuj_,,.

= |u§‘ —c|— AA+Hf_1/2

7 7 7

where (2.8) was used in the last equality, This is the desired entropy inequality.

Remark: The class of entropy functions in the previous theorem is sufficiently
large to assure that the entropy condition (1.10) will hold for the limit solution.

2.4 Three point schemes

For three point schemes ( ;41/2 = h(ujt1,u; ) ), there is a complete characterization
of TVD schemes in terms of the numerical viscosity coefficient.

We first state the theorem on which all proofs that a scheme is TVD is based.
To apply this theorem, it is necessary to write the difference method differently. The
incremental form or I-form of the difference approximation to (1.1) is

+1 _
U;L = U;L —|— C]+1/2A+U;L — Dj_l/zA_U?

from the I-form the TVD property can be obtained through
Theorem 2.12. If

Cit17220 Djyi/2 20 Cit12+Djp12 <1
then the method is TVD.

Proof: Apply A, to both sides of the I-form and sum over j.

(. @) (. @)

oA = Y A U] + AL (e Agu}) = Ap(Dj g pAul)|
j=—o0 Jj=—oo
rearranging terms gives

(. @)

> A =

j=—00

(. @)

Z |Cj+3/2A+U?+1 +(1- Cj+1/2 - Dj+1/2)A+U? + Dj—1/2A+U§L—1|
j=—00
Apply the triangle inequality on the right hand side

DA< Y (O sp Ay |+
fam j=—oe
Y 1= Cirip = Djrpp)Aguf+ Y [Dj1jpAuf_y]



Now use the assumption that Cj4 /2, Djy; /o are positive and that the sum €1, /5 +
Djy12 <1

S IAuIT < Y CipaplAguly |+

flmes fam
> (1= Ciprje—Djap)lAsuf|+ > Dy pplAgul ]

j=—00 Jj=—00

Finally shift the indices in the first and third sum on the right hand side

>0 >0
DA < Y CipapplAgufl+
fam fam

(. @) (. @)

Y (1=Cipijp = Digap)lAufl+ Y DigaplAufl= Y [Aguf]

and the TVD property is proved.

Remark: The condition Cj4 /5 + Dji1/2 < 1 corresponds to the CFL condition in the
linear case, and is not required for a semi discrete method of lines approximation.
We now introduce the viscosity form or @-form of the difference approximation to

(1.1) as
1
ut = ul — AtDo f(uf) + §A+(Qj—1/2A—u?) (2.9)

J

where () is the numerical viscosity coefficient. A three point scheme is uniquely defined
through its coefficient of numerical viscosity as can be seen from the conversion formulas
at the end of this section. Thus there is only one degree of freedom in chosing a three
point scheme.

If we rewrite (2.9) on conservative form, the numerical flux function becomes

1 1
hjvij2 = §(f(uj+1) + fuj)) — 5Q1+1/2(U1+1 — uj). (2.10)

This is seen by inserting this numerical flux function into the conservative (or C-form)
and rearranging terms.

If we apply theorem 2.12. to the Q-form we get the following characterization of
three point TVD schemes.

Theorem 2.13. A three point scheme is TVD if and only if the numerical viscosity
coefficient satisfies

Majpry2] € Qjg12 <1
where a;y/y is the local wave speed

Flujp1)—f(uj) 4 4
Aj41/2 =\ 4 00T uj F Ui
fuj) Uj = Ujti



Proof. Starting from the conservative form, we add and subtract f(u;), and get

Wy — Fuf) hy iy = Fu})
+1/2 J 1/2 J
u?+1 = uy - /\( ’ —yn (u?+1 - uy) ]un " (u? - u?_l))
j-l-l J J Jj—1

Thus we can identify

_/\h?-i-l/? B f(u?)

C“i‘l 2= n n
a i1 = U
BY = Fu])
Jj—1/2 J
Dj—1/2 =—A ur —uyn
J J—1

Insert the expression (2.10) for hjiq/; into these formulas

flu ?4—1) - f(un)
2(u§‘+1 —u?)
fluj ) (

2(? )

1
Citi2=—A + Q;+1/2/2 (Qj+1/2 - /\Gj+1/2)

')
Djvp2=—A

1
+Qj_12/2 = 5(@;‘—1/2 + Aaj_1/2)
The positivity of Cj4 /5 and Dj_|_1/2 means that

Qj+1/2 > /\Gj+1/2 and
Qj+1/2 > _/\aj-l-l/Z

which is equivalent to the lower limit in the theorem

Qit1/2 = Majp1/2]

The condition Cjy1/5 + Djyq1/2 <1 becomes

Q12 <1

and the theorem follows.

The quantity a;y;/, is important and will be used throughout this text. The
second order Lax-Wendroff scheme has Q4 = A2 a]_|_1/2, and is clearly outside the
TVD region. Thus we get the following result

Corollary 2.14. Three point TVD schemes are at most first order accurate. The
situation can be viewed in fig. 2.5.

This result and the corresponding result for monotone schemes might seem depress-
ing. First order schemes are not accurate enough to be of use in practice. However,
higher order methods are developed using first order methods as building blocks. This
is the motivation for the study of first order methods.



-1 | 1

Fig.2.5. TVD domain for numerical viscosity

For reference we conclude this section by a listing of the three different standard
forms to write an approximation to (1.1), and formulas for converting between them.
The conservative form (C-form), the incremental form (I-form) and the viscosity form

(Q-form).
Q-form to C-form

1 1
hijraj2 = §(f(uj) + flujgr)) — 5Q1+1/2A+U1

C-form to Q-form
Fluj) + flujgn) = 2410

Qj+1/2 = A A

Q-form to I-form

1
Cj—|—1/2 = 5(@;‘4—1/2 - /\Gj+1/2)
1
D10 = 5(@;‘4—1/2 + Aajq1/2)
[-form to Q-form
Qjt1/2 = Cir12+ Djyay2

C-form to I-form

_/\h?-i-l/? B f(u?)

C“i‘l 2 = n n
e Uit 7Y
h?—l—l/z — flujyq)
Dj+1/2 =—A n n
Ujpr — Uy
I-form to C-form
1 1

hjripe = fluj) = S CiprppAiuy = f(ujen) = 3 Djijp A



2.5 Some Schemes

Here w