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�� The Scalar Conservation Law

��� Intro duction and smo oth solution

In this text we consider the initial value problem

u

t

� f � u �

x

� � � � � x � � � � t

u �� � x � � u

�

� x �

�� � ��

where the function u � t� x � is the unknown and f � u � and u

�

� x � are giv en functions�

It is a generalization of the hyp erb olic problem

u

t

� au

x

� � � � � x � � � � t

u �� � x � � u

�

� x �

�� � ��

with which the reader is supp osed to b e familiar� Problem ����� is usually analyzed

using Fourier series� Since problem ����� is in general non linear� Fourier metho ds can

not b e used�

The choice f � u � � u

�

� � yields the inviscid Burger	s equation� an equation interest


ing b ecause of its resemblance to the equations of �uid dynamics� It is widely used as

a mo del problem�

The equation u

t

� f � u �

x

� � is called a conservation law� By in tegrating ov er

�� � x � � one gets

d

dt

Z

�

��

u � x� t � dx � �

assuming that f � u � v anishes as j x j � � � Th us the name derives from the fact that the

integral of u is conserved in time�

The function f � u � is called �ux function� By in tegrating over a � x � b one gets

d

dt

Z

b

a

u � x� t � dx � f � u � t� a �� � f � u � t� b �� �� � ��

which can b e given the interpretation that the integral of u over a nite interval can

change due to in
 or out�ow at the b oundaries x � a and x � b �

If we carry out the x di�erentiation we get

u

t

� a � u � u

x

� �

where a � u � � f

�
� u �� In the same way as for problem ������ we can make the denition

De�nition ���� The characteristics are the curves in the x � t plane de�ned by

dx � t � �dt � a � u � t� x � t ��� �� � ��

W e ha ve a theorem similar to the one for the linear case�



�

Theorem ���� If the solution u � t� x � is di�erentiable� it is constant along the charac�

teristics�

Pro of� The chain rule is used to evaluate the derivativ e of u along a characteristic

curve

du � t� x � t ��

dt

� u

t

�

dx � t �

dt

u

x

� u

t

� a � u � u

x

� �

using ������ The derivative is zero and the solution constant�

The theorem and ����� implies that the characteristics are straight lines� The

following theorem further shows that there are many similarities b etween ����� and

������

Theorem ���� The solution� u � to problem ����� satis�es

u � u

�

� x � a � u � t � �� � ��

if it is di�erentiable�

Pro of� Insert ����� into the PDE and use the chain rule� The result from doing this

is

�� � u

�

�

� x � a � u � t � a

�

� u � t �� u

t

� a � u � u

x

� � �

We di�erentiate ����� with resp ect to time and obtain

u

t

� u

�

�

� x � a � u � t �� � a

�

� u � tu

t

� a � u ��

Solve for u

t

u

t

� �

u

�

�

a

� � u

�

�

a

�

t

Since we assume that u has continous derivative� the denominator � � u

�

�

a

�

t m ust b e

di�erent from zero� and thus the factor multiplying u

t

� a � u � u

x

can b e divided out and

the pro of is complete�

If the ab ove non linear algebraic equation has a unique solution� a very e�cient

solution pro cedure for problem ����� is to solve ����� by Newton	s metho d�
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��� Non smo othness� Jump condition

The ma jor di�erence b etween the linear and the non linear equations is that for the

latter� the solution in the class of continuous functions may fail to exist after a nite

time� no matter how smo oth the initial data are� W e giv e three examples to sho w ho w

this failure o ccurs�

Example ��� �Geometric description of smo othness failure�

u

t

� � u

�

� ��

x

� � � � � x � � � � t

u �� � x � � sin x

By di�erentiation a � u � � u and th us the slop e of the characteristics are u � Initially

in the p oint x � � � �� the slop e and the solution are � and in the p oint x � � � � � the

slop e and function are 
��

xu = 1 u = -1

???

t

Figure ���� Values are transp orted along the characteristics

The value � is transp orted to the right and the value 
� to the left� at some time

they will meet� thereby causing a failure of smo othness in the solution�

Example ��� �Algebraic description of smo othness failure� Consider ������ By

implicit di�erentiation with resp ect to t we get

u

t

� u

�

�

� x � a � u � t �� � a

�

� u � tu

t

� a � u ��

Solve for u

t

u

t

� �

u

�

�

a

� � u

�

�

a

�

t

�� � ��

if a

�

u

�

�

is � � at some p oin t� we see from ����� that there will b e a blo w up of the

derivativ e at t � � � � � u

�

�

a

�

��

Example ��� shows that under certain conditions� suc h as e�g� a

�

� u � � � and

u

�

�

� x � � �� a smo oth solution do es exist�

Example ��� �Dynamic description of smo othness failure� The same problem as

in example ��� is considered

u

t

� � u

�

� ��

x

� � � � � x � � � � t

u �� � x � � sin x
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The di�erential equation can b e written

u

t

� uu

x

� �

and u can� in analogy with the linear hyp erb olic equation� b e interpreted as the sp eed

with which the initial data propagates� For the sine wav e b elo w� the maxima travels

to the right with sp eed � and the minima to the left with sp eed 
�� This causes a

gradual sharp ening of the gradients with time�
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Fig� ���� A solution to Burgers	 equation�

and nally the waves break into discon tin uities�
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The examples shows the necessity to extend the solutions into the class of func


tions with discontinuities� The partial di�erential equation do es not mak e sense for

non di�erentiable functions� We can how ev er in terpret the derivatives in the sense of

distributions� More sp ecically this means that the equation is multiplied by a smo oth

test function� � � C

�

o

� R

�
� R �� and then integrated in time and space� Integration by

parts afterwards moves the derivatives to the smo oth test functions� Doing this yields

Z

�

�

Z

�

��

�

t

u � �

x

f � u � dx dt �

Z

�

��

� �� � x � u � �� � x � dx � � �� � ��

The b oundary terms at t� j x j � � do es not contribute� since � is assumed to have

compact supp ort� W e dene
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De�nition ���� A we ak solution to ����� is a function u � t� x � satisfying ����� for all

smo oth test functions � � C

�

�

�

In the sp ecic case of one discon tinuit y� separating two smo oth parts of the solution

we can use the conservation prop erty of the original problem ����� to obtain the following

theorem�

Theorem ���� �Rankine�Hugoniot� Assume that a discon tin uit y is mo ving with sp eed

s and that the value of u to the left of the jump is u

L

and to the right u

R

� The the

following holds

s � u

L

� u

R

� � f � u

L

� � f � u

R

�

Pro of� Use the integrated form �����

d

dt

Z
b

a

u dx � f � u � t� a �� � f � u � t� b �� �� � ��

assume there is one discontin uit y mo ving on the curve x � t � and that the solution is

smo oth otherwise� Separate ����� into smo oth parts

d

dt

�

Z
x � t �

a

u dx �

Z
b

x � t �

u dx � � f � u � t� a �� � f � u � t� b ��

The di�erentiation can now b e carried out� givingZ
x � t �

a

u

t

dx � u � t� x � t � � � x

�
� t � �

Z
b

x � t �

u

t

dx � u � t� x � t ��� x

�
� t � � f � u � t� a �� � f � u � t� b ��

Now use u

t

� � f

x

in the integrals� Performing the integration gives

f � u � t� a �� � f � u � t� x � t � � �� � u � t� x � t � � � x

�
� t � � f � u � t� x � t ���� �

f � u � t� b �� � u � t� x � t ��� x

�
� t � � f � u � t� a �� � f � u � t� b ��

The desired result is obtained by rearranging this expression� and using the notations

u � t� x � t � � � � u

L

� u � t� x � t ��� � u

R

� x

�
� t � � s �
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���� Uniqueness� Entropy condition

When we extend the class of admissible solution from the di�erentiable functions to

non di�erentiable functions� we unfortunately lo ose uniqueness� The extended class of

functions is to o large�

We therefore imp ose an extra condition the so called entropy condition whic h tells

us� in case of multiple solutions� which solution is the correct one� The name derives

from application to gas dynamics� in which case there is only one solution satisfying the

physically correct condition of entropy decrease�

As we will see later� entropy conditions are imp ortant when we study numerical

metho ds� since some convergen t n umerical metho ds do es not converge to the solution

singled out by the entropy condition�

The theory is considerably simplied if the �ux function is conv ex � f ��

� u� � ���

Therefore we start with that case� The typical example of non uniqueness is the following

Example ��� Tw o p ossible solutions to the problem

u
t

� � u� ���

x

� � � � � x � � � � t

u�� � x� �

n

� x � �

� x � �

are

u
�

� t� x� �

�

� x � t��

� x � t��

The jump is moving with the sp eed s � � �� obtained from the Rankine
Hugoniot

condition� and

u
�

� t� x� �

�

� x � �

x�t � � x � t
� x � t

The second solution is a so called expansion wave �or rarefaction wave�� It is easy

to see that these functions solves the problem� by inserting them into the di�eren tial

equation� By lo oking at the characteristics in the x � t plane� we get the following

picture of the solution � in the example ab ove

x

t

Fig� ���� Diverging characteristics�

This solution is not a go o d one for the following reasons

�� Sensitivity to p erturbations� A small disturbance in the discon tinuit y will propagate

out into the solution and a�ect the smo oth parts�
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�� There are characteristics emanating from the discontin uit y� W e w ould lik e the

solution to b e determined by the initial data� Consequently � if at some time t we

trace a characteristics backwards we should end at some p oint at the time zero�

This is not true for this solution�

For the following example p oint one and two are resolved in a satisfactory way�

Example ��� The problem

u t � � u

�

� �� x � � � � � x � � � � t

u �� � x � �

n
� x � �

� x � �

has a solution

u � t� x � �

�
� x � t� �

� x � t� �

�

The jump is moving with the sp eed s � � � � obtained from the Rankine
Hugoniot

condition� The characteristics are p ointing into the jump

x

t

Fig� ���� Converging characteristics�

Here a small disturbance in the jump will immediately disapp ear into the discon


tinuity� and at a given time� we can always follo w a c haracteristic bac kw ards to time

zero�

Example ��� gives a motivation for the following denition�

De�nition ���� A discon tinuit y with left state u L and right state u R � mo ving with

sp eed s for a conservation law with convex 	ux function is entropy satisfying if

f

�

� u L � � s � f

�

� u R � �� � ��

This means that the characteristics are going towards the discontin uit y as time increases�

An entropy satisfying discontin uit y is also called a shock� The signicance of the

ab ove denition can b e seen in the following theorem

Theorem ��	� The initial value problem ����� with convex 	ux function and arbitrary

integrable initial data has a unique weak solution in the class of functions satisfying

���
� across all jumps�

Pro of� The pro of of existence uses the exact solution formula whic h we describ e in

the next section� We refer to ���� for the details� and the uniqueness�
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For the non convex conservation law the condition ����� has to be satised for all
u between u

L

and u
R

� The �ux function could look like in g� ����

f(u)

uulur

Fig� ���� Non convex �ux function�

Here a jump between u
L

and u
R

� satises condition ������ but is still not the correct
solution� It has turned out that it is necessary to require the following entropy condition
for a general non convex conservation law

f�u
L

� � f�u�

u
L

� u
�

f�u
R

� � f�u
L

�

u
R

� u
L

all u � �u
L

� u
R

� or �u
R

� u
L

� ������

It is important that all values u between u
L

and u
R

are involved� Intuitively we can
understand ������ as requiring the characteristics to go into the shock for the entire
family of shocks between u

L

and u� u � �u
L

� u
R

�� Geometrically ������ can be interpreted
as the graph u� f�u� must lie below the chord between �u

L

� f�u
L

�� and �u
R

� f�u
R

�� if
u

L

� u
R

� and above if u
L

� u
R

� ������ can be derived from the inviscid limit of the
problem

u
t

� f�u�
x

� �u
xx

������

where � is a positive parameter� ������ has a unique smooth solution� The physically
relevant solution of ����� is dened as the solution of ������ as � � �� We give a
derivation of ������ later in this section�

There is a result similar to theorem ��� for the entropy condition �������

Theorem ��
� The initial value problem ����� with arbitrary integrable initial data

has a unique weak solution in the class of functions satisfying ������ across all jumps�

Proof� Not given here� We refer to �����

An example of a conservation law with non convex �ux function is the so called
Buckley
Leverett equation

u
t

� �
u�

u� � �� � u�� ��
�

x

� �

which occurs in the theory of �ow through porous media�
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There is an alternativ e w ay of getting entropy conditions whic h w e no w describ e�

First the equation

u

t

� f � u �

x

� �u

xx

and E

�
� u � are multiplied� E � u � is a strictly convex � E

��
� u � � ��� di�erentiable function�

whic h w e will call the entropy function�

E

�
u

t

� E

�
f � u �

x

� �E

�
� u � u

xx

Dene F

�
� u � � E

�
� u � f

�
� u �� the equation takes a form similar to the original one

E � u �

t

� F � u �

x

� �E

�
� u � u

xx

�

Using the iden tit y

E � u �

xx

� E

��
� u �� u

x

�

�

� E

�
� u � u

xx

we rewrite the viscosity term and get

E � u �

t

� F � u �

x

� � � E � u �

xx

� E

��
� u �� u

x

�

�

� � �E � u �

xx

where the last inequality follows from the fact that E � u � is convex� Let now � � � and

we arriv e at

E � u �

t

� F � u �

x

� � �� � ���

where the inequality should b e understo o d to b e valid in the sense of distributions�

Th us w e ha ve showed that if u � t� x � is a solution to the original conservation la w�

obtained as the vanishing viscosity limit solution of ������� the additional inequality

������ is valid� As previously mentioned� the vanishing viscosity solution is the physically

relevant one whic h w e w an t an en tropy condition to cho ose for us� As an entropy

condition w e tak e ������� or across jump discon tin uities

s � E � u

R

� � E � u

L

�� � � F � u

R

� � F � u

L

�� � � �� � ���

which follows from ������ by calculations similar to the pro of of theorem ���� W e ha ve

now three di�eren t en tropy conditions� ������ ������ and ������� we nish b y in vestigating

the relationship b etween them� By using the denition E

�
f

�
� F

�
it is easy to prove

the identity

s � E � u

R

� � E � u

L

�� � � F � u

R

� � F � u

L

�� �

Z

u

R

u

L

E

��
� u �� su

L

� f � u

L

� � � su � f � u ��� du

The function inside the integral is familiar� using the denition of s � the sho c k sp eed�

we can rewrite entropy condition ������ as

su � f � u � � su

L

� f � u

L

� u

L

� u

R

su � f � u � � su

L

� f � u

L

� u

L

� u

R

thus we immediately get ������ � �� � ��� from

Z

u

R

u

L

E

��
� u �� su

L

� f � u

L

� � � su � f � u ��� du � � �



��

and E

�� �u � � �� For the implication in other direction it is necessary to assume that
������ is valid for all convex E �u �� or at least a class su�ciently large to assure that

Z

E

�� �u �g �u � du � � � g �u � � ��

One example of such a class is given in exercise �� In the special case f �u � convex the
sign of su

L

� f �u

L

� � �su � f �u �� does not change over the interval �u

L

� u

R

�� and one
convex entropy function is su�cient� Summary�

������ � ������ for any convex entropy function�
������ for a �large� class of entropy functions� �������
������ with one entropy function � ������
������� ������
����� � ������ if f �u � convex�

Here the last two implications are easily shown and left as an exercise

��� Exact solution formulas

For reference we here give some analytic solution formulas without proving them� The
equation

u

t

� �u

�

� ��
x

� �u

xx

can be solved exactly ����� the formula is not given here� A similar result has been
obtained for the problem

u

t

� f �u �
x

� � � � � x � � � � t

u ��� x � � u

�

�x �
��� ���

with f �u � convex� The solution at a xed point �t� x � is obtained from

Theorem ���� The solution to ������ is given by

u �t� x � � b ��x � y ��t � ��� ���

where b �u � is the inverse function of f

� �u �� �which exists since f �u � is convex� and y is

the value which minimizes � �t� x � are still kept �xed �

G �x� y � t � �

Z

y

��

u

�

�s � ds � th ��x � y ��t ��

Here h �u � is a function determined from h

� �u � � b �u �� and h �f

� ���� � ��

We refer to ���� for a derivation of the formulas�
The problem with piecewise constant initial data� will be of importance to some of

the numerical methods encountered later on� In the scalar case it is possible to solve
the problem

u

t

� �f �u ��
x

� � � � � x � � � � t

u ��� x � �
n

u

L

x � �
u

R

x � �



��

analytically for any di�erentiable �ux function f � u �� u

L

and u

R

are constants� First

one proves that the solution only dep ends on x�t � Let the solution b e u � t� x � � u � x�t � �

u � � �� The following formulas then give a closed expression for u � � ��

u � � � � �

d

d�

� min

w � � u

L

�u

R

�

� f � w � � � w �� u

L

� u

R

u � � � � �

d

d�

� max

w � � u

R

�u

L

�

� f � w � � � w �� u

L

� u

R

�� � ���

The di�erentiation is made in the sense of distributions� We refer to ���� for a derivation

of these formulas�

Exercises

�� In ���� the following entropy condition is given

f � 	u

R

� �� � 	 � u

L

� � 	f � u

R

� � �� � 	 � f � u

L

� u

R

� u

L

f � 	u

R

� �� � 	 � u

L

� � 	f � u

R

� � �� � 	 � f � u

L

� u

R

� u

L

all 	 � �� � ��� Show that this entropy condition is equivalent to ������� What is

geometrical interpretation of the ab ov e en tropy condition �

�� The formula ����� can not b e used to solve the problems

u

t

� � u

�

� ��

x

� � � � � x � � � � t

u �� � x � �

n

� x � �

� x � �

and

u

t

� � u

�

� ��

x

� � � � � x � � � � t

u �� � x � �

n

� x � �

� x � �

�

Try to use it anyway � to in vestigate how the formula fails� Use then formula ������

in the last section to obtain a correct solution�

�� Consider the problem

u

t

� � f � u ��

x

� � � � � x � � � � t

u �� � x � �

n

� x � �

� x � �

�

with f � u � � � � � u

�

� � u

	

� u

�

� One p ossible solution is

u � t� x � �

n

� x � � � � t

� x � � � � t

�

Show that this solution satises the entropy condition ����� but not �������



��

�� Solve the problem

u

t

� � u

	

� ��

x

� � �� � x � � � � t

u �� � x � �

n

� x � �

�� x � �

�

using the exact formula �������

�� Show that the entropy condition

E � u �

t

� F � u �

x

� �

for all

E � u � �

n

u � c u � c

� u � c

F � u � �

n

f � u � � f � c � u � c

� u � c

with c a real constant� implies the entropy condition ������� Th us instead of re


quiring ������ for all convex E � u �� the sub class ab ove can b e used�



��

�� Numerical Metho ds for the Scalar Conservation Law

��� Notations

We will describ e some numerical metho ds applied to a one dimensional problem using

a uniform grid� This is for clarity of exp osition� the changes required for more space

dimensions and curvilinear grids are straightforward�

We consider a discretization of the x axis

x j j � � � � � �� � �� � � � � � � � � � �

The uniform spacing is � x � x j ��

� x j � We divide the time into time lev els t

�

�

� � t

�

� t

�

� � � � � The time step � t � t n��

� t n will b e constant�

We here avoid b oundaries by considering the problem on the entire domain �� �

x � �� The analysis b elow could have b een done� using p erio dicity instead� as is usually

done in the linear case� In practical computations it is� of course� not p ossible to use an

in�nite numb er of grid p oints� Thus� in order to verify numerically the results b elow� it

is necessary to use a p erio dic problem�

The following notations will b e used

u

n
j � The numerical solution at the p oin t 	 t n � x j 


D

�

u j � 	 u j ��

� u j 
 � � x

�

�

u j � u j ��

� u j

D � u j � D

�

u j��

� � u j � �

�

u j��

D

�

u j �

�

�

	 D

�

� D � 
 u j

�

�

u j �

�

�

	�

�

� � � 
 u j

The op erators D

�

and D � approximates � �� x to �rst order accuracy� D

�

gives second

order accuracy � W e write this as

D

�

u j � u x 	 x j 
 � O 	� x 


D

�

u j � u x 	 x j 
 � O 	� x

�




Thus e� O 	� x

p

 denotes a quan tit y whic h go es to zero with the same rate as � x

p
when

� x go es to zero i�e�

� � C

�

� lim

� x��

je j� � x

p � C

�

with C

�

and C

�

p ositive constan ts�



��

��� De�nitions and General Results

W e no w consider the metho d

u

���

j

� u

n

j

� � tD

�

f 	 u

n

j




u

���

j

� u

���

j

� � tD

�

f 	 u

���

j




u

n ��

j

� 	 u

���

j

� u

n

j


 � �

which approximates the scalar conservation law

u

t

� f 	 u 


x

� �

to second order accuracy in b oth time and space� The metho d is p opular in computa

tional aero dynamics where it is known as MacCormac k�s sc heme� We use this scheme to

demonstrate how the numerical solution can misb ehave when the solution to the partial

di�erential equation is discontinuous�

Example ��� The solution to the problem

u

t

� 	 u

�

� �


x

� � � � � x � � � � t

u 	� � x 
 �

n

� x � �

� x � �

is a translation of the initial step function with velo cit y � � � 	from the Rankine Hugo

niot condition
� The solution satis�es the entropy condition� Below the solution

obtained using MacCormack�s scheme is displayed� The solid line is the exact solu

tion� the circles are the numerical solution�
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1

1.5

Fig����� MacCormack Fig����� Leapfrog

The scheme do es not b ehav e w ell near the sho c k� The oscillations around the

sho ck are related to the well known Gibb�s phenomenon in Fourier analysis� There

is a small amoun t of n umerical viscosity in this scheme� whic h k eeps the oscillations

near the sho ck� With a scheme� like leapfrog� which only has disp ersive errors and no

numerical damping� the oscillations spread out all over the computational domain� This

text describ es how di�erence schemes whic h giv es a solution without these erroneous

oscillations can b e designed�



��

Example ��� The problem

u

t

� 	 u

�

� �


x

� � � � � x � � � � t

u 	� � x 
 �

n

� � x � �

� x � �

has the following solution

u 	 t� x 
 �

�

� � x � � t

x�t � t � x � t

� x � t

However using MacCormac k�s sc heme� we instead get the solution

u 	 t� x 
 �

n

� � x � �

� x � �

which also is a weak solution to the problem� but which do es not satisfy the entropy

condition� The result is plotted in �g� �����
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Fig����� MacCormack fails to pro duce entropy solution�

The consistency with the conservation law do es not guarantee that a scheme pic ks

up the entropy satisfying solution� We will try to �nd di�erence schemes were suc h a

guaran tee is a vailable�

One usual standard form for di�erence approximations to the conservation la w is

the conservative form �

u

n ��

j

� u

n

j

� � 	 h 	 u

n

j � q ��

� u

n

j � q ��

� � � � � u

n

j � p ��


 � h 	 u

n

j � q

� u

n

j � q ��

� � � � � u

n

j � p



 	� � �


The notation � � � t� � x is used� The function h 	 u

n

j � q

� � � � � u

n

j � p


 is called the numerical

�ux function � By T aylor expansion one can show that consistency with the conservation

law requires

f 	 u 
 � h 	 u� u� � � � � u 
 �

Here we mean consistency in the sense that a smo oth solution inserted into the di�erence

formula gives a truncation error prop ortional to � t 	� t

p

� � x

q


� with p � � � q � �� The

conservative form implies that 	 if u

n

j

� � as j � �� 


�

X

j � ��

u

n ��

j

�

�

X

j � ��

u

n

j

�



��

the discrete counterpart of 	���
 holds�

We often write h

n

j � � � �

� h 	 u

n

j � q

� u

n

j � q ��

� � � � � u

n

j � p


� and thus the conservativ e ap

proximation b ecomes

u

n ��

j

� u

n

j

� t

�

h

n

j �� � �

� h

n

j � � � �

� x

� � �

It is p ossible to inven t sc hemes that are consistent with the di�erential equation� but not

on conservative form� For suc h a sc heme one can obtain solution were the sho c ks mo ve

with incorrect sp eed� Consistency in the usual sense do es not take in to accoun t the

discontinuities� and therefore not the RankineHugoniot condition� Lo osely sp eaking�

we can say that the conservative form means consistency with the RankineHugoniot

condition� The following theorem states this more precisely

Theorem ���� If u

n

j

is computed with a consistent di�erence approximation on con�

servative form and u

n

j

� u 	 t� x 
 as � t� � x � � in L

�

loc

	 R

�

� R 
 then u 	 t� x 
 is a w eak

solution to the conservation la w�

Pro of� We write the scheme 	���


u

n ��

j

� u

n

j

� t

�

h

n

j �� � �

� h

n

j � � � �

� x

� � �

Multiply with a test function � � C

�

�

	 R

�

� R 
� and sum over n and j �

�X
n ��

�X
j � ��

�

n

j

u

n ��

j

� u

n

j

� t

� �

n

j

h

n

j �� � �

� h

n

j � � � �

� x

� � �

Now� do partial summation using the rule

P
d

j � c

a

j

�

�

b

j

� �

P
d

j � c ��

b

j

�

�

a

j

� a

c

b

c

�

a

d

b

d ��

� W e get

�

�X
n ��

�X
j � ��

	 u

n ��

j

�

n ��

j

� �

n

j

� t

� h

n

j �� � �

�

n

j ��

� �

n

j

� x


 �

�X
j � ��

u

�

j

�

�

j

� t

� �

All b oundary terms except the one at t � � disapp ears� since � is compactly sup

p orted� Multiply � t � x and use the assumption that u

n

j

� u � The sum will conv erge

to wards the integral

�

Z
�

�

Z
�

��

u�

t

� f 	 u 
 �

x

dx dt �

Z
�

��

u

�

� dx � �

here the consistency h 	 u� u� � � � � u 
 � f 	 u 
 is used� Thus� by de�nition ���� the limit

function u is a weak solution of the conservation la w�

Remark� The theorem is an ifthen statement 	implication in one direction
� It

is p ossible to have nonconservative form� but still get a solution with correctly moving

sho cks� An example is the approximation u

j

D

�

u

j

on non conservative form to 	 u

�

� �


x

is in fact conservative in the sense that

P
�

j � ��

u

j

D

�

u

j

� � if u

j

� � as j � �� �



��

Example ��� showed that there might b e problems near the sho cks in certain di�er

ence metho ds� W e no w turn to the problem of characterize a go o d numerical solution

without oscillations around the sho ck�

The most p opular measure for oscillations is

De�nition ���� A di�erence metho d is called total variation decreasing �TVD� if it

pro duces a solution satisfying

�X
j � ��

j�

�

u

n ��

j

j �

�X
j � ��

j�

�

u

n

j

j

for all n � � �

We will sometimes use the notation T V 	 u

n


 �

P
�

j � ��

ju

n

j ��

� u

n

j

j� Originally the

concept was called total variation nonincreasing 	TVNI
� but TVD has b ecome the

standard term� We give an example to clarify the meaning of the de�nition�

Example ��� Consider the problem u

t

� 	 u

�

� �


x

� � with initial data

u

�

j

� � j � �

u

�

j

� � j � �

Approximate with the LaxWendro� sc heme at some CFL n umb er� After one time

step the solution is

u

�

j

� � j � ��

u

�

�

� � � ��

u

�

�

� � � ��

u

�

j

� � j � �

th us the scheme pro duced a small oversho ot� The v ariation at t

�

was ��� The

variation at t

�

is � � � � � � � � �� � � � �� � � � �� � � � � � � � � � ��� The oversho ot shows

as an increase in the total variation� Thus the LaxWendro� scheme is not TVD�

It is natural to require TVD� since the solution to the con tin uous problem u 	 t� x 


satis�es

d

dt

Z
�

��

j
� u

� x

j dx � � �

It has turned out that the TVD criterion is sometimes to o restrictive� We will later on

in some cases replace it with

De�nition ���� A di�erence metho d is called essentially non oscillatory �ENO� if it

pro duces a solution satisfying

�X
j � ��

j�

�

u

n ��

j

j �

�X
j � ��

j�

�

u

n

j

j � O 	� x

p






��

for all n � � and some p � � �

Example ��� shows that the numerical solution can fail to satisfy the entrop y con

dition� The theorem b elo w pro vides one wa y to in vestigate whether a scheme is entropy

satisfying or not�

Theorem ���� If a di�erence metho d pro duces a solution� which also satis�es the

discrete entropy condition

	 E 	 u

n ��

j


 � E 	 u

n

j



 � � t � 	 H 	 u

n

j �q ��

� � � � � u

n

j � p ��


 � H 	 u

n

j �q

� � � � � u

n

j � p



 � � x � �

with H 	 u

j �q

� � � � � u

j � p


 a n umerical entropy �ux consisten t with the en tropy �ux of the

di�erential equation�

H 	 u� � � � � u 
 � F 	 u 


F

�
	 u 
 � E

�
	 u 
 f

�
	 u 


then if u

n

j

converges the limit will satisfy

E 	 u 


t

� F 	 u 


x

� �

Pro of� Similar to the pro of of theorem ����

There is an imp ortant class of schemes satisfying a discrete entropy condition�

De�nition ���� The di�erence scheme

u

n ��

j

� u

n

j

� � 	 h

n

j �� � �

� h

n

j �� � �




is called an E scheme if

�

h

j �� � �

� f 	 u 
 all u � � u

j

� u

j ��

� if u

j

� u

j ��

h

j �� � �

� f 	 u 
 all u � � u

j ��

� u

j

� if u

j ��

� u

j

This de�nition is made b ecause of the following theorem

Theorem ���� An E sc heme satis�es the semi discrete entropy condition

dE 	 u

j

	 t 



dt

� D

�

H

j �� � �

� �

for all convex E 	 u 
 � The numerical entropy �ux is given by

H

j �� � �

� F 	 u

j


 � E

�
	 u

j


	 h

j �� � �

� f 	 u

j





Pro of� Start from the di�erence metho d

du

j

	 t 
 �dt � � 	 h

j �� � �

� h

j �� � �


 � � x

Multiply by E

�
	 u

j


� where E 	 u 
 is a convex function� so that we get the �rst term in

the semi discrete entropy condition

� x

dE 	 u

j




dt

� � E

�
	 u

j


	 h

j �� � �

� h

j �� � �






��

where we also multiplied b y � x � In tro duce the entrop y �ux F

�

	 u 
 � E

�

	 u 
 f

�

	 u 
 b y

� x

dE 	 u j 


dt

� F 	 u j ��


 � F 	 u j 
 � � E

�

	 u j 
	 h j �� ��

� h j � � ��


 � F 	 u j ��


 � F 	 u j 
 	� � �


We can write

F 	 u j ��


 � F 	 u j 
 �

Z u
j ��

u
j

F

�

	 u 
 du �

Z u
j ��

u
j

E

�

	 u 
 f

�

	 u 
 du � � E

�

f �

u
j ��

u
j

�

Z u
j ��

u
j

E

��

	 u 
 f 	 u 
 du

Using this expression for �

�

F 	 u j 
 in the right hand side of 	���
 yields

� x

dE 	 u j 


dt

� F 	 u j ��


 � F 	 u j 
 � � E

�

	 u j 
	 h j �� ��

� h j � � ��


�

E

�

	 u j ��


 f 	 u j ��


 � E

�

	 u j 
 f 	 u j 
 �

Z u
j ��

u
j

E

��

	 u 
 f 	 u 
 du

Add and subtract E

�

	 u j ��


 h j �� ��

to the right hand side

� x

dE 	 u j 


dt

� F 	 u j ��


 � F 	 u j 
 � � E

�

	 u j ��


	 h j �� ��

� f 	 u j ��



�

E

�

	 u j 
	 h j � � ��

� f 	 u j 

 � 	 E

�

	 u j ��


 � E

�

	 u j 

 h j �� ��

�

Z u
j ��

u
j

E

��

	 u 
 f 	 u 
 du

which can b e written

� x

dE 	 u j 


dt

� F 	 u j ��


 � F 	 u j 
 � �

�

	 E

�

	 u j 
	 h j � � ��

� f 	 u j 


 �

Z u
j ��

u
j

E

��

	 u 
 duh j �� ��

�

Z u
j ��

u
j

E

��

	 u 
 f 	 u 
 du

and thus by de�ning H j � � ��

� F 	 u j 
 � E

�

	 u j 
	 h j � � ��

� f 	 u j 

 the result follows from

� x

dE 	 u j 


dt

� �

�

H j � � ��

�

Z u
j ��

u
j

E

��

	 u 
	 h j �� ��

� f 	 u 

 du

The convexit y of E 	 u 
 means that E

��

	 u 
 � �� thus the right hand side is non p ositive

if h j �� ��

satis�es the requirements in the theorem�

Remark � It is p ossible to prove the Entropy condition for the time discretized

approximation 	forward Euler
 as well� W e ga ve the pro of for the semi discrete approxi

mation� b ecause it gives a clear picture of how de�nition ���� enters into it� and b ecause

the pro of is considerably simpler than the pro of for the fully discrete case�

It is p ossible to prove that an E scheme has at most order of accuracy one�

Note that in the de�nition of an E scheme� a statemen t is made ab out al l v alues

of u b et w een u j ��

and u j � The theory in chapter one makes it probable that for non



��

convex �ux functions it is necessary to have information of how the �ux function behaves
between the grid points� We give an example to clarify this statement�
Example ��� The problem

u

t

� 	u

�

� �

x

� � � � � x � � � � t

u 	�� x 
 �
n

� x � �
� � x � �

has solution

u 	t� x 
 �
n

� x � �
� � x � �

�

Assume that a di�erence method is given which gives the steady solution pro�le

u

n

j

� � j � � �

u

n

�

� �� �

u

n

�

� � �� �

u

n

j

� � � j � �

for all n � Make a deformation of the �ux function as in �g� ���� below�

x

f(u)

u

Fig����� Deformed �ux function

The steady shock does not satisfy the entropy condition for the deformed �ux
function 	cf� chapter �
� The deformed �ux coincides with f 	u 
 � u

�

� � for j u j � �� ��
and a scheme which only relies on �ux values at the grid points� does not have su�cient
information to distinguish between the deformed �ux and the quadratic one�

As an example we now give two classes of di�erence methods� monotone schemes
and three point schemes� where the TVD and entropy properties have been worked out�



��

��� Monotone Schemes

The TVD and ENO prop erties are usually di�cult to investigate for a giv en sc heme� We

therefore start analysing the sub class of monotone schemes� which is easy to distinguish�

We write an explicit di�erence metho d in general as

u

n ��

j

� G 	 u

n

j � q

� � � � � u

n

j � p ��


 � 	� � �


With this notation w e in tro duce the class of monotone schemes

De�nition ��	� The scheme ���	� is monotone if the function G is an increasing func�

tion of all its argumen ts� i�e�

� G 	 u

� q

� � � � � u

p ��




� u

i

� � � q � i � p � �

We let G

i

denote the partial derivativ e of G with resp ect to its i th argument� Note

that it is implicitly assumed that G is a di�erentiable function�

Theorem ��
� Monotone conservativ e sc hemes are TVD�

Pro of�

�

X

j � ��

ju

n ��

j ��

� u

n ��

j

j �

�

X

j � ��

jG 	 u

n

j � q ��

� � � � � u

n

j � p ��


 � G 	 u

n

j � q

� � � � � u

n

j � p ��


 j �

�

X

j � ��

jG 	 u

n

j � q

� �

�

u

n

j � q

� � � � � u

n

j � p ��

� �

�

u

n

j � p ��


 � G 	 u

n

j � q

� � � � � u

n

j � p ��


 j �

�

X

j � ��

j

p ��

X

k � � q

Z

�

�

G

k

	 u

n

j � q

� � �

�

u

n

j � q

� � � � � u

n

j � p ��

� � �

�

u

n

j � p ��


�

�

u

n

j � k

d� j �

Use the monitonicity and the triangle inequality

�
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It remains to prove 	���
� T o mak e the formulas simpler� we do this only for the three
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and the pro of is complete� The general 	���
 follows similarly by converting to deriva

tiv es of the numerical �ux function�

Theorem ���� Except for one trivial case� monotone schemes are at most �rst order
accurate�

To prove this we �rst state the following theorem� which do es not use the monotonic

ity of the scheme� and thus holds in general for all �rst order schemes on conservative

form�
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where we use the notation u � u 	 t n � x j 
� W e ha ve here Taylor expanded the di�erence

scheme in u � Next we expand the functions u in x and arrive at 	mo dulo second order

terms
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We omit the pro of that this sum is zero for the moment� If we accept 	���
 as a fact�
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to eliminate the zero order terms� We omit the pro of of 	���
 as well� The �rst order

terms remains
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Finally we remove the time derivatives by substituting u
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and the truncation error b ecomes
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which is what w e w anted to prove� It remains to prove 	���
 and 	���
� That can b e

done by writing out the conservative form of the metho d and let the derivatives of G

instead b ecome derivatives of the numerical �ux function h � It is a straightforward

calculation similar to the one that was done in the last part of theorem ����� and we

do not give it here�

Finally we give the pro of of theorem ���� By 	���
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were the monotonicity is used to split G
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by writing out the conservative form� it is easy to see that

P

p ��

k � � q

G

k

� �� It follows

that

q 	 u 
 � 	

�

�

�

X

k

�

G

k

	 u� � � � � u 
 � f

�

	 u 


�


 � � � �



��

where q 	 u 
 is the function de�ned in theorem ������
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From CauchySchwartz� we know that strict inequalit y 	 � 
 holds except if k G

k

�

const�G

k

� the metho d is a pure translation� This is the trivial case mentioned

in theorem ���� We conclude that strict inequality holds� except in this case� and

therefore the truncation error do es not vanish� The accuracy is one�

Theorem ����� Monotone schemes satisfy the discrete entropy condition
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From the monotonicity of the metho d we get
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where 	���
 was used in the last equality� This is the desired entropy inequality�

Remark � The class of entropy functions in the previous theorem is su�cien tly

large to assure that the entropy condition 	����
 will hold for the limit solution�

��� Three p oin t sc hemes
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� there is a complete characterization

of TVD schemes in terms of the numerical viscosity co e�cient�

We �rst state the theorem on which all pro ofs that a scheme is TVD is based�
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and the TVD prop ert y is pro ved�
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linear case� and is not required for a semi discrete metho d of lines approximation�
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where Q is the numerical viscosity coe�cient � A three p oin t sc heme is uniquely de�ned

through its co e�cien t of n umerical viscosity as can b e seen from the conversion formulas

at the end of this section� Thus there is only one degree of freedom in chosing a three

p oin t sc heme�
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This is seen by inserting this numerical �ux function into the conservativ e 	or C�form 


and rearranging terms�

If we apply theorem ����� to the Qform we get the following characterization of
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is imp ortant and will b e used throughout this text� The

second order LaxWendro� scheme has Q j �� ��
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TVD region� Thus we get the following result

Corollary ����� Three p oint TVD schemes are at most �rst order accurate� The

situation can b e viewed in �g� ����

This result and the corresp onding result for monotone schemes might seem depress

ing� First order schemes are not accurate enough to b e of use in practice� Howev er�

higher order metho ds are develop ed using �rst order metho ds as building blo cks� This

is the motivation for the study of �rst order metho ds�
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For reference we conclude this section by a listing of the three di�erent standard

forms to write an approximation to 	���
� and formulas for converting b etween them�

The conservative form 	Cform
� the incremental form 	Iform
 and the viscosity form

	Qform
�

Qform to Cform

h

j �� � �

�

�

�

	 f 	 u

j


 � f 	 u

j ��



 �

�

� �

Q

j �� � �

�

�

u

j

Cform to Qform

Q

j �� � �

� �

f 	 u

j


 � f 	 u

j ��


 � � h

j �� � �

�

�

u

j

Qform to Iform

C

j �� � �

�

�

�

	 Q

j �� � �

� �a

j �� � �




D

j �� � �

�

�

�

	 Q

j �� � �

� �a

j �� � �




Iform to Qform

Q

j �� � �

� C

j �� � �

� D

j �� � �

Cform to Iform

C

j �� � �

� � �

h

n

j �� � �

� f 	 u

n

j




u

n

j ��

� u

n

j

D

j �� � �

� � �

h

n

j �� � �

� f 	 u

n

j ��




u

n

j ��

� u

n

j

Iform to Cform

h

j �� � �

� f 	 u

j


 �

�

�

C

j �� � �

�

�

u

j

� f 	 u

j ��


 �

�

�

D

j �� � �

�

�

u

j



��

��� Some Schemes

Here w e giv e some examples of three p oint approximations� which can b e analyzed

using the theorems in section ���� The schemes are imp ortant in their own rights� some

of them will come up later in versions of higher order accuracy and in extension to

nonlinear systems of conservation la ws�

Example ��� The upwind scheme� This scheme is the lower TVD limit in theorem

����� i�e�
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Writing out the conservative form the scheme b ecomes
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and we can see the reason why this is called the upwind scheme� The scheme takes the

�ux value from the direction of the characteristics� For the linear equation u

t

� au

x

� �

the wave sp eed a
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� a is constant and the scheme b ecomes
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By considering the example
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it is easy to see that the upwind scheme do es not satisfy the entropy condition� The

scheme do es not contain enough viscosity to break the expansion sho c k in to an expansion

wave� The scheme is attractive b ecause it has the least p ossible viscosity to suppress

oscillations�

Example ���� The L ax�F rie drichs scheme� At the other end of the TVD interval

in theorem ���� we �nd the LaxFriedrichs scheme� which has the viscosity
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and numerical �ux function
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This scheme is extremely di�usive� and smears sho cks enormously � The adv antage of

the scheme is its simplicity� and the fact that the numerical �ux function is in�nitely

di�erentiable with resp ect to its arguments� This is of imp ortance for steady state



��

computations when� in Newton typ e metho ds� the Jacobian of the scheme is required�

It is also a requirement when the formal order of accuracy is derived�

Example ��	� The Godunov scheme� This sc heme has the viscosity co e�cient
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j �� � u

j

	� � ��


The scheme was originally derived for the Euler equations in gas dynamics� where it

was constructed as solving a Riemann problem lo cally b etween eac h t wo grid p oin ts�

This derivation will b e given later� Here we can instead explain the Go duno v sc heme

as the lower limit in the de�nition of the E schemes
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 if u
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From this de�nition it is straightforward to derive the expression 	����
 for the viscosity

co e�cient� The Go duno v sc heme is the E sc heme with smallest co e�cient of viscosity�

It is also a TVD scheme�

Example ��
� The Engquist�Osher scheme� The EO sc heme was designed with

the intent of improving the upwind scheme with resp ect to entropy and convergence to

steady state� The viscosit y co e�cien t tak es in to account all values b etween u

j �� and

u

j

b y in tegrating ov er this in terval�
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u
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j

j f

�

	 u 
 j du

If f

�

do es not change sign b etw een u

j

and u

j �� � then we see that the viscosity is equal

to the viscosit y of the up wind scheme� The advantages with this metho d is that it is

an E sc heme and that the numerical �ux is a C

�
function of its argumen ts� making it

suitable for steady state computations� The scheme is TVD�

Example ���� The L ax�Wendro� scheme� The only choice of viscosity that giv es

a second order accurate approximation 	b oth in space and time
 is the LaxWendro�

scheme

Q

j ��� � � �

�
a

�
j ��� �

The scheme is not TVD� but it is imp ortant b ecause of its optimality� 	The only three

p oint second order scheme
� Later when we discuss second order TVD schemes� the

LaxWendro� scheme will play an imp ortant role�

The Go dunov� EO and the upwind schemes coincide if the �ux function derivative

f

�

	 u 
 do es not change sign b etween u

j

and u

j �� � The sonic points are the u values for

which f

�

	 u 
 � �� It is usually around the sonic p oints the entropy condition is hard to

satisfy� There have b een suggested a numb er of �xes for the upwind scheme to satisfy

the entropy condition� One which is commonly used in computational �uid dynamics
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 is the choice
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The viscosity is prevented from going to zero when ja

j �� � �

j � �� and the viscosity

b ecomes a C

�

function of u

j

� u

j ��

� The disadvantage is that w e no w ha v e a parameter

to tune�

As a summary the schemes are plotted as function of increasing viscosity in �g�����

Engquist-Osher

Lax-Friedrics

Godunov

Upwind

Lax-Wendroff

D0

Q

Entropy CFL-stableTVD

Fig����� Prop erties of metho ds as function of the viscosity

���� Two space dimensions

In two space dimensions we approximate the conservation law
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on some domain� by the explicit di�erence metho d
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� and similarly for g
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� W e can cho ose h
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as a one dimensional

�ux formula describ ed in this chapter� Note however that with this straightforward

generalization the LaxWendro� scheme will not maintain second order accuracy in two

dimensions� In the case of LaxWendro�� it is b etter to use op erator splitting� then

second order accuracy can b e kept�

For two space dimensions� it is p ossible to prove that TVD� in the sense that
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is decreasing� implies overall �rst order accuracy� First order is to o restrictive� Instead

we write the scheme as
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as a criterion for a scheme with go o d prop erties with resp ect to sho cks� Unlike the one

dimensional case� 	����
 do es not imply TVD� and thus allows for second order accurate

schemes in two space dimensions�

Exercises

�� Show that the EngquistOsher scheme� the Go duno v sc heme and the upwind scheme

coincides when applied to the linear problem
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�� Determine the smallest constant d that makes the LaxWendro� scheme with added

viscosity
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TVD� Determine the c� stability condition for the resulting TVD scheme� Do es

the sc heme satisfy an entropy condition �

�� Assume the initial data
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Compare with theorem �����

�� Show that the metho d
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is not conservative�





0.5 1 1.5 2 2.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time = t 

0.5 1 1.5 2 2.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time = t + dt







































T
V

D

T
V

D

P
si

r

m M

Psi=(2+m)r

Psi=(M+2-2A)r



-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2











��

�� Higher Order of Accuracy

��� Poin t v alues and cell averages

In this section we will not strictly enforce the TVD constrain t� As w e ha ve seen� TVD

leads to restrictions in the accuracy � It is� ho wever� necessary to use some of the ideas

in the previous sections to make the increase in variation �as small as p ossible�� A

pure centered di�erence approach is not su�cient as can b e seen from the following

exp eriment� We solve u

t

� 	 u

�

� 
�

x

� �� with a step function as initial data� The sc heme
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	 D

�

D
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u

j

is used� discretized in time using a fourth order Runge�Kutta metho d� The spatial

discretization is a fourth order accurate centered di�erence together with a fourth order

arti�cial dissipation term� There is a viscosity parameter d left to tune the metho d

for sho cks� The result in �g� ��� shows the solution after sho c ks ha ve formed for some

di�eren t v alues of the viscosity d � In the �rst picture the viscosity parameter is to o small

to give substantial damping of oscillations� in the second picture� d � � � 
 whic h w as

the b est value according to sub jective judgemen t b y lo oking at the results� In the last

picture d � � � 
��� which turned out to b e the largest p ossible viscosity due to the CFL

constraint� The dissipation op erator was not tak en in to account in the CFL condition�
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Fig� ���� Fourth order solution of Burger�s equation�

Note that the results are not particularly go o d� not even after tuning the viscosity�

The higher order metho ds describ ed in this chapter will give go o d results for this

problem� W e m ust however issue a warning that the theory for higher order non oscil�

latory schemes is not w ell dev elop ed�

This far w e ha ve not made any distinction b etween cell averages and p oin t v alues�

Consider the grid
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where x
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� and view u

n

j

as an approximation to the cell av erage
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The situation is depicted in �g� ��
�
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Point j

Fig� ��
� Grid cells and grid p oints�

The distinction b etween these two views is not imp ortant for metho ds with accuracy

� 
� since
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In this section� howev er� w e will treat higher order of accuracy than two� W e �rst

analyze semi discrete metho ds� and save the time discretization until the last section�

The cel l aver age based higher order schemes are the generalization of the inner schemes

describ ed in the previous chapter� The schemes starts from the following exact formula

for the cell average� Integrate

u
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� f 	 u �
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with resp ect to x over one cell at t � The result is
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Compare this with the numerical approximation
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If the numerical �ux approximates the �ux of the exact solution at the cell interface
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then 	��
� is a p th order approximation to the PDE in terms of its cel l averages �

One usual way to �nd higher order approximations is to make a piecewise p oly�

nomial approximation� L 	 x � of u 	 t

n

� x � from the given cell averages u

n

j

� Inside each

cell u 	 t

n

� x � is approximated by a p olynomial� and at the cell interfaces� x

j ��� � � there

may b e jumps� From this piecewise p olynomial the numerical �ux is obtained as
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� is the numerical �ux of a �rst order TVD metho d

and the end values are
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Fig� ��� b elow shows a piecewise parab olic approximation�
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Fig� ���� Piecewise parab olic reconstruction�

The point value based higher order metho ds starts from the observation that if
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for some function F 	 x�� then
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and thus if the numerical �ux satis�es
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� F 	 x
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� � O 	 xp

�

the scheme 	��
� is p th order accurate in terms of p oin t v alues� The function F 	 x� can

b e obtained b y in terp olation of the grid function

G
j �� � �

�

Z
x

j �� � �

a

F 	 x� dx �

jX
k � a

f 	 u
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and then taking the derivative of the interp olation p olynomial� F 	 x� � dG	 x� �dx� The

p oint based algorithm is much easier to generalize to more than one space dimension�

In section ��
� w e sho w some di�eren t w ays to do the piecewise p olynomial re�

construction� When the time discretization is made� extra care has to b e taken to get

the same high order of accuracy as for the spatial approximation� This is the topic of

section ����
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��� Inner interp olation gives a cell average scheme

There are three ingredients in an inner high order scheme

�� A First order numerical �ux�


� A piecewise p olynomial interp olation to �nd u

L

j ��� � � and u

R

j ��� � �

�� A time discretization�

The topic of this section is 
�� p olynomial interp olation� We will consider the

problem of �nding the values of the solution at the cell interfaces� u

R

j ��� � � u

L

j ��� � �

j � � � � � � � � � � � � � � � from given cell averages� This is done by piecewise p olynomial

interp olation� and in suc h a w ay that the variation of the interp olan t is is as small as

p ossible� Strictly sp eaking� this is not an interp olation problem� since the function is

given as cell averages� while an interp olation problem requires the function at certain

p oints� The term reconstruction is therefore used to denote the pro cess of �nding an

approximation to a function whose cell averages are given�

One metho d in this class is the so called piecewise parab olic metho d 	PPM�� It con�

tains a reconstruction step using parab olic p olynomials� The reconstruction algorithm

con tains limiters to ensure monotonicity � W e here give the algorithm without details�

just to give the reader an understanding for the complexity of the PPM reconstruction

step�

	a� De�ne the primitive function V
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 x �

	b� Interp olate V

j ��� � using piecewise quartic p olynomial�

	c� De�ne u
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j ��� � � dV 	 x

j ��� � � �dx �

	d� Mo dify the left and righ t v alues obtained in 	c�� so that they b oth are b etween u
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R

j � �� � � u

L

j ��� � and satisfying

R
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u dx �

 xu

j

� has an extreme p oint inside the cell� mo dify it such that it b ecomes mono�

tone inside the cell�

	f � If a cell is inside a discontin uit y replace the parab ola with a line� which gives a

steep er sho ck representation than the original parab ola� As discontinuity detector

the following conditions are used
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then there is a discon tinuit y in cell j �

We next describ e another metho d for obtaining high order interp olation of discon�

tinuous functions� The essentially non oscillatory 	ENO� interp olation is a systematic

way to incrementally increase the accuracy to any order by adding p oints to the inter�

p olation p olynomial from the left or from the right� dep ending on in which direction

the function is least oscillatory�

The pro cess is describ ed using Newton�s form of the interp olation p olynomial� As�

sume that the function g 	 x � is kno wn at the p oints x

j

� j � � � � � � � � � � � � � � � � De�ne the



��

divided di�erences � x
i

� � � � � x
i � r

� g recursively by

� x
i

� g � g 	 x
i

�

� x
i

� � � � � x
i � r

� g �

� x
i ��

� � � � � x
i � r

� g � � x
i

� � � � � x
i � r � �

� g

x
i � r

� x
i

Newton�s p olynomial interp olating g at the p oints x
�

� � � � � x
n

is then given by

P n

	 x� �

n

X

i ��

	 x � x
�

�	 x � x
�

� � � � 	 x � x
i � �

�� x
�

� � � � � x
i

� g

where 	 x � x
i

� � � � 	 x � x
j

� � � if i � j � This form is convinient� since if w e w ant

to add another p oint to the interp olation problem� we can immediately up date the

interp olation p olynomial using the form ula

P n ��

	 x� � P n

	 x� � 	 x � x
�

� � � � 	 x � x
n

�� x
�

� � � � � x
n ��

� g

Pro of of the ab ove statements and description of various interp olation pro cedures can

b e found in any textb o ok on approximation theory�

W e no w give an algorithm for constructing a piecewise N degree p olynomial con�

tinuous interp olant L	 x� from the given grid function u
j

� with

L	 x
j

� � u
j

and whic h do es in tro duce as small amount of oscillations as p ossible� Start by de�ning

the linear p olynomial

L�

	 x� � u
j

� 	 x � x
j

�	 u
j ��

� u
j

� � x x
j

� x � x
j ��

and the indices

k �

min

� j

k �

max

� j � �

to b o okk eep the stencil width� The interp olation pro ceeds recursively as follows� De�ne

the divided di�erences

a
p

� � x
k

p � �

min

� � � � � x
k

p � �

max

��

� u

b
p

� � x
k

p � �

min

� �

� � � � � x
k

p � �

max

� u

where thus we add one p oint to the right for a
p

and one p oint to the left for b
p

� Next

use the smallest di�erence to up date the p olynomial�

if j a
p

j � j b
p

j then

Lp

	 x� � Lp � �

	 x� � a
p

k

p � �

max

Y

k � k

p � �

min

	 x � x
k

�

k p

max

� k p � �

max

� �

k p

min

� k p � �

min
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else

L

p

	 x � � L

p � �
	 x � � b

p

k

p � �

max

Y

k �k

p � �

min

	 x � x

k

�

k

p

max

� k

p � �
max

k

p

min

� k

p � �
min

� �

Thus L

p

	 x � is a degree p p olynomial whic h in terp olates u 	 x � and which is constructed

from the smallest p ossible divided di�erences�

We next sho w ho w this interp olation algorithm can b e used to solve the reconstruc�

tion problem� There are tw o w ays to do this�

�� Reconstruction by primitive function 	RP��


� Reconstruction by deconvolution 	RD��

In the �rst metho d 	RP�� we observe that the primitive function

U 	 x

j ��� � � �

Z

x

j �� � �

��

u 	 t

n

� x � dx �

j

X

k ���

u

n

k

 x

is known at the p oints x

j ��� � � The function U 	 x � is in terp olated using the ENO in ter�

p olation algorithm ab ove� The interp olation p olynomial� L 	 x �� is di�erentiated to get

the approximation to u 	 t

n

� x �� Thus the left and righ t v alues required in the numerical

�ux are

u

L

j ��� � �

dL 	 x

j ��� � � �

dx

u

R

j ��� � �

dL 	 x

j ��� � ��

dx

L 	 x � is con tinuous� but the derivativ es ma y ha ve di�eren t v alues from the left and from

the right at the break p oin ts x

j ��� � � In this way the reconstructed function b ecomes

piecewise continuous�

To describ e the second metho d 	RD�� we �rst note that

u 	 x � �

�

 x

Z

x ��x� �

x � �x� �

u 	 y � dy �

Z �� �

� �� �

u 	 x � s  x � ds 	� � ��

where thus u 	 x � is the cell average� W e in terp olate the given cell averages� using the

ENO interp olation algorithm ab ove� to get an approximation to u 	 x �� and then �nd the

approximation to u 	 x � by in verting 	�deconvolute�� 	�����

T o in vert 	���� use Taylor expansion

u 	 x

j

� �

Z �� �

� �� �

N � �
X

� ��

s  x

�

� �

d

�

u

dx

�

	 x

j

� dx � O 	 x

N

� �

N � �
X

� ��

�

� �

 x

�

d

�

u

dx

�

	 x

j

�

Z �� �

� �� �

s

�

ds � O 	 x

N

�
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All the derivatives d

�

u�dx

�

	 x

j

� are unknowns but there is only one equation� T o in�

tro duce more equations it is necessary to consider the derivatives of u 	 x �� Similarly as

ab ove one gets

d

k

u 	 x

j

�

dx

k

�

N � k � �

X

� ��

�

� �

 x

�

d

� � k

u

dx

� � k

	 x

j

�

Z

� � �

� � � �

s

�

ds � O 	 x

N � k

�

for k � � � � � � � N � �� In this way N equations are obtained for the N unknowns

d

�

u�dx

�

	 x

j

� � � � � � � � � � N � ��

The reconstruction p olynomial is then de�ned as

L

N � �

	 x � �

N � �

X

� ��

	 x � x

j

�

�

� �

d

�

u

dx

�

	 x

j

� x

j � � � �

� x � x

j �� � �

	� � ��

In summary the algorithm b ecomes

�� Use the ENO interp olation algorithm to interp olate the cell averages u

j

� The result

is a p olynomial of degree N � Q

N

	 x �� piecewise di�erentiable with breakp oints at

x

j

�


� Evaluate the derivatives dQ

N

	 x

j

� �dx � Since x

j

are break p oints extra care has to

b e taken� We de�ne

dQ

N

	 x

j

�

dx

� minmod 	

dQ

N

	 x

j

� �

dx

�

dQ

N

	 x

j

��

dx

�

and similarly for higher order derivativ es�

�� Solve the upp er triangular linear system of equations

d

k

Q

N

	 x

j

�

dx

k

�

N � k � �

X

� ��

�

� �

 x

�

d

k � �

u

dx

k � �

	 x

j

�

Z

� � �

� � � �

s

�

ds � O 	 x

N

� k � � � � � � � N � �

to get the derivatives d

�

u�dx

�

	 x

j

��

�� De�ne 	���� as the piecewise p olynomial reconstruction�

Example ���� We derive the second order ENO scheme through RP� Second

order means doing piecewise linear reconstruction� Thus the primitive function has to

b e in terp olated using degree 
 p olynomials� We obtain

U 	 x � � U

j �� � �

� 	 x � x

j �� � �

� u

j

�

�


 x

	 x � x

j � � � �

�	 x � x

j �� � �

� m 	

�

u

j

� 

�

u

j

�

x

j � � � �

� x � x

j �� � �

where

m 	 x� y � �

�

x if j x j � j y j

y if j x j � j y j

The linear approximation inside cell j b ecomes

dU

dx

� u

j

�

x � x

j

 x

m 	

�

u

j

� 

�

u

j

�
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this is a scheme on the form treated in chapter � 	 see p��� �� with

s

j

� m 	

�

u

j

�  � u

j

�

the TVD condition 	��
�� is satis�ed� Th us this is a TVD scheme which and conse�

quently it degenerates to �rst order at extrema�

In general one can prove that the RP ENO scheme using degree N p olynomials has

truncation error O 	 x

N

�� except at p oints where any of the �rst N � � derivativ es

disapp ears� there the truncation error is O 	 x

N ��

�� It is also p ossible to prove that the

truncation error for RD ENO metho d using degree N p olynomials is O 	 x

N

� alwa ys�

��� Outer interp olation gives a p oin t v alue scheme

This scheme is based on interp olation of the numerical �uxes� T o ac hiev e the

desired order of accuracy� it is necessary that the interp olated �uxes hav e a su�cien t

amount of derivatives� This is a very imp ortan t p oin t which somewhat restricts the

p ossible choices of �rst order numerical �ux to build the metho d from�

Assume that the p oin t v alues

u

j

j � � � � � � 
 � � � � � � � � 
 � � � �

are known� The idea of this metho d was outlined in section ���� W e form the in terp olant

of

H

j �� � �

�  x

j

X

k � a

f 	 u

k

�

by using the ENO interp olation algorithm� and then tak e the n umerical �ux as

h

j �� � �

�

dH 	 x

j �� � �

�

dx

�

The interp olation is made piecewise p olynomial with break p oints x

j

� This direct ap�

proac h ha ve to b e mo di�ed somewhat� If we carry out the ab ov e sc heme w e get

H

�

	 x � �

�

H

j �� � �

� 	 x � x

j �� � �

� f

j

if j f

j

j � j f

j ��

j

H

j �� � �

� 	 x � x

j �� � �

� f

j ��

if j f

j ��

j � j f

j

j

x

j

� x � x

j ��

which leads to

h

j �� � �

�

�

f

j

if j f

j

j � j f

j ��

j

f

j ��

if j f

j ��

j � j f

j

j

if the order of accuracy is chosen ��� Although this �ux is consistent� the resulting

metho d is not TVD 	Exercise 
�� It is crucial that the �rst order approximation is

TVD� F rom n umerical exp eriments� it is p ossible to verify that this metho d is not non

oscillatory no matter how high the accuracy of the interp olant� Instead w e mak e the

�rst order version of this metho d TVD� by taking

H

�

	 x � �

�

H

j �� � �

� 	 x � x

j �� � �

� f

j

if a

j �� � �

� �

H

j �� � �

� 	 x � x

j �� � �

� f

j ��

if a

j �� � �

� �

x

j

� x � x

j ��
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the �rst order metho d is then the upwind scheme� Continuing the interp olation to

higher order leads to a non oscillatory high order scheme� but the metho d do es not

satisfy an entropy condition�

We obtain a more general wa y of c ho osing the starting �rst order p olynomial if we

consider a �rst order TVD �ux h
j �� � �

and split it as

h
j �� � �

� f �

j

� f�
j ��

where f �

corresp onds to p ositiv e w ave sp eeds and f� to negativ e w ave sp eeds� As an

example the Engquist�Osher scheme 	section 
��� can b e written on this form with

f �

	 u� �

�

f 	 u� if f � 	 u� � �

� if f � 	 u� � �

f� 	 u� �

�

� if f � 	 u� � �

f 	 u� if f � 	 u� � �

Another example is the Lax�Friedrichs scheme� where

f �

	 u� � 	 f 	 u� �

�

�
u� �


f� 	 u� � 	 f 	 u� �

�

�
u� �


or the mo di�ed Lax�Friedrichs scheme

f �

	 u� � 	 f 	 u� � �u� �


f� 	 u� � 	 f 	 u� � �u� �


with � � max j f � 	 u� j �

We de�ne the starting p olynomials

H �

�
	 x� � H

j �� � �

� 	 x � x
j �� � �

� f�
j ��

H �

�

	 x� � H
j �� � �

� 	 x � x
j �� � �

� f �

j

x
j

� x � x
j ��

and then con tin ue the ENO interp olation of f �

and f� resp ectively through the p oints

x
j

to arbitrary order of accuracy� p� Finally

h
j �� � �

�

dH p

�

	 x
j �� � �

�

dx
�

dH p

�
	 x

j �� � �

�

dx

The truncation error for this metho d will involve di�erences of the functions f �

and

f� � Thus to achieve the exp ected accuracy it is necessary to have f � � f� � C p

� p
large enough� Because of this� the scheme has mostly b een used together with the C�

Lax�Friedrichs numerical �ux� or the mo di�ed Lax�Friedrichs numerical �ux� However

the Lax�Friedrichs scheme do es not always give su�cient sho ck resolution� Although

the higher order versions� obtained as describ ed ab ove� p erforms much b etter than the

�rst order Lax�Friedrichs� there is still need for �rst order TVD metho ds giving b etter

sho ck resolution than Lax�Friedrichs and having more derivativ es than the up wind or

the Engquist�Osher schemes� to b e used as building blo cks for this metho d�

We conclude with some remarks ab out two space dimensions� For the problem

u
t

� f 	 u�

x

� g 	 u�

y

� �



��

the method described in this section can be applied separately in the x � and y � directions
to approximate � �� x and � �� y respectively 	see section 
���� There are no extra com�
plications� For the cell centered scheme� the two dimensional generalization of formula
	���� gives an integral around the cell boundary� This integral is required to p th order
accuracy� which can be done by a numerical quadrature formula� If e�g�� p � � this
means using two values on each cell side� Thus for each cell� we need a two dimensional
reconstruction� which is a non trivial problem in its own right� and then we have � �ux
evaluations to make� two on each side� The cell centered scheme quickly becomes more
computationally expensive than the point centered scheme�

��� Time discretization

The easiest way to obtain a high order time discretization is to use a Runge�Kutta
method� However it has been observed that e�g�� the classical fourth order Runge�
Kutta method can cause large amount of oscillations in the solution although the space
discretization is made TVD� Therefore� we have to be extra careful about how to design
Runge�Kutta schemes�

We consider the semi discrete approximation

du

dt

� L 	u �

to the problem
u

t

� � f 	u �
x

where we know that the forward Euler approximation

u

n �� � u

n �tL 	u

n �

leads to a TVD or ENO method� The semi discrete TVD methods treated previously
can all be written

du

j

dt

� C

j �� � �


�

u

j

� D

j �� � �

� u

j

with non negative C

j �� � �

� D

j �� � �

� From theorem 
��
 it follows that the forward Euler
time discretization is TVD under the CFL constraint t 	C

j �� � �

� D

j �� � �

� � �� all j �
Thus it is not too restrictive to assume TVD for the forward Euler time discretization�
The idea of TVD Runge�Kutta methods is to write the scheme as a convex combination
of forward Euler steps� One general form for explicit m stage Runge�Kutta methods is

u

��� � u

n

u

� i � � u

��� �t

i ��

X

k ��

c

ik

L 	u

� k � � i � �� 
� � � � � m

u

n �� � u

� m �

	�� ��



��

For each stage� the w eigh ts �

�i �
k

� k � � � � � � � i � �� satisfying

�

�i �
k

� �

i � �
X

k ��

�

�i �
k

� �

are intro duced� Then 	���� can b e rewritten

u

���
� u

n

u

�i �
�

i � �
X

k ��

�

�i �
k

u

�k �
� 	

�i �
k

 tL 	 u

�k �
� i � � � 
 � � � � � m

u

n ��
� u

�m �

	� � ��

with 	

�i �
k

� c

ik

�
P

i � �
s �k �� c

sk

�

�i �
s

� By writing

u

�i �
�

i � �
X

k ��

�

�i �
k

	 u

�k �
�

	

�i �
k

 t

�

�i �
k

L 	 u

�k �
�� i � � � 
 � � � � � m

it is easy to prove

Theorem ���� If 	

�i �
k

� � and the metho d

u

n ��
� u

n

�  tL 	 u

n

�

is TVD under the CFL condition � � � � � � � �  t�  x �� then the metho d ����� is TVD

under the CFL condition

� � � � min

i�k

�

�i �
k

	

�i �
k

	� � ��

Pro of� For each stage it holds

T V 	 u

�i �
� �

�

X

j ���

j � u

�i �
j

j �

�

X

j ���

i � �
X

k ��

�

�i �
k

j � 	 u

�k �
j

�

	

�i �
k

�

�i �
k

 tL 	 u

�k �
j

�� j

�

i � �
X

k ��

�

�i �
k

T V 	 u

�k �
�

where we used that �

�i �
k

� � and that the forward Euler parts in the sum ab ove

are TVD under the constraint 	����� Use induction by assuming that T V 	 u

�k �
� �

T V 	 u

���
� for all k � i � �� This is certainly true for i � �� The inequalit y ab o ve giv es

T V 	 u

�i �
� � 	

i � �
X

k ��

�

�i �
k

� T V 	 u

���
� � T V 	 u

���
�
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Thus w e ha v e pro ved TV 	 u� m �

� � TV 	 u���

�� which is the TVD condition TV 	 un ��

� �

TV 	 un

��

If� however� some 	
� i �

k

� � then the step

u� k �

�

	
� i �

k

 t

�
� i �

k

L	 u� k �

�

corresp onds to a reversal of time� and we replace the op erator L	 u� with an op erator

�L	 u� which is such that �

�L	 u� approximates the problem

u
t

� f 	 u�

x

in a TVD 	or ENO� fashion� W e giv e an example to sho w ho w the op erator

�L	 u� is

derived�

Example ���� We approximate

u
t

� u
x

using the stable TVD approximation

un ��

� un

�  tD
�

un

Thus� using the formulas ab ove� L	 u� �  tD
�

� The op erator

�L is obtained from

approximating

u
t

� � u
x

using the stable TVD approximation

un ��

� un

�  tD
�

un

From this we �nd that �

�L	 u� � �  tD
�

� and thus

�L	 u� �  tD
�

The CFL condition for the case of negative 	
� i �

k

with

�L	 u� replacing L	 u� is obtained

from using the absolute value in 	�����

T o deriv e some particular Runge�Kutta metho ds� we start from 	���� and investi�

gate� b y T aylor expansion� the p ossible metho ds� W e giv e one example�

Example ��� Require second order accuracy and m � 
� The metho d is

u���

� un

u���

� u���

�  t	
���

�

L	 u���

�

u���

� �
���

�

u���

�  t	
���

�

L	 u���

� � �
���

�

u���

�  t	
���

�

L	 u���

�

un ��

� u���



�


where we will choose �

� i �

k

� �� To get the accuracy� take an exact solution to u

t

� L 	u ��
and insert it into the method� The truncation error in time is 	dropping all terms of
O 	t

� ��


 � u 	t �t � � 	 �

���

�

u �t	

���

�

L 	u � � �

���

�

	u �t	

���

�

L 	u ���

t	

���

�

L 	u �t	

���

�

L 	u ���

where we use u to denote the exact solution u 	t �� Taylor expansion gives


 � 	� � �

���

�

� �

���

�

�u � 	� � 	

���

�

� 	

���

�

� �

���

�

	

���

�

�tu

t

�

t

�



u

tt

� t

�

	

���

�

	

���

�

L 	u �L � 	u �

The observation u

tt

� 	L 	u ��
t

� L

� 	u �u

t

� L

� 	u �L 	u � gives the conditions for second
order accuracy

�

���

�

� �

���

�

� �

	

���

�

� � �

�


	

���

�

� �

���

�

	

���

�

	

���

�

�
�


	

���

�

The factors
�

j 	

���

�

j

�

���

�

j 	

���

�

j

�

���

�

j 	

���

�

j

comes into the CFL condition� If they all can be made � �� this Runge�Kutta scheme
will be non oscillatory under the same CFL condition as the forward Euler scheme is
non oscillatory� If furthermore we can choose all 	 non negative� we can avoid the

operator �
L 	u �� We �rst try 	

���

�

� �� which gives 	

���

�

� �� 
 and then to keep the next

CFL factor ��� we take �

���

�

� �� 
� This leads to �

���

�

� �� 
 and 	

���

�

� �� We have
obtained the method

u

��� � u

��� �tL 	u

��� �

u

��� �
�



	u

��� � u

��� �tL 	u

��� ��

which is the same as the method given on page ��� This method gives second order in
time and retains the non oscillatory features from the semi discrete approximation� It
does not require �

L 	u �� which saves programming e�ort�
In a similar way we can derive the third order TVD Runge�Kutta method

u

��� � u

��� �tL 	u

��� �

u

��� �
�

�
u

��� �
�

�
u

��� �
t

�
L 	u

��� �

u

��� �
�

�
u

��� �



�
u

��� �

t

�
L 	u

��� �



��

This metho d has CFL factor one� and is thus stable under the CFL condition obtained

from the forward Euler discretization� For higher accuracy than three� no metho d not

involving

�

L 	 u � is kno wn� It is recommended that a known high order Runge�Kutta

metho d is written on the form 	����� and then L 	 u � is replaced by

�

L 	 u � wherev er 	 � ��

The Runge�Kutta approach seems to b e the simplest way to do time discretization

and we recommend it� There are how ev er other ways� We conclude with a brief discus�

sion of these alternative time discretizations� One example is a Lax�Wendro� typ e of

metho d� It relies on the formula

u

n ��

� u

n

�  t 	 u

n

�

t

�

 t

�




	 u

n

�

tt

� � � �

The time derivatives are then replaced by spatial ones�

u

t

� � f 	 u �

x

u

tt

� 	 f

�

	 u � f 	 u �

x

�

x

� � �

The spatial derivatives are approximated using the ENO scheme� The pro cedure b e�

comes very complicated for higher order of accuracy than 
 in time� It is not suited for

steady state computations� but the stencil will not b e as wide as for the Runge�Kutta

schemes�

Another� more one dimensional metho d� can b e given by a direct integration of the

conservation la w in the x � t plane� This metho d is derived for schemes based on cell

averages� Consider the conservation law

u

t

� f 	 u �

x

� �

integrate around one cell in the x � t plane as depicted in �g� ����

t

n+1t

tn

x jx
j-1/2

x
j+1/2

x

Fig� ���� Path of integration in the x � t plane�

and use Green�s form ula to obtain

I

C

u dx � f 	 u � dt � �



��

Evaluate this integral directly

Z

x

j �� � �

x

j �� � �

u 	 t

n

� x � dx �

Z

t

n ��

t

n

f 	 u 	 t� x

j ��� � �� dt �

Z

x

j �� � �

x

j �� � �

u 	 t

n �� � x � dx �

Z

t

n ��

t

n

f 	 u 	 t� x

j � �� � �� dt � �

Letting u

n

j

denote the cell average� the ab ov e in tegral b ecomes

u

n ��
j

� u

n

j

�
�

 x

Z

t

n ��

t

n

	 f 	 u 	 t� x

j ��� � �� � f 	 u 	 t� x

j � �� � ��� dt�

Note that no approximation has yet b een made� Assume that the cell averages u

n

j

are

known� and that L 	 t

n

� x � is the function obtained by piecewise p olynomial reconstruc�

tion from the cell averages� As numerical approximation to the PDE w e tak e

u

n ��
j

� u

n

j

�
 t

 x

	 h

n

j ��� � � h

n

j � �� � �

Here� h

n

j ��� � approximates

�

 t

Z

t

n ��

t

n

f 	 v 	 t� x

j ��� � �� dt

with v 	 t� x � the solution to the PDE for t � t

n

using L 	 t

n

� x � as initial data� For �rst

order accuracy we can approximate

Z

t

n ��

t

n

f 	 v 	 t� x

j ��� � �� dt �  tf 	 v 	 t

n

� x

j ��� � �� �  th 	 u

n

j �� � u

n

j

�

The reconstructed function has break p oin ts at x

j ��� � � and therefore f 	 v 	 t

n

� x

j ��� � �� is

not uniquely de�ned� We use the semi discrete �ux h

j ��� � to b e the �ux at 	 t

n

� x

j ��� � ��

This leads to the usual forward Euler metho d� which is only �rst order accurate in time�

For higher order accuracy the �ux at other p oin ts ma y b e needed e�g�� second order

accuracy can b e obtained from the approximation

Z

t

n ��

t

n

f 	 v 	 t� x

j ��� � �� dt �
 t




	 f 	 v 	 t

n

� x

j ��� � �� � f 	 v 	 t

n �� � x

j ��� � ��� �

 t




	 h 	 u

nR

j ��� � � u

nL

j ��� � � � f 	 v 	 t

n �� � x

j ��� � ���

where the value v 	 t

n �� � x

j ��� � � is found by tracing the characteristic through the p oint

	 t

n �� � x

j ��� � � backw ard to t � t

n

� where the reconstructed function is known� and

h 	 u

nR

j ��� � � u

nL

j ��� � � is the semi discrete �ux function evaluated at the known time t

n

�

There is an abundance of metho ds based on this idea� Another example is when

one half step using the �rst order scheme is taken to obtain a value at 	 t

n ��� � � x

j ��� � �



��

and then the approximation

Z

t n��

t n

f 	 v 	 t� x

j �� � �

�� dt �  tf 	 v 	 t

n �� � �

� x

j �� � �

��

is used to get a second order accurate scheme�

Exercises

�� The second order cell based RD ENO scheme has second order accuracy everywhere

and is consequently not TVD� Write this scheme on slop e limiter form 	 as on p���

�� and thus derive the ENO limiter function

B 	

�

u

j

� 

�

u

j

� � minmod 	

�

u

j

�

�




m 	

�



�

u

j ��

� 

�



�

u

j

� �



�

u

j

�

�




m 	

�



�

u

j

� 

�



�

u

j � �

��

with

m 	 x� y � �

�

x if j x j � j y j

y if j y j � j x j


� Show that the metho d� using the numerical �ux

h

j �� � �

�

�

f 	 u

j

� if j f 	 u

j

� j � j f 	 u

j ��

� j

f 	 u

j ��

� if j f 	 u

j ��

� j � j f 	 u

j

� j

is not a TVD metho d�

�� Derive the limiter function � 	 r � corresp onding to the slop e limiter in example ����

m 	 x� y � �

�

x if j x j � j y j

y if j y j � j x j

and show that it can �t inside the TVD domain given in �g� ���� chapter ��



��

�� Systems of conservation la ws

��� Linear systems

When we apply the metho ds for scalar problems to systems of hyp erb olic partial di�er�

ential equations� one of the most imp ortant facts is that the metho ds have to b e applied

to the characteristic variables� W e here giv e an example of a linear system to illustrate

this�

Example ���� Consider the system�
u

v

�
t

�

�
� �

� �

��
u

v

�
x

	

�
�

�

�

� � ��

The PDE can b e decoupled into two indep endent scalar problems by a diagonalizing

transformation� It is easy to verify that the eigenvectors and eigenvalues of the matrix�
� �

� �

�

are

�

�

	 � r

�

	

�
�

�

�
�

�

	 � � r

�

	

�
�

� �

�
W e in tro duce the diagonalizing matrix

R 	

�
� �

� � �

�

and multiply 
���� by R

� �

� The result is

w

t

� w

x

	 �

z

t

� z

x

	 �


� � �

where the transformed variables are de�ned as �
w

z

�
	 R

� �

�
u

v

�
	

�



�
u � v

u � v

�

� � ��

Next� we consider this PDE on �� � x � � � t � �� and give the initial data

w 
� � x � 	

n
� x � �

� x � �

z 
� � x � 	

n
� � x � �

� x � �

which� by 
����� corresp onds to

u 
� � x � 	 � v 
� � x � 	

n
 x � �

� x � �

The solution for t � � is

w 
 t� x � 	

n
� x � t � �

� x � t � �

z 
 t� x � 	

n
� � x � t � �

� x � t � �



��

as easily found from the diagonal form 
���� In the variables 
 u v � this corresp onds to

u 
 t� x � 	

�

� x � � t

� � t � x � t

� x � t

v 
 t� x � 	

�

 x � � t

� � t � x � t

� x � t

�

The solution is depicted in Figures ��� and �� b elow�

x

x

0

0

v

u

x

x

w

z

0

0

Fig� ���a� Original variables� Fig� ���b� Characteristic variables�

Initial data�

x

x

0

0

v

u

x

x

w

z

0

0

Fig� ��a� Original variables� Fig� ��b� Characteristic variables�

Solution at time � ��

The p oint with this example is that the variable u is zero at t 	 �� but immediately

develops a square pulse at t � �� Th us there is no TVD prop erty in the variable u � and



��

therefore it is not reasonable to use a TVD scheme componentwise in 
u v �� A TVD
method has to be applied in the characteristic variables 
w z ��

In general we consider linear systems

u

t

� A u

x

	 �

where A is a diagonalizable matrix� Then we can perform the transformation

R

� �

u

t

� R

� �

ARR

� �

u

x

	 �

where R is the matrix of eigenvectors of A � Introducing the characteristic variable

v 	 R

� �

u �

we obtain the decoupled system
v

t

��v

x

	 � 
�� ��

where � is the diagonal matrix consisting of the eigenvalues of A � We thus have a set of
m independent scalar equations� 
v

k

�
t

� �

k


v

k

�
x

	 � which have solutions v

k �


x � �

k

t �
for given initial data v

k �


x ��
We use the decoupling of the linear system to solve the problem

u

t

� A u

x

	 �

u 
x� �� 	

�

u

L

if x � �
u

R

if x � �

where u

L

and u

R

are two constant states� A hyperbolic partial di�erential equation
with the initial data consisting of two constant states is called a Riemann problem �
According to the discussion above� the solution can be written

u 
x� t � 	
m

X

k ��

v

k �


x � �

k

t �r

k

�

where now all the functions v

k �


x � are step functions with a jump at x 	 �� r

k

are the
eigenvectors of A i�e�� the columns of R � We assume that the eigenvalues are enumerated
in increasing order �

�

� �

�

� � � � � �

m

� Let us denote

v

k �


x � 	
n

v

k L

x � �
v

k R

x � �
�

The solution is thus piecewise constant� with changes when x � �

k

t changes sign for
some k � From this observation the solution formula

u 
x� t � 	

q

X

k ��

v

k R

r

k

�

m

X

k � q ��

v

k L

r

k

	 u

L

�

q

X

k ��


v

k R

� v

k L

�r

k

�

q

� x�t � �

q ��

follows easily� The solution is thus constant on wedges in the x � t plane� as seen in
Fig� ����



��

2u

R

3

1

uL

u

t

u

u

x

Fig� ���� Solution of the linear Riemann problem in the x � t plane� m 	 ��

As seen ab ove� the states inside the wedges are given by

u q 	 u L �

q
X

k ��


 vkR � vkL � r k

with u L 	 u

�

� u R 	 u m �

��� Non linear systems

If the co e�cient matrix is diagonalizable� a linear system can b e decoupled in to a n um b er

of indep endent scalar problems� This is however not true for a non linear system� the

diagonalizing transformation R is now a function of u 
 x� t� and w e can not use a relation

lik e 
 Rv � t 	 Rv t whic h w as essential in deriving 
����� The non linear system is more

complicated than a collection of scalar non linear problems�

We consider the equation

u t � f 
 u � x 	 �

where the solution vector is u 	 
 u
�


 x� t� � � � � � um 
 x� t��

T
� The Jacobian matrix of the

�ux function is denoted A
 u � 	 � f �� u � The eigenvalues of A
 u �� �i 
 u � are assumed to

b e real� distinct� and ordered in increasing order

�
�


 u � � �
�


 u � � � � � �m 
 u �

The corresp onding eigenvectors are denoted r

�


 u � � � � � � r m 
 u ��

We generalize the convexity condition f ��


 u� �	 � to systems as follows�

De�nition ���� The k th �eld is genuinely non linear if r

T
k r u�k 
 u � �	 � for all u �

If a scalar problem is linear then f ��


 u� 	 �� This condition is generalized to

De�nition ���� The k th �eld is linearly degenerate if r

T
k r u�k 
 u � 	 � for all u �

Here r u is the gradient op erator with resp ect to u �

r ua 	 


�a

�u
�

� � � � �
�a

�um
� �

It is not hard to verify that de�nition ��� and �� degenerates to the convexity and the

linearity conditions resp ectively in the scalar case m 	 ��



��

We will here discuss three types of solutions�
�� Shocks�
� Rarefaction waves�
�� Contact discontinuities�

In section ��� we will show how these three types of solutions can be pieced together
to form a solution of the Riemann problem for the non linear system� For the scalar
equation we have seen a shock solution in example ��� and an expansion wave solution
in u

�

in example ����
We �rst describe shock solutions� These satisfy the Rankine�Hugoniot condition�

s 
u

L

� u

R

� 	 f 
u

L

� � f 
u

R

� 
�� ��

which is derived in the same way as for the scalar problem� We also require an entropy
condition� Since we are dealing with the generalization of the convex conservation law�
we will look for an entropy condition which generalizes the condition 
���� i�e�� the
characteristics should point into the shock�

De�nition ���� Let k b e a genuinely non linear �eld� A k �sho ck is a discontinuity

satisfying ����� and for which it holds

�

k


u

L

� � s � �

k


u

R

�

�

k ��


u

L

� � s � �

k ��


u

R

�

The meaning of this de�nition is �rst that the shock is in the k th characteristic
variable� and second that the number of undetermined quantities at the shock 
i�e��
the number of characteristics pointing out from the shock� is equal to the number of
equations given by 
����� If we consider the shock as a boundary we see that de�nition
��� means that the characteristics �� � � � � k � � are in�ow quantities into the region on
the left of the shock� The characteristics k � �� � � � � m are in�ow quantities into the
region on the right of the shock� Thus there are m � � in�ow variables which we must
specify� Eliminating s from 
���� gives m � � equations� thus the number of equations
and unknown are equal�

Assume that u

L

is given� we investigate which states u

R

can be connected to u

L

through a shock wave� 
���� is a system of m equations for the m �� unknowns� u

R

� s �
We expect to �nd a one parameter family of solutions u

R

� Furthermore� it is natural to
have one such family of solutions for each eigenvalue� corresponding in the linear case
to placing the discontinuity in any of the m characteristic variables v

i

� i 	 �� � � � � m �
These intuitive ideas are stated in the following theorem� The proof is not given here�
See e�g�� ���� for a proof�

Theorem ���� Assume that the k th �eld is genuinely non linear� The set of states u

R

near u

L

which can b e connected to u

L

through a k �sho ck form a smo oth one parameter

family u

R

	 u 
p �� � p

�

� p � �� u

R


�� 	 u

L

� The sho c k sp eed� s is also a smo oth

function of p �

Formally we could use 
���� to obtain a shock solution for p � � as well� but it turns
out that the entropy condition is not satis�ed for p positive� The situation is similar
to the scalar equation� where the entropy condition imposes the restriction that shocks
only can jump downwards 
 see examples ��� and ��� ��



��

We next investigate the rarefaction wave solutions� A rarefaction wav e cen tered at

x	� is a solution which only dep ends on x�t i�e�� u 
 x� t � 	 b 
 x�t �� Inserting this ansatz

into the equation gives

�

x

t

�

b

�

�

�

t

A 
 b � b

�

	 �

We denote � 	 x�t and b

�

	 d b �d� and w e th us have


 A 
 b � � � � b

�

	 � �

The solution is given in terms of eigenvalues and eigenvectors

� 	 � 
 b 
 � � � b

�

	 c r 
 b �

c is a constant� Here it is p ossible to use genuine non linearit y to show that c 	 �� F or

a given state u L � w e th us can solve the ordinary di�erential equation

b

�


 � � 	 r 
 b 
 � �� �

�

� � � �

�

� p

�

�

	 � 
 b 
 �

�

��


� � ��

to some �nal p oint �

�

� p � where p is a su�ciently small parameter value� The state

u R 	 b 
 �

�

� p � is in this w ay connected to the state u L 	 b 
 �

�

� through a k �rarefation

wave� From the ab ove computations we obtain the following theorem�

Theorem ���� Assume that the k th �eld is genuinely non linear� The set of states u R

near u L which can b e connected to u L through a k �rarefaction wave form a smo oth one

parameter family u R 	 u 
 p � � � � p � p

�

� u R 
�� 	 u L �

Fig� ���a shows an example of the k �c haracteristics for a rarefaction wave and

Fig� ���b shows one example of a comp onent of the solution u 
 x�t � at a �xed time�

x

t

x

u1

Fig� ���a� Characteristics in one �eld� Fig� ���b� Solution at a time t � ��

We summarize the sho ck and rarefaction cases ab ove as follo ws�



�

Theorem ���� Assume that the k th �eld is genuinely non linear� Giv en the state

u

L

� there is a one parameter family of states u

R

	 u 
p�� � p
�

� p � p
�

whic h can b e

connected to u

L

through a k �sho c k � p � �� or a k �rarefaction wav e � p � ��� u 
p� is

twice con tin uously di�erentiable�

The di�erentiability is proved by expanding the function u 
p� around p 	 �� and
can be found in e�g�� ����� For the example m 	 � the situation is displayed in Fig� ����
The curves show where it is possible to place u

R

in order to connect it to the given
state u

L

through a shock or a rarefaction wave�

2-R

2-S
uL

u2

u1

1-R

1-S

Fig� ���� Phase plane� �S 	 �shock� ��R 	 ��rarefaction�

Next we de�ne the Riemann invariants� They are quantities which are constant on
rarefaction waves� and can be

De�nition ��	� A k �Riemann invariant is a smo oth scalar function w
u
�

� � � � � u
m

��

such that

r

T

k

r

u

w 	 �

i�e�� the gradient of w is perpendicular to the kth eigenvector of A�

Theorem ��
� There exist m � � k �Riemann invariants with linearly indep endent gra�

dients�

Pro of� The vector �eld

r

T

k

r

u

	
m

X

i ��

r
i


u �
�

�u
i

can by a coordinate transformation v 	 u 
v � be written

�

�v
�

and we choose
w

�


v � 	 v
�

w
�


v � 	 v
�

� � � w
m � �


v � 	 v
m

�



��

The functions w

i

� i 	 � � � � � � m � � will then satisfy

� w

i

� v

�

	 �

and have linearly indep endent gradien ts� T ransforming back yields functions w

i


 u �

with the desired prop erties�

Riemann invariants are used for computing the states across a rarefaction wav e�

The useful prop ert y is giv en in the following theorem�

Theorem ���� The k �Riemann invariants are constant on a k �rarefaction wave�

Pro of� W e ha v e seen ab o v e that on a k �rarefaction wave� the solution is a function

of � 	 x�t and satis�es

u

�


 � � 	 r

k


 u 
 � ��

Let w b e a k �Riemann invariant� We obtain

dw

d�

	

X
i

du

i

d�

� w

� u

i

	 u

�


 � �

T

r

u

w 	 r

k


 u �

T

r

u

w 	 �

by the de�nition of Riemann invariant� Thus dw �d� 	 � and w is constan t on the

k �rarefaction wave�

Theorem ��� gives the following equations for two states connected b y a k �rarefaction

wave

w

i


 u

L

� 	 w

i


 u

R

� i 	 � � � � � � m � � 
� � ��

where w

i

are the k �Riemann invarian ts� F or a rarefaction wave� these relations can b e

used similarly as 
���� is used for a sho ck e�g� to determine the state u

R

from a giv en

u

L

�

Let us �nally investigate the linearly degenerate �elds� Assume that the k th �eld

is linearly degenerate� and de�ne the curve u 
 p � through

d u 
 p �

dp

	 r

k


 u 
 p �� 
� � ��

The k th eigenvalue is constant on this curve� since the linear degeneracy gives

d�

k


 u �

dp

	

d u

dp

r

u

�

k

	 r

k


 u �

T

r

u

�

k

	 � �

Theorem ����� Assume that the k th �eld is linearly degenerate� The states on the
curve ����� can all be connected to u

L

through a discontinuity moving with speed
s 	 �

k


 u

L

� 	 �

k


 u 
 p �� �

Pro of� De�ne the function

G 
 u 
 p �� 	 f 
 u 
 p �� � s u 
 p �
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which app ears in the Rankine�Hugoniot condition� Di�erentiate this function with

resp ect to p to obtain

d G

dp

	 
 A 
 u 
 p �� � s �

d u

dp

which is zero due to 
����� and the de�nition of s � Th us

f 
 u 
 p �� � s u 
 p � 	 const� 	 f 
 u

L

� � s u

L

and the Rankine�Hugoniot condition is satis�ed�

These discontinuities are called contact discontinuities� The k th characteristics are

parallel to the discontinuity � This w av e ha v e man y similarities with the solution of a

linear problem� u

t

� au

x

	 � with a single discontinuity as initial data� The discontinuity

is propagating along the characteristics with the wav e sp eed a � There is no entropy

condition for a linearly degenerate �eld� as in the linear equation the solution in the

weak sense is unique�

For systems which do not consist of linearly degenerate and genuinely nonlinear

�elds� the entropy condition in de�nition ��� has to b e replaced with something more

general� The situation is similar to the scalar equation when the entropy condition 
����

is not enough for non�convex conservation laws� We can de�ne the more general entropy

condition for systems in the same way as for the scalar equation i�e�� in terms of a class

of entropy functions E 
 u �� which satisfy an inequality

E 
 u �

t

� F 
 u �

x

� �

with r

u

F

T

	 r

u

E

T

A 
 u ��

The formulas are is similar to the formulas for the scalar case�

We will apply the numerical metho ds to the equations of gas dynamics� which

consist of genuinely non linear and linearly degenerate �elds� Thus de�nition ��� will

b e su�cient� and we do not here develop more general entropy conditions�
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���� The Riemann problem for non linear hyperbolic systems

We here solve the Riemann problem

u
t

� f 
 u�

x

	 �

u
 x� �� 	

�

u
L

if x � �

u
R

if x � �

where u
L

and u
R

are two constant states� The solution of this problem will sometimes

b e used in numerical metho ds where w e solv e a Riemann problem lo cally b etween the

grid p oints�

We assume that all characteristic �elds are genuinely non linear� and that u
L

and

u
R

are su�ciently close� such that we can apply the parametrization in theorem ����

The solution is similar to the solution for the linear equation� in the sense that it consists

of m � � constant states separated by sho cks or rarefaction waves�

To construct the solution� we connect u
L

to a new state u
�

by a ��wav e 
sho ck or

rarefaction�� We write this as

u
�

	 u
 p

�

� u
L

� �

Next the state u
�

is connected to the a state u
�

by a �wav e�

u
�

	 u
 p

�

� u
�

� 	 u
 p

�

� p

�

� u
L

�

We con tin ue this to the m th state� given as a function of m parameters and the left

state�

u
m

	 u
 p

�

� p

�

� � � � � p

m

� u
L

�

By requiring

u
R

	 u
m

we obtain the system of m algebraic equations

u
R

	 u
 p

�

� p

�

� � � � � p

m

� u
L

� 
� � ��

for the m unknown p

�

� � � � � p

m

� If u
L

and u
R

are close enough� it follows from the

inverse mapping theorem that we can always solve 
����� To see this it is necessary to

check that the Jacobian of the mapping

f 
 p

�

� p

�

� � � � � p

m

� 	 � u
R

� u
 p

�

� p

�

� � � � � p

m

� u
L

�

is non�singular at 
� � � � � � ��� From the rarefaction wave solutions 
����� we see that

u
 p � 	 u
L

� p r
k

� O 
 p

�

�

whic h b y the smo othness at p 	 � 
 theorem ��� � must hold for p b oth p ositive and

negative� For the Riemann problem w e th us obtain

u
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	 u
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r
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whic h sho ws that the Jacobian of the mapping at 
� � � � � � �� is R� the matrix of eigen�

vectors� This matrix is non singular by the hyp erb olicity � Th us the inverse mapping

theorem applies and w e ha ve a solution of the typ e shown in Fig� ����

uL

u1

t

u2

uR

1-shock 3-shock

2-rarefaction

x

Fig� ���� Example wave structure in the solution of the Riemann problem�

In Fig� ���a we give an example of a solution for m 	  in the phase plane� Fig� ���b

indicates the wave structure in the x � t plane� and Fig� ���c shows the corresp onding

solution in variable u
�


 x� t� as function of x for a given time�

uL

2-s
1-r

1-s
2-r

uM
uR

1-s

2-r 2-s
1-r

u1

u2

u

x

t

uL

1-shock

M

uR

2-rarefaction

Fig� ���a� Example of a phase plane plot� Fig� ���b� Corresp onding wave structure�

x

u

u

uL

M

uR

Fig� ���c� Solution at a time t � � for the waves in Fig� ���b�
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���� Existence of solution

W e sa w in section ��� that there exist a solution to the Riemann problem if the states

u

L

and u

R

are su�ciently close� The only known result on existence for the problem

u

t

� f 
 u �

x

	 �

u 
� � x � 	 u � 
 x �

has b een proved under a similar assumption� namely that the initial data have su��

ciently small variation�

Theorem ����� Assume a non linear hyp erb olic system is given� with all the �elds

genuinely non linear� There are constants � � K suc h that if the variation of the initial

data is su	ciently small in the sense that

jj u � � c jj

�

� T V 
 v � � � �

for some constant state c � then a weak solution u 
 x� t � exist� and is suc h that

T V 
 u 
 t� � �� � K T V 
 u � �

It is not known whether this solution is unique or satis�es the entropy condition�

The theorem is proved b y sho wing convergence of the random choice di�erence metho d�

The metho d is interesting b ecause of the convergence prop erties� but is in practical

cases outp erformed by most other metho ds� Therefore� we describ e the metho d here

and not in the chapter on di�erence metho ds for systems�

The metho d is de�ned on a staggered grid� the approximation is u

�
�j

at t � and u

�
�j � �

at t � e�t�c�� see Fig� ����

xj+1xjxj-1

t

tn+1

tn

Fig� ���� Staggered grid�

Given a solution � � � � u

n

j � � � u

n

j

� u

n

j �� � � � � � the random choice metho d consists of the

following steps to determine the solution at u

n ��

j ��

�� Solve the Riemann problem at x

j �� with u

n

j

as left state and u

n

j �� as righ t state�

� Let the new time level t

n �� b e such that no waves from 
 t

n

� x

j �� � is outside the

interval � x

j

� x

j �� � at t

n �� � This corresp onds to a CFL condition�



��

�� Choose a point 
t

n ��

� x 
	 �� 	 
t

n ��

� x

j

� 	 
x

j ��

� x

j

�� where 	 is a random number
in ��� ��� The same random number is used for all cells�

�� De�ne the new value� u

n ��

j ��

� as the value of the solution of the Riemann problem
at this random point�

The same procedure is then repeated to get u

n ��

j

from u

n ��

j � �

� u

n ��

j ��

etc�
In Fig� ���� we give a picture of the local Riemann problems in the x � t plane as

obtained by this algorithm�

xj+1xjxj-1

t

tn

tn+1

Fig� ���� Riemann problems are solved locally at cell interfaces�

The main advantage of the random choice method is that all grid values are obtained
as solutions of local Riemann problems� Thus no new intermediate values are introduced
in shocks� which in some applications can be of value� Because of the local Riemann
problems� control of the variation can be achieved by using estimates for the solutions of
the Riemann problem� We do not give the proof of theorem ���� here� It is technically
complicated� but does not rely on any advanced mathematical concepts�
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�� Numerical metho ds for systems of conservation laws

���� Simple waves in gas dynamics

We will consider the generalization of the �rst order schemes in chapter � to systems of
equations� For the special case of the gas dynamics equations

�

�

�

m

e

�

A

t

�

�

�

m

�u

� � p

�e � p �u

�

A

x

�

�

�

	
	
	

�

A �
� ��

speci�c formulas will be given� In �
��� m � �u is the momentum� � the density� u

the velocity� p the pressure and e the total energy of an inviscid uid� An additional
relation to link p to the other variables �� m� e is obtained by assuming the perfect gas
law

p � �� � ���e �

�

�
�u

� ��

where � is a constant speci�c for the uid in question� For air one usually takes � � �� ��
Since there is not su�cient theory available to derive a systematic treatment� the

ideas for systems are based on the TVD ideas for scalar equations� The methods for
systems are derived in a heuristic way� Thus this chapter can only describe �how to�
derive methods for system and not �if� or �why� the methods will give correct answers�

We will give �rst order accurate methods� Similar to the scalar case second order
methods can be derived from the �rst order ones by piecewise linear interpolation�

In the random choice method and the Godunov method� we have to solve a Riemann
problem exactly� In section 
�� we show how to do this for �
��� through an iterative
procedure� We begin by giving some formulas for simple wave solutions of �
��� i�e��
shocks� rarefaction waves� and contact discontinuities� We noted in chapter � that the
eigenvalues and eigenvectors are important for the wave structure� Thus we begin by
�nding these quantites for �
����

Theorem ���� For the gas dynamics equations ������ where

p � �� � ���e �

�

�
�u

� ��

the eigenvalues and eigenvectors of the Jacobian � f �� u are
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� u � c �
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� u �
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h � uc
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u
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�
u � c

h � uc

�

A

where the sound of sp eed� c � and the enthalpy h are de�ned by

c �

r

� p

�

h �
e � p

�

Pro of� Straightforward calculations� not given here�
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The formulas for the eigenvectors and eigenvalues enables us to verify that
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r �
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For example
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Thus the � and � �elds are genuinely non linear and can cause a sho c k w av e or a

rarefaction wave to app ear in the solution� The � �eld is linearly degenerate and can

only give rise to contact discon tin uities�

The jump condition is

s � � � � � m �

s � m � � � �u

�

� p �

s � e � � � u � e � p ��

�
 � ��

where we use the notation � q � � q

R

� q

L

� The jump condition can b e rewritten in the

following form

� �v � � 	 �
 � � a �

� �v

�

� p � � 	 �
 � � b �

v

L

�

�

� � �

c

�

� v

�

� � 	 �
 � � c �

where w e ha ve de�ned v � u � s as the sp eed relativ e to the sho c k w ave� The derivation

of �
��� from �
��� is somewhat tedious and we omit it here� The form �
��� is easier to

use in proving some of the theorems b elow�

Finally to obtain conditions which connect states separated by a rarefaction wav e�

we need the Riemann invariants� From the de�nition of the Riemann invariant w

k

�

r

T

k

r w

k

� 	 �

we get by straightforward calculations the following results� For the ���eld

w

���

�

� u �

�
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c w

���

�

� p�

� �

� �
 � � a �

the ���eld

w

���

�

� u w

���

�

� p �
 � � b �

and �nally the ���eld

w

���

�

� u �

�

� � �

c w

���

�

� p�

� �

�
 � � c �

Thus there are two Riemann invariants for eac h c haracteristic �eld� As seen in the

previous chapter the Riemann invariants are constant on rarefaction waves� so that e�g��
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for two states u

L

� u

R

� separated by a � rarefaction

u

L

�

�
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c

L

� u

R

�

�
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c

R

p

L

�

� �

L

� p

R

�

� �

R

and similarly for the other �elds�

The conditions that connects two states are di�erent if the separating wav e is a

sho c k w ave or a rarefaction wave� It is therefore necessary to distinguish b etween these

two cases when solving the Riemann problem� One useful criterion is derived in the

following theorem�

Theorem ���� For ��waves

p

L

� p

R

for sho cks

p

L

� p

R

for rarefaction waves

for ��wav es

p

L

� p

R

for sho cks

p

L

� p

R

for rarefaction waves

and for the contact discontin uit y

p

L

� p

R

Pro of� The conditions for sho cks are derived from the jump condition �
��� and the

en tropy inequalities� We prove the theorem for the ��waves� First assume a ��sho ck�

The entropy condition according to de�nition ��� is
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� c
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� s � u
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R

from which

v

L

� c

L

� 	 � v

R

� c

R

follows� Note that v
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and v
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are p ositive� �
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and hence
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Use �
��c� again to obtain
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Since v
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R

are p ositiv e w e �nd that

v
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� v
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From �
��b� we obtain the pressure di�erence

p

L

� p

R
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R

v
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R
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L

v
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L

whic h b y �
��a� is
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The result p

L

� p

R

have b een obtained� Next consider a � rarefaction wave� W e ha ve

the inequality

u

L

� c

L

� u

R

� c

R

which states that the head of the wav e tra vels faster than its tail� see Fig� 
�� b elow�

The slop e of the �� characteristics is u

L

� c

L

to the left of the wave and u

R
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R

to

the righ t�

x

t

u  - cL

u  - cR R

L

Fig� 
��� ��rarefaction wave for �
����

From the � Riemann invariant �
��a� we obtain

p

R

�

� �

R

� p

L

�

� �

L

p

R

p

L

�

�

�

R

�

L

�

�

We use the de�nition c
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The second � Riemann invarian t giv es

u

L

� c

L

�

� � �

� � �

c

L

� u

L

�

�

� � �

c

L

� u

R

�

�

� � �

c

R

�

u

R

� c

R

�

� � �

� � �

c

R

� u

L

� c

L

�

� � �

� � �

c

R

and hence

c

L

� c

R



��

�
��� �nally gives the result

p

L

� p

R

The pro of for the � waves is similar and w e omit it� F or the contact discon tin uity� p

is a Riemann invariant and according to chapter �� do es not change across it�

���� The Riemann problem in gas dynamics

We are now ready to solve the Riemann problem in gas dynamics� Assume that the

initial data

u�	 � x � �

n

u
L

x � 	

u
R

x � 	

are given� W e w an t to solv e �
��� for these data forwards in time� The solution consists

of a ��wave a contact discon tin uity and a ��wave as seen in Fig� 
�� b elo w�

x

t

3-Wave1-Wave

p
L

c
p

p
R

Fig� 
��� General wave structure for �
����

The ��wave and the ��wave can b e either a sho ck or a rarefaction wave� The ��

wav e is alw ays a contact discontin uit y� The pressure do es not change across the contact

discontinuity� and therefore it should b e easier to �nd an equation for the single unknown

pressure than for a quantit y whic h c hanges across the contact and thus has two unknown

states� We b egin with �nding the intermediate pressure p

c

from an iterative pro cess�

The rest of the state variables can then b e found from direct formulas�

Theorem ���� De�ne
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are valid� The function 	 � x � is de�ned as
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if x � �
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Pro of� We prove the theorem for the left wave� the pro of for the righ t w av e is

similar and leads to the same conclusion� First assume that the left wav e is a sho c k�

The jump conditions �
�� a�b� gives
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since v � u � s this means that
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Solve �
��a� for �
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and insert into �
��b�c�� We obtain
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Next solve the �rst equation ab ove for v

c

and insert it into the second� After some

simplifying algebra the result is
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c

p

L

From theorem 
�� p

c

�p

L

� �� since the left wav e m ust b e a � wav e� After taking

the squarero ot the p ositive sign should b e chosen� since by �
�
� M

L

is p ositiv e � v

L

p ositive can b e seen from the pro of of theorem 
���� Thus w e ha v e pro ved that

M

L

�

p
�

L

p

L

	 � p

L

�p

c

� �

if p

L

�p

c

� ��

Next assume that the left wave is a rarefaction wave� Then the �rst Riemann

invariant for the � wav e giv es

u

L

�

�

� � �

c

L

� u

c

�

�

� � �

c

c

�
u

L

� u

c

c

L
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� � �

�

�

c

c

c

L

� ��
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� p
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� p

c

c

L

M
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c

c

c

L

� �� �
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The second Riemann invariant gives

p

L

�

� �

L

� p

c

�

� �

c

�
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By using the de�nition c

�

� � p�� to eliminate � � w e can rewrite this as

c

c

c

L

�

�

p

c

p

L

�

� ��

� �

Inserting into �
��� yields
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c

c

L

M
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p

c

p

L
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� �

� ��

Finally use c

�

� � p�� to eliminate c

L

from the left hand side� W e kno w from theorem


�� that p

c

�p

L

� �� and thus the obtained result

p
�

L

p

Lp
� M

L

� p

c

�p

L

� �� �

�

� � �

�

�

p

c

p

L

�

� ��

� �

� ��

is easily seen to b e equivalen t to

M

L

�

p
�

L

p

L

	 � p

c

�p

L

� �

The derivation of the expressions for M

R

is analogous and not given here�

The di�erent cases x � � and x � � corresp onds to rarefaction waves and sho c k w aves

resp ectively� as seen from theorem 
��� Note that the computation of

� � x

� � x

p

b ecomes numerically ill conditioned for x close to one� It is therefore go o d practice in

a computer program to replace this function by the p olynomial approximation

�

p

�

p � �

� p

�� � x �

if � � 
 � x � �� where 
 is a small numb er and dep ends on the machine precision used�

Eliminating u

c

from the de�nition of M

L

and M

R

giv es �nally the formula

p

c

� � u

L

� u

R

� p

R

�M

R

� p

L

�M

L

� � �� �M

R

� � �M

L

� �

The iterative metho d for �nding p

c

is de�ned as

p

�

c

� � u

L

� u

R

� p

R

�M

k

R

� p

L

�M

k

L

� � �� �M

k

R

� � �M

k

L

� �
 � � a �

p

k ��

c

� max� p

�

c

� 


�

� �
 � � b �

where 


�

is intro duced to prev en t negative pressure during the iteration� Theorem 
�� is

used to evaluate M

k

L

�

p
�

L

p

L

	 � p

k

c

�p

L

� and M

k

R

�

p
�

R

p

R

	 � p

k

c

�p

R

�� The initial guess�

p

�

c

� � p

R

� p

L

� � � has turned out to w ork w ell in computer programs� Con vergence

is usually fast� but for strong rarefactions degradation in convergence rate has b een

observed� If no convergence is achieved after a �xed numb er of iterations� we replace

�
��b� by

p

k ��

c

� � max� 


�

� p

�

c

� � �� � � � p

k

c



�


where � � �� �� If there is still convergence problems� we reduce � further�
After p

c

is found� we compute

u

c

� u

R

� �p

R

� p

c

��M

R

Theorem 
��� gives complete information about the wave con�guration� If p

c

�p

L

� � the
��wave is a rarefaction� otherwise a shock and if p

c

�p

R

� � the ��wave is a rarefaction�
otherwise a shock� The contact discontinuity lies between the � wave and the � wave�
and propagates with velocity u

c

�
For each point �x� t � in which we want to compute the solution� we make tests to

decide whether the point is
a� To the left of the �� wave�
b� Inside the ��wave if it is a rarefaction�
c� To the right of the � wave but to the left of the contact discontinuity�
d� To the right of the contact discontinuity but to the left of the ��wave�
e� Inside the ��wave� if it is a rarefaction�
f� To the right of the � wave�

The jump condition� or the invariance of the Riemann invariants over the rarefaction
waves� gives formulas for the intermediate quantities� Because we know the intermediate
pressure p

c

it turns out that there is no need to solve any equations� but all required
quantities are found from direct formulas� A fortran program which solves the Riemann
problem in gas dynamics is supplied in the appendix�

The formulas to determine u �x� t � will be di�erent in each of the di�erent cases� The
computer programwill thus contain a certain amount of formulas� but the execution time
will be reasonable� since only one branch of the alternatives is actually executed� On a
vector computer the situation becomes more troublesome� since there are di�culties in
making IF statements vectorize�

We have now constructed a solution of the Riemann problem� By further analysis
of the solution procedure it is possible to prove

Theorem ���� There is a unique solution of the Riemann problem for the gas dynamics

equations ����� if

u

R

� u

L

�

�

� � �
�c

L

� c

R

� �
� ��

When �
��� is not satis�ed� there will be a vacuum present in the solution and the
intermediate state will therefore not be well de�ned�



��

���� The Go dunov� Ro e� and Osher metho ds

In this section we give a description of three of the best shock capturing methods for
systems of conservation laws� First the Godunov scheme is described� since its main
feature is the solution of a Riemann problem� most of the description has already been
made in section 
��� This scheme is important since other methods are often thought
of as its simpli�cation� However� it is not necessary to make this interpretation�

Second we give the generalization of the upwind scheme to system� known as Roe�s
method� Finally the Engquist�Osher scheme for systems is described� it is usually called
Osher�s method�

������ Go dunov�s metho d� Godunov�s method has many features in common
with the random choice method� The following algorithm describes the method�
�� We start from given u

n

j

the numerical solution at time t

n

� The solution is de�ned
for all x by piecewise constant interpolation

u

n �x � � u

n

j

x

j � �� � � x � x

j ��� � �

�� We then solve the Riemann problems at all break points x

j ��� �� The next time
level t

n �� is made small enough such that no waves from two di�erent Riemann
problems interact� This gives a CFL condition �t� �x � const� Let

w ��x � x

j ��� ��� �t � t

n

�� u

j

� u

j ���

denote the solution of the Riemann problem at �x

j ��� � � t

n

��
�� The new solution is de�ned as the average over cell j of the solution of the Riemann

problems in � i�e��

u

n ��
j

�
�

�x

�

Z

x

j

x

j � � � �

w ��x � x

j � �� ��� �t

n �� � t

n

�� u

j � � � u

j

� dx

�

Z

x

j �� � �

x

j

w ��x � x

j ��� ��� �t

n �� � t

n

�� u

j

� u

j ��� dx �

We write this algorithm on conservative form�

u

n ��
j

� u

n

j

� � �� h

n

j � �� � �

by� taking a contour integral around one cell in the x � t plane� Since the solution in
t

n

� t � t

n �� satis�es the PDE exactly the integral is zero� and we get

Z

x

j �� � �

x

j � � � �

u �t

n

� x � dx �

Z

t

n ��

t

n

f �w �	� u

j �� � u

j

�� dt �

Z

x

j �� � �

x

j � � � �

u �t

n �� � x � dx �

Z

t

n ��

t

n

f �w �	� u

j

� u

j � ��� dt � 	

�
� �	�

Since we have de�ned u

n ��
j

as the cell average of the solution� and since the integrals
in time have time independent integrands� we can rewrite �
��	� as a di�erence approx�
imation on conservative form with

h

n

j ��� � � f �w �	� u

j �� � u

j

���
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Thus Go dunov�s metho d is implemented using the solution pro cedure in section 
��� to

solve one Riemann problem in each grid p oint� This solution is evaluated at x � 	� and

the ux function is evaluated with the solution as argument�

It has often b een argued that in Go dunov�s metho d a large amoun t of w ork is sp ent

to solve a Riemann problem exactly� The information thus computed is mostly wasted

since it is only used to form an average�

In this context the generalization of the upwind and the Engquist�Osher schemes

to systems� whic h w e no w pro ceed to describ e� can b e viewed as a Go duno v sc heme with

a simpli�ed solution of the Riemann problem� For each of the scalar metho ds there are

usually a numb er of di�erent generalizations to systems� some complicated and some

very simpli�ed�

������ Ro e�s metho d� W e no w describ e the upwind scheme� For a scalar conser�

vation law� this is the metho d with numerical ux

h

n

j ��� � �

�

�

� f

j �� � f

j

� � �

�

ja

j ��� �j� u

n

j �� � u

n

j

�

This scheme is generalized using the eigenvalues of a jacobian matrix as wav e sp eeds�

A matrix

A

j ��� � � A � u

j

� u

j �� �

with A � u � u � � A � u � � � f �� u is de�ned� and the scheme b ecomes

h

n

j ��� � �

�

�

� f

j �� � f

j

� � �

�

jA

j ��� �j� u

n

j �� � u

n

j

�

where the absolute value of the matrix is de�ned as

jA j � R

�

B

B

�

j� �j 	 � � � 	

	 j� �j � � � 	

	 � � �

�

�

�

	

	 � � � 	 j�

m

j

�

C

C

A

R

� �
�

Here �

j

are the eigenvalues and R is the matrix with the eigenvectors as columns� We

can see this as a lo cal diagonalization of the system� The matrix can b e chosen as

A

j ��� � � A �� u

j �� � u

j

� � ��� but the b est result seems to b e obtained by using a matrix

which satis�es the straightforward generalization of a division in the scalar case�

f � u

j �� � � f � u

j

� � A

j ��� � � u

j �� � u

j

� �

P� Ro e has showed how to construct such matrices� the upwind scheme is therefore

sometimes called Ro e�s metho d� The Ro e matrix for the gas dynamics equations is

found b y ev aluating the jacobian at a weighted average�

A

j ��� � � A � m � u

j �� � u

j

�� �
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where m � u� v � is the weighting pro cedure describ ed b elo w� The mean v alue density�

velo city and enthalpy is computed using the weights
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�

u
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�

from which the eigenvalues and eigenvectors of A

j �� � �

are found using theorem 
��� In

practice the term

j A j �

�

u

j

� R j � j R

� �

�

�

u

j

is ev aluated as

m

X
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j �

k

j �

k

r

k

where �

k

is solution of the linear system of equations
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�

u

j

�

For the Euler equations� �

k

can b e derived analytically with the following result
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It is assumed that the matrix R contains the eigenvectors of the jacobian A � u �� The

quantities without index thus b elong to the state in which the jacobian is evaluated�

������ Osher�s metho d� The Engquist�Osher scheme for systems is usually called

the Osher scheme� The numerical ux is

h

n

j �� � �

�

�

�

� f

j ��

� f

j

� �

�

�

Z

u

j ��

u

j

j A � u � j d u

The integral of the absolute value of the jacobian�

Z

u

j ��

u

j

j A � u � j d u �
 � ���

is not path indep endent� and thus w e ha ve to describ e an integration path in order to

de�ne the metho d� Osher chose a path which follo ws the eigen vectors� If u � s � � 	 � s � �
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is a parametrization of the integration path then the following formulas describ es the

curve�
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m

s

m � �
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The �rst step in the algorithm consists of determining the p oints u � s

k

�� The Riemann

invarian ts� w

k

are constan t on path k � b ecause

dw

k

� u �

ds

� r w

T

k

d u
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� r w
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k
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Thus w e ha ve m � � relations
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k
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� j �
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k ��

� � j � � � � � � � m � � �
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for each subpath s

k

� s � s

k ��

� The total numb er of equations is m � m � ��� The

unknowns are the intermediate states u

k

� k � � � � � � � m � �� Since each state is a vector

of m comp onents� the total numb er of unknowns are also m � m � ��� We b egin with

solving the non linear system of equations �
���� for the unkno wns u

k

� Second� we

evaluate the integral
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j
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where each subpath integral is evaluated using the form ula
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The subpath integral ov er � s

k � �

� s

k

� is further divided into pieces where �

k

has constant

sign� Without absolute value the integrals are easy to evaluate� As an example� assume

that �

k

is p ositiv e on � s

k � �

� s

�

� and negativ e on � s

�

� s

k

�� where s

�

� � s

k � �
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�� The subpath integral b ecomes
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In a computer program� the integral �
���� is determined by adding or subtracting a

numb er of terms f � u

c

�� where u

c

are p oints of changing subpath or p oints where �

k

changes sign on a subpath�

We next describ e how to implement this metho d for the Euler equations of gas

dynamics� In one space dimension m � � and w e ha ve the following path of integration
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for the integral �
����
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The following notation has b ecome standard
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We start by determining the intermediate states u

� � �

and u

� � �

� The Riemann invariants

�
��� leads to the following system of equations
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�

� � p�� it follo ws that

� �

c

� � �

c

� � �

This equation together with
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leads to the following formula for u
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Thus in a program� one �rst form � and then use �
���� to �nd u

� � �

� c

� � �

and c

� � �

are

then easily evaluated from �
����� Then the density is computed as
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We then have complete information ab out the states u

� � �

and u

� � �

� W e can pro ceed to

the evaluation of the numerical viscosit y in tegral�
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For the Euler equations of gas dynamics� b ecause of the genuine non linearity � the

eigenvalues u � c and u � c can c hange sign in at most one p oin t on their paths� The

eigenvalue u is a Riemann invariant and is constant on path ��

We start with the smallest eigenvalue �

�

� u � c for the �rst path� The sign of �

�

is either constan t or c hanges at the single sonic p oin t where

u

s �

� c

s �

� 	

Thus if � u

�

� c

�

�� u

� � �

� c
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� � 	 w e include the sonic p oint in the path and obtain for

the �rst third part of the integral
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s �

� � f � u

j

� � f � u

� � �

��

Here the sonic state u

s �

is found from the Riemann invariants and the sonic condition

u

�

�

�

� � �

c

�

� u

s �

�

�

� � �

c

s �

p

�

�

� �

�

� p

s �

�

� �

s �

u

s �

� c

s �

� 	

�

This system is easy to solve for the sonic state� If �

�

do es not change sign b etween the

	 and the ��� state then

Z

u

� � �

u

�

j A � u � j d u � sign � u

�

� c

�

�� f � u

� � �

� � f � u

j

��

For the second part� the eigenvalue �

�

� u is constant� and the integral b ecomes

Z

u

� � �

u

� � �

j A � u � j d u � sign � u

� � �

�� f � u

� � �

� � f � u

� � �

��

The third part of the integral is similar to the �rst part� if � u

� � �

� c

� � �

�� u

�

� c

�

� � 	

then the sonic p oint

u

s �

� c

s �

� 	



�	�

is included and the integral from ��� to � b ecomes

Z

u
�

u
� � �

j A � u � j d u � sign � u �� � � c �� � ��� f � u

s � � � f � u �� � � � f � u

j �� ��

The sonic state is found in the same way as the state s � on path �� If � � do es not

change sign we obtain

Z

u
�

u
� � �

j A � u � j d u � sign � u �� � � c �� � �� f � u

j �� � � f � u �� � ��

Summing the three integrals according to �
���� yields the �nal result for the integral

from u

j

to u

j �� � F rom this in tegral we obtain the numerical ux as

h

n

j ��� � �

�

�

� f

n

j �� � f

n

j

� �

�

�

Z

u
j ��

u
j

j A � u � j d u

Remark� Osher originally prop osed to order the integration path with the largest

eigenvalue �rst� In practice it has turned out that the metho d describ ed ab ove� with

the smallest eigenvalue �rst� works much b etter� The metho d starting with the small�

est eigenvalue is sometimes called the P�version of the scheme� while Osher�s original

ordering is called the O�version�



�	�

���� Flux vector splitting

We here give some metho ds which are somewhat simpler than the metho ds in the

previous section� They are all based on ux vector splitting� the idea of whic h w e can

b e understand from Engquist�Osher scheme for a scalar problem� The numerical ux

for the scalar E�O scheme can b e written

h

n

j ��� � �

�

�

� f

j �� � f

j

� �

�

�

Z

u

j ��

u

j

j f

�

� s � j ds � f

�
� u

j

� � f

�

� u

j �� �

with

f

�
� u � � f �	� �

�

�

Z

u

�

� f

�

� s � � j f

�

� s � j � ds f

�

� u � � f � u � � f

�
� u � �

Thus the ux function is split in two parts corresp onding to p ositive and negativ e w ave

sp eeds resp ectively�

f � u � � f

�
� u � � f

�

� u �

The approximation of the ux derivative b ecomes

D

�

h

n

j ��� � � D � f

�

� u

j

� � D

�

f

�
� u

j

�

such that the derivative is approximated in a stable� upwind way � The Osher sc heme

for systems can similarly b e written as a splitting of the ux function into one part

corresp onding to p ositiv e w ave sp eeds and one part corresp onding to negativ e w ave

sp eeds�

In this section we use the ux splitting technique to obtain other� simpler metho ds

than the Osher scheme� The metho ds are all based on the idea that we split the ux

vector

f � u � � f

�
� u � � f

�

� u �

where we try to achieve that the matrices

A

�
� � f

�
�� u

A

�

� � f

�

�� u

are such that A

�
has p ositive eigenvalues and A

�

has negative eigenvalues� The n u�

merical ux

h

j ��� � � f

�
� u

j

� � f

�

� u

j �� �

then de�nes a metho d of upwind t yp e�

������ Steger	Warming splitting� For the �rst metho d given here� we need an

additional prop erty of the problem to b e approximated� It is not hard to prove that for

the Euler equations

f � u � � A � u � u �
 � �
�

where A is the Jacobian matrix � f �� u �show the homogeniety f � � u � � � f � u � then

di�erentiate with resp ect to � �� If �
��
� holds we de�ne a ux splitting as

f � u � � A

�
u � A

�

u



�	�

where

A

�

� R

�

B

B

�

�

�

�

	 � � � 	

	 �

�

�

� � � 	

	 � � �

�

�

�

	

	 � � � 	 �

�

m

�

C

C

A

R

� �

�

and similarly for A

�

� As usual � i are the eigenvalues and R the matrix of eigenvectors

of the Jacobian matrix A � F or a scalar we de�ne �

�

� max�	 � � � and �

�

� min �	 � � ��

The ux splitting ab ove is named after Steger and Warming�

������ van Leer splitting� Another example� which do es not require the prop erty

�
��
�� is the so called van Leer ux vector splitting� The metho d is� however� closely

linked to the structure of the Euler equations� In the van Leer splitting� we use the

�signed� Mac h n um b er

M �

u

c

to determine the numb er of p ositive and negative eigenvalues� If M � � then the ow

is sup ersonic� and all eigenvalues are p ositive� We then de�ne

f

�

� f f

�

� 
 �

Similarly we de�ne

f

�

� 
 f

�

� f �

in the case M � � ��

If j M j � � then there are b oth p ositive and negative eigenvalues� We de�ne a

splitting using the iden tit y

M � �� M � ��

�

� � M � ��

�

� � � �

The �rst comp onent of the ux vector is

f

�

� �u � �cM � �c �� M � ��

�

� � M � ��

�

� � �

and the de�nition

f

�

�

� �c � M � ��

�

� � f

�

�

� � �c � M � ��

�

� �

gives the prop erty f

�

�

� f

�

for M � �� f

�

�

� f

�

for M � � ��

The other comp onents are treated similarly� the algebra b ecomes more complicated

and we do not give the derivation here� The result is the following formulas

f

�

�

� � u � c �

�

� c

�

�

�

�� c � � � � �� u � ��

�� c � � � � �� u �

�

� ��� �

�

� ���

�

A

f

�

�

� � u � c �

�

� c

�

�

� �

�� c � � � � �� u � ��

� �� c � � � � �� u �

�

� ��� �

�

� ���

�

A

�



�	


It is an easy exercise to verify that f � f �

� f �

� The common factors of ux vectors

can b e written

� � u � c �

�

� c

�

�c

�

� M � ��

�

� � u � c �

�

� c

�

�c

�

� M � ��

�

so that w e ha ve the desired prop erty f �

� 
 when M � � � and f �

� 
 when M � ��

The van Leer ux splitting is less exp ensive than the Osher scheme� but gives sligh tly

worse accuracy� esp ecially for resolution of contact discontinuities�

������ Pressure splitting� We next describ e the metho d of pressure splitting� It

is based on the observation that

f � u� �

�

�

�u

�u

�

� p

u � p � e �

�

A

� u

�

�

�

�u

� e � p �

�

A

�

�

�

	

p

	

�

A

� u fc � fp

It turns out that the eigenvalues of the �rst term� u fc are u� u� and � u � The eigenv alues

of the second term are 	 � 	 and � � � � �� u � Th us it is natural to try a splitting according

to the sign of u �

f �

� u

� fc �

� � sign� u �

�

fp

f �

� u

� fc �

� � sign� u �

�

fp

�

However� when the discontinuity in the switch �� � sign� u �� � � is di�erenced the metho d

b ecomes unstable� It is imp ortant that the switc h of sign is con tinuous� as in the �rst

term where u

�

and u

�

are con tin uous at u � 	� T o o vercome this di�culty � w e replace

the sign function by a smo other version� In many applications the function

g � M � �

�

M �� � M

�

� � � j M j � �

sign� M � j M j � �

is used instead of the sign function� The signed Mac h n um b er M � u�c has of course

the same sign as u � The total pressure splitting metho d then b ecomes

f �

� u

� fc �

� � g � M �

�

fp

f �

� u

� fc �

� � g � M �

�

fp

�

Usually it is necessary to add an entropy �x i�e�� increase the amount of arti�cial dis�

sipation� for the u fc terms when u is near zero� in the same way as this is done for

the upwind metho d when the wave sp eed changes sign� The advantage of the pressure

splitting metho d is that it requires a relatively few numb er of arithmetic op erations�

������ Lax	Friedrichs splitting� Finally w e sho w ho w the Lax�Friedric h sc heme

can b e viewed as a ux splitting metho d� The numerical ux for a system is

hj �� ��

�

�

�

� fj ��

� fj � �

�

� �

� uj ��

� uj �
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whic h w e split in two parts by de�ning

f

�

� u � �

�

�

� f � u � �

�

�

u �

f

�

� u � �

�

�

� f � u � �

�

�

u �

where now � � � t� � x �

Since the CFL condition max j a

k

j � � � is used� with a

k

eigenvalues to the jacobian

matrix� we see that the matrices

� f

�

� u

� f

�

� u

have p ositive and negative eigenvalues resp ectiv ely � Th us the de�nition is reasonable�

We can generalize this and de�ne

f

�

� u � �

�

�

� f � u � � k u �

f

�

� u � �

�

�

� f � u � � k u �

with k � 	� If k � max j a

k

j

j � the largest eigenvalue of the jacobian matrix at u

j

� the

scheme is called Rusanov�s metho d�

All the metho ds describ ed in this section are inferior in sho ck resolution to the

metho ds in the previous section� �Go dunov� Ro e and Osher�� For example some of

the metho ds in this section do es not p ermit a steady sho ck solution spread ov er a �xed

numb er of grid p oints� instead all steady sho cks will b e smeared out over a large num b er

of grid p oints� The b etter schemes do es admit such steady sho ck pro�les� The schemes

in this section are how ev er somewhat simpler to implement and uses fewer arithmetic

op erations�



�	�

���� Interpretation as approximate Riemann solv er

The schemes describ ed in this chapter can b e viewed as approximations to the Go dunov

scheme� We can construct metho ds in the same wa y as w e de�ned the Go duno v sc heme

in section 
��� but with w � x�t �� the solution of the Riemann problem� replaced b y an

approximate solution to the same Riemann problem� Let

w �� x � x

j � � � �

� � � t � t

n

� � u

j

� u

j � �

�

b e an approximate solution of the Riemann problem b etween the states u

j

and u

j � �

�

Assume the same set up as in the description of the Go duno v sc heme in section 
��� We

thus de�ne the cell average u

n ��

j

on the new time level as

u

n ��

j

�

�

� x

�

Z

x

j

x

j � � � �

w �� x � x

j � � � �

� � � t

n ��

� t

n

� � u

j � �

� u

j

� dx

�

Z

x

j �� � �

x

j

w �� x � x

j �� � �

� � � t

n ��

� t

n

� � u

j

� u

j ��

� dx �

�
 � ���

First we give a necessary condition that such an approximate solver has to satisfy�

Theorem ���� If the approximate solution of the Riemann problem b etween u

L

and

u

R

with jump at x � 	 � w � x�t� u

R

� u

L

� � is consistent with the conservation la w in the

sense that

Z

� x� �

� � x� �

w � x�t� u

R

� u

L

� dx �

� x

�

� u

L

� u

R

� � � t � f

R

� f

L

� �
 � ���

then ����	� de�nes a scheme on conservative form� consistent with the conservation la w�

We do not give the pro of of this theorem� but we deriv e a form ula for the numerical

ux asso ciated with a given approximate Riemann solv er�

Start b y in tegrating around the square � x

j

� x

j �� � �

� � � t

n

� t

n ��

� and set this in tegral

equal to zero� We obtain

Z

x
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x

j

u

n

j

dx �

Z

t

n ��

t

n

h

j �� � �

dt �

Z

x

j

x

j �� � �

w �� x � x
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� � � t

n ��

� t

n

� � u

j ��

� u

j

� �

Z

t

n

t

n ��

f � u

n

j

� dt � 
 �

h

j �� � �

�

u

n

j

� x

�� t

� f

j

�

�

� t

Z

x

j �� � �

x

j

w �� x � x

j �� � �

� � � t

n ��

� t

n

� � u

j ��

� u

j

�

�
 � ���

where the numerical ux h

j �� � �

is now unknown� We only use the approximate Riemann

solution on the time lev el t

n ��

� but not in b etween the time levels� The formula �
����

guarantees that if w e in tegrate around the square � x

j �� � �

� x

j ��

� � � t

n

� t

n ��

� instead� we
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obtain the same numerical ux� Integrate

Z

x

j ��

x

j �� � �

u

n

j ��

dx �

Z

t

n ��

t

n

f � u

n

j ��

� dt �

Z

x

j �� � �

x

j ��

w �� x � x

j �� � �

� � � t

n ��

� t

n

� � u

j ��

� u

j

� �

Z

t

n

t

n ��

h

�
j �� � �

dt � 
 �

h

�
j �� � �

�

u

n

j ��

� x

�� t

� f

j ��

�

�

� t

Z

x

j ��

x

j �� � �

w �� x � x

j �� � �

� � � t

n ��

� t

n

� � u

j ��

� u

j

�

�
 � �	�

and combine �
���� and �
��	�� it is easy to see that �
���� giv es h

j �� � �

� h

�
j �� � �

�

Note that w e can not � as w e did for the Go duno v sc heme� obtain the numerical

ux as f � w �	 � u

j

� u

j ��

��� This is b ecause the solution b etween the time levels is not an

exact solution of the con tin uous problem� and thus the contour integral �
��	� is not

equal to zero� The numerical ux is uniquely determined from w by the formula �
�����

It is not hard to show that the upwind scheme can b e obtained in this way � if w e

de�ne w � x�t� u

R

� u

L

� as the solution to the linearized Riemann problem

u

t

� A � u

R

� u

L

� u

x

� 


u �	 � x � �

n

u

L

x � 	

u

R

x � 	

where A � u � v � is e�g�� the Ro e matrix �excercise��

Next we derive a simpli�ed scheme for the Euler equations of gas dynamics� Assume

an approximate solution of the following form

w � x�t� u

L

� u

R

� �

�

u

L

x � b

�

t

u

m

b

�

t � x � b

�

t

u

R

b

�

t � x

w e th us assume that there are tw o w av es mo ving with sp eeds b

�

and b

�

� and we require

b

�

� b

�

� The in termediate state u

m

is determined from the consistency condition �
�����

with the result

u

m

�

b

�

u

L

� b

�

u

R

b

�

� b

�

�

f

R

� f

L

b

�

� b

�

By evaluating the integrals �
���� we obtain the numerical ux for this metho d

h

j �� � �

�

b

�

j �� � �

f

j

� b

�
j �� � �

f

j ��

b

�

j �� � �

� b

�
j �� � �

�

b

�

j �� � �

b

�
j �� � �

b

�

j �� � �

� b

�
j �� � �

� u

j ��

� u

j

�

where b

�

j �� � �

� max � b

� �j �� � �

� 	� and b

�
j �� � �

� min� b

� �j �� � �

� 	�� The w ave sp eeds are

parameters we can tune to obtain a metho d with desired prop erties� For the Euler

equations� we can use the largest and smallest eigenvalues

b

� �j �� � �

� u

j �� � �

� c

j �� � �

b

� �j �� � �

� u

j �� � �

� c

j �� � �



��	

where u j �� ��

and c j �� ��

are the velo city and the sp eed of sound evaluated at an in ter�

mediate p oint� One reasonable choice is to use the average pro cedure in Ro e�s metho d

i�e��

u j �� ��

� w

� �j �� ��

u j � w

� �j �� ��

u j ��

h j �� ��

� w

� �j �� ��

h j � w

� �j �� ��

h j ��

c

�

j �� ��

� � � � ��� h j �� ��

�

�

�

u j �� ��

�

where h is the entalphy� h � � p � e � �� � and the weights are

w

� �j �� ��

�

p

� j
p

� j �

p

� j ��

w

� �j �� ��

�

p

� j ��

p

� j �

p

� j ��

�c�f� section 
���� This scheme is sometimes called the HLL scheme from the initials of

its inventors � Harten� Lax� van Leer��

Note that the wave sp eeds b

�

� � � and b

�

� � giv es the Lax�Friedric hs sc heme�

���� Generalization to second and higher order of accuracy

The same ideas as w ere used in c hapter � are here used for systems� Assume that a �rst

order metho d is given� We obtain a second order metho d by using the numerical ux

h j �� ��

� h � u j ��

� s j ��

� � � u j � s j � ��

where s are slop es of a piecewise linear reconstruction and where h

n
j �� ��

is the ux of

the �rst order metho d� We can use inner ux limiters as describ ed in chapter �� adapted

to systems analogously� but here we only describ e piecewise linear interp olation�

One additional di�culty is to determine a go o d co ordinate system for the in terp o�

lation� The following strategies are in use

�a� Do in terp olation comp onentwise in the conserved variables � � m e ��

�b� Do interp olation comp onentwise in the variables � � u p ��

�c� For each u j de�ne the c haracteristic co ordinate system spanned by the left eigenvec�

tors of the jacobian A evaluated at u j � l

k
� u j �� k � � � � � � � m � All the in terp olation

or limiting for the cell j is then made in this co ordinate system� e�g�� de�ne the

characteristic variables

c

k
i � l

k
� u j �

T
u j � i � i � � � � 	 � � k � � � � � � � m

and then the comp onentwise slop es

s

k
j � B � c

k
�

� c

k
�

� c

k
�

� c

k
� �

�

where B � x� y � is a limiter function describ ed in chapter �� Finally the slop es in the

original co ordinates are obtained as

s j �

m
X

k ��

s

k
j r

k
� u j �

with r

k
� the right eigenvectors to A �



���

�d� Use the Ro e matrix and asso ciated quantities� For a description of the matrix� see

Section 
��� The quantities � cf� Section 
��� �

k

j �� � �

are used to represen t �

�

u

j

in

characteristic co ordinates� The slop e limiting can b e de�ned as

s

k

j

� B � �

k

j �� � �

� �

k

j � � � �

�

with B � x� y � a limiter function� In the physical co ordinates the slop es are added to

u at interfaces j � � � �� and w e th us take

u

j

� s

j

� � � u

j

�

�

�

m

X

k ��

s

k

j

r

k

j �� � �

�

At the j � � � � in terface we use the eigenvectors r

k

j � � � �

to the matrix A

j � � � �

instead�

Note that in �c� the co ordinate system is kept �xed� at a cell j when the slop es in

j are computed� While in �d� the limiting is done on quantities b elonging to di�erent

co ordinate systems �e�g�� �

j �� � �

and �

j �� � �

��

The scheme with outer limiter ����	� can b e generalized to systems in a similar

way � W e can use the Ro e matrix decomp osition or a �xed chararacteristic co ordinate

system�

�d� can also b e viewed as a general way to generalize schemes for scalar problems

to systems� All o ccurencies of �

�

u

j

in the scalar metho d are replaced by �

k

j �� � �

for

all comp onen ts k � Finally the numerical ux function� h

j �� � �

is ev aluated b y using

the co ordinate system spanned by r

k

j �� � �

� This metho d is usually applied to the Lax�

Wendro� typ e TVD schemes describ ed in Chapter �� W e giv e an example to clarify

this�

Example ��� The metho d with the following numerical ux is a second order ENO

scheme based on the Lax�Wendro� scheme� derived for a scalar conservation law�

h

n

j �� � �

�

�

�

� f � u

n

j ��

� � f � u

n

j

���

�

�

a

�

j �� � �

�� � �a

j � � � �

� � �� � � � a

j �� � �

� a

j � � � �

�� s

j

�

�

�

a

�

j �� � �

�� � �a

j �� � �

� � �� � � � a

j �� � �

� a

j �� � �

�� s

j ��

where

s

j

� minmod ��

�

u

n

j

� �

�

u

n

j

� �

a

j �� � �

is as usual the lo cal wave sp eed �cf� Chapter ��� and � �

� t

� x

� The derivation

is omitted since we just wan t to show ho w to generalize this metho d to systems using

�d� ab ove� For systems the wave sp eeds are the eigenvalues of the jacobian� W e th us

replace a

j �� � �

with a

k

j �� � �

the eigenvalue of the Ro e matrix� The co e�cien ts �

k

j �� � �

are used instead of �

�

u

j

� since by de�nition

R� � �

�

u

j

or written on vector form

m

X

k ��

�

k

j �� � �

r

k

j �� � �

� �

�

u

j

�
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The matrix R ha ve the eigenvectors of the Ro e matrix� r

k
j �� ��

as columns� The numerical

ux for a system b ecomes

h

n
j �� ��

�

�

�

� f j � f j ��

��

�

�

m
X

k ��

� a

� �k
j �� ��

�� � �a

k
j � � ��

� � �� � � � a

k
j �� ��

� a

k
j � � ��

�� s

k
j�

�

�

a

� �k
j �� ��

�� � �a

k
j �� ��

� � �� � � � a

k
j �� ��

� a

k
j �� ��

�� s

k
j ��

� r

k
j �� ��

with the slop e limited as

s

k
j � minmo d� �

k
j �� ��

� �

k
j � � ��

� �

Here we use the notation a

� �k
j �� ��

� max�	 � a

k
j �� ��

� and similarly for a

� �k
j �� ��

�

It has b een observed that the ENO scheme can give a solution with spurious oscil�

lations if the interp olation is not made in the characteristic variables�

���� Some test problems

In this section w e ha ve collected some test problems for the one dimensional Euler

equations� W e will alw ays let u denote the vector with comp onents � � m e �� the density�

momentum and total energy�

First we give some Riemann problems� whic h ha ve b ecome standard to use in tests

of numerical metho ds� The �rst problem is

u

�

�	 � x � �
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x � 	
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�

A

x � 	

�
 � ���

The solution of this problem at a time � 	 is giv en in Fig� 
���
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Fig� 
��� Solution of Riemann problem �
�����
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A ��rarefaction wave is travelling to the left� Travelling to the right� a ��shock is
followed by a contact discontinuity� Note that the pressure does not change across the
contact discontinuity� The intermediate states are

u

�

�

�

�

	� ���
	� ���

� ���

�

A

u

�

�

�

�

�� �	�
�� ���
�� 
��

�

A

and the wave speeds

s

�

� �� ��	 for the shock

s

�

� u

c

� 	� ���	 for the contact discontinuity

u

L

� c

L

� � �� 
��
 u

�

� c

�

� � �� 
�
� across the rarefaction wave

Problem number two is the following
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for which the solution is displayed in Fig� 
���
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Fig� 
��� Solution of Riemann problem �
�����

It has similar structure to the previous problem� with a ��rarefaction followed by a
contact discontinuity and a ��shock� The intermediate states are

u
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A
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and the wave speeds

s

�

� �� ����� for the shock

s

�

� u

c

� 	� ����� for the contact discontinuity

u

L

� c

L

� � �� �����
 u

�

� c

�

� � 	� 	�	�� across the rarefaction wave

The second problem contains a rarefaction wave which is close to being transonic� and
is a good test for the entropy condition�

These two problems can usually be solved without di�culties� although the quality
of the solution of course di�ers from di�erent methods� A more di�cult problem is the
following

u
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The solution is displayed in Fig� 
���
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��� Solution of Riemann problem �
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The intermediate state is
�

�

	� 	����
	

	� 		����

�

A

The state of low density and pressure will sometimes lead to di�culties with negative
pressure� Of the schemes described in this chapter only Godunov and the P�version of
the Osher scheme can solve this problem� without crashing because of negative pressure�

Another common test problem is the so called blast wave problem� This problem
is de�ned on 	 � x � � with solid walls at x � 	 and x � �� The initial data is

u

	

�	� x � �
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�

� � 	 ��		 � T

x � 	� �

� � 	 	� 	�� � T 	� � � x � 	� �

� � 	 ��	 �T 	� � � x

�
� ���
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At the walls the b oundary conditions for the v elo cit y

u� t� �� � 	 u� t� 	� � 	

are imp osed� A sho c k w ave and a rarefaction wave are formed at t � 	 �	�� they have

interacted to pro duce the solution in Fig� 
�
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Fig� 
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� Solution of the blast wave problem �
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after one reection at the b oundary� The very large di�erences in pressure and the

more complex structure of the solution makes this a more challangeing problem than a

single Riemann problem�

The �fth problem is

u
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A x � � �
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� � 
 sin � x
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A x � � �

�
 ����

here one sho c k w av e in teracts with a sine wave of small amplitude� If 
 � 	 this is a

sho c k w av e mo ving to the right� Usually one takes 
 � 	 ��� The solution for this 
 is
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� Solution of the oscillatory problem �
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The di�culty lies in resolving the oscillations that are formed b ehind the sho ck

wave in the density� This is a go o d test for resolution� usually the higher order accurate

ENO metho ds p erform much b etter than second order TVD metho ds for this problem�

The solutions in the two last problems can not b e found analytically� but in one

space dimension it is p ossible to obtain a converged solution by putting in a very large

amount of grid p oin ts� W e do this to �nd the �exact� solution for comparison�

Exercises

�� Solve the linear Riemann problem

u

t

� A u

x

� 


u �	 � x � �

n

u

L

x � 	

u

R

x � 	

where A is a constant matrix with a basis of eigenvectors�

�� We de�ne an approximate Riemann solv er� w as the solution of the Riemann prob�

lem for a linear equation with the Ro e matrix as co e�cient matrix� The techniques

in section 
�� are used to de�ne a di�erence metho d from this approximate Rie�

mann solver� Show that the metho d thus obtained is the same as Ro e�s metho d�

describ ed in section 
���

�� Give an example which shows that for the Osher scheme applied to the Euler

equations

h

j �� � �

�� f

j

ev en if all wave sp eeds in u

j ��

and u

j

are p ositive�


