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For the non convex conservation law the condition (1.9) has to be satisfied for all
u between v and v . The flux function could look like in fig. 1.5.

f(u)

Ur L|| u

Fig. 1.5. Non convex flux function.

Here a jump between v and u , satisfies condition (1.9), but is still not the correct
solution. It has turned out that it is necessary to require the following entropy condition
for a general non convex conservation law

Fl ) = F)  flu )= fu )

u —u o u —u

all we€lu ,u ]or [u ,u] (1.10)

It is important that all values u between u and u are involved. Intuitively we can
understand (1.10) as requiring the characteristics to go into the shock for the entire
family of shocks between v and u, u € [u ,u ]. Geometrically (1.10) can be interpreted
as the graph v — f(u) must lie below the chord between (v , f(u )) and (v , f(u ))if
v >u ,and above if u < u . (1.10) can be derived from the inviscid limit of the
problem

u + f(u) =eu (1.11)

where € is a positive parameter. (1.11) has a unique smooth solution. The physically
relevant solution of (1.1) is defined as the solution of (1.11) as ¢ — 0. We give a
derivation of (1.10) later in this section.

There is a result similar to theorem 1.7 for the entropy condition (1.10).

Theorem 1.8.

Proof: Not given here. We refer to [16].

An example of a conservation law with non convex flux function is the so called
Buckley-Leverett equation

[

u +(1—u) /4

u +( ) =0

which occurs in the theory of flow through porous media.
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and () 0. For the implication in other direction it is necessary to assume that
(1.13) is valid for all convex ( ), or at least a class sufficiently large to assure that

() ) 0 () 0

One example of such a class is given in exercise 5. In the special case ( ) convex the
sign of () ( (1)) does not change over the interval | |, and one
convex entropy function is sufficient. Summary:

(1.10)  (1.13) for any convex entropy function.
(1.13) for a “large” class of entropy functions (1.10).
(1.13) with one entropy function  (1.9).

(1.10)  (1.9),

(1.9)  (1.10)if ( ) convex.

Here the last two implications are easily shown and left as an exercise

1.3 Exact solution formulas

For reference we here give some analytic solution formulas without proving them. The
equation

(2 =

can be solved exactly [15], the formula is not given here. A similar result has been
obtained for the problem

+ () =0 0
© )= ()

with () convex. The solution at a fixed point () is obtained from

(114)

Theorem 1.9.

C o=« ) (115)
() () ()

() ()= () ( (0)=0

We refer to [17] for a derivation of the formulas.

The problem with piecewise constant initial data, will be of importance to some of
the numerical methods encountered later on. In the scalar case it is possible to solve
the problem

+() =0 0
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convex flux functions it is necessary to have information of how the flux function behaves
between the grid points. We give an example to clarify this statement.
The problem

+( 2) =0 0
1 0
has solution
()= 1 0
N 1 0
Assume that a difference method is given which gives the steady solution profile
=1 1
=08
= 08
= 1 2

for all . Make a deformation of the flux function as in fig. 2.4. below.

f(u)

u X

Fig.2.4. Deformed flux function

The steady shock does not satisfy the entropy condition for the deformed flux
function (cf. chapter 1). The deformed flux coincides with () = 2 for 08,
and a scheme which only relies on flux values at the grid points, does not have sufficient
information to distinguish between the deformed flux and the quadratic one.

As an example we now give two classes of difference methods, monotone schemes
and three point schemes, where the TVD and entropy properties have been worked out.
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Except for one trivial case, monotone schemes are at most first order

The truncation error of the method
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Monotone schemes satisty the discrete entropy condition

for the class of entropies all , and where the numerical entropy
flux, is consistent with the entropy flux
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3. Second order accurate TVD methods

3.1 Limitations of Accuracy

Before starting to describe second order schemes for shock computations we give some
necessary conditions for such schemes. We saw in the previous chapter that three point
TVD schemes are at most first order accurate. Thus a second order TVD scheme on
C-form
WP = Ay W)
must involve more than three points on the time level #,,.
In fact second order accuracy everywhere is not compatible with the TVD con-

straint.
Theorem 3.1. At smooth extrema which are not sonic points a TVD scheme is first

order accurate.

Proof: Write the method on I-form

+1 _
Wt = )+ CjpapBrul - Diapp Ao

we consider a general explicit scheme, and thus

_ n n _ n n
Cj—|—1/2 - C(uj—q—|—17 ce 7uj—|—p—|—1) Dj—1/2 - D(uj—q7 Tt 7uj+P)

In all accuracy investigations, it is necessary to assume that the solution u; is smooth,
to allow for Taylor expansion. The truncation error is expanded as

7 = —ul(rj, thgr) +u(xj,t )—I—C']_|_1/2A+u —Dj 1 Aul =
At 2
= Atug = ——uu +(C + Z Cr((k + D)Azu, + O(Az?)))(Azu, +
k=—¢
Az? P
—tae + O(A2*)) = (D + Y Di(kAzu, + O(Ax?)))(Avu,—
k=—q
A 2
e + O(A%))

where we use the notation C' = C(u,...,u) and Cy is the derivative of C with respect
to its kth argument, evaluated at w,...,u, and where u is u(t,,z;). Simplify the
expression

At?
Tn = —Atut —I— (C — D)A(L’uw — TUH—I—

Ax 2
(C+ D)= s + Z Cr(k +1)Az? (u Z DikAz?(u,)? + O(Az®)

k——q k_—q

Consistency yields
C—D=-\f"(u) (3.1)



At a smooth extreme point u, = 0, and the condition for second order accuracy there
becomes

/\2utt == (C + D)UII
but
i = (f'(u)ue)e = /() tee + f'(u)gus

and at extrema the condition for second order second order accuracy thus becomes
C+ D= (A\f'(u))? (3.2)
Solving (3.1) and (3.2) for C and D gives

20 = (Af'(u))* = Af' ()
2D = (Af'(u))? + Mf'(u)

If f'(u) # 0, the CFL condition A\f'(u) < 1 implies that not both C' and D can be
non negative. For TVD it is necessary that ;1,5 and D/, are non negative.
C = Cjq1/2 + O(Az), but (3.3) means that one of C, D are negative of order one,
(= —]O(1)]). Thus if f'(u) # 0 we have proved the impossibility to satisfy the TVD

condition given in theorem 2.12. If on the other hand f'(u) = 0, the above argument

(3.3)

is not true. This is the exception “u non sonic” mentioned in the theorem.

This result can be interpreted geometrically as clipping of extrema displayed in the
figures 3.1 and 3.2. In order to maintain TVD, the maximum can not be placed on
the exact solution curve at t + At, since this would correspond to an increase in the
variation.

Time =t Time =t +dt

11F 1 11F

Fig.3.1. Time ¢ Fig.3.2. Translated to time ¢ + At
It is also necessary to consider non linear methods, as seen in the following theorem

Theorem 3.2. A linear difference approximation

14
n+1 _ n
Uy = E: ArU; 4

k=—q



which is TVD, is at most first order accurate.

Proof: Consider the function

J

n_J1 <0
Y70 j>0

Then TV (u™) = 1. We evaluate the variation after one time step

(. @) (. @)

P P
TV(@"™ )= Y 1Apaft = Y 1Y aedqufyy =Y

j=—00 j=—o0 k=-—gq k=—q

The scheme is consistent if

P
Y ar=1 (3.4)
k=—¢
if ar < 0 for some k, then (3.4) gives
P
TV (u"t) = Z lag] >1
k=—¢

and the method i1s not TVD. Thus a; > 0 and the result follows from theorem 2.9
since ay positive means that the scheme is monotone.

Note that the theorem does not state which partial differential equation we approx-
imate. Second order TVD schemes (away from smooth extrema) must be non linear
even when applied to the linear partial differential equation uy 4+ au, = 0.

There exist a large number of second order TVD methods. They have in common
that they all degenerate to first order accuracy at smooth extrema, and are non linear
schemes. We distinguish two main classes of methods

1. Equation simultaneously discretized in time and space. These schemes are TVD
modifications of the Lax-Wendroff scheme
nt1 At? )

i = u?—AtDof(u?)+ 7D+(aj_1/2D_u?)

[

2. Spatially second order semi discrete approximations, which leaves the time dis-
cretization as a separate choice. These schemes are TVD modifications of the

method J
U n
—dt] = —Dof(uj)

What method to use depends on the specific application. A general guideline can
be given based on the unmodified schemes. The class 1 is suited for time dependent
calculations, while methods in class 2 are better for finding a stationary solution, since
the spatial discretization does not depend on a time step. The generalization of the
Lax-Wendroff scheme to more space dimensions than one is somewhat complicated, but
operator splitting dimension by dimension can be used. For the semi-discrete methods,
the two and three dimensional cases are straightforward.



We describe second order TVD schemes based on the Lax-Wendroff method in
sections 3.2, 3.3 and 3.4. Sections 3.5 and 3.6 deal with semi discrete methods.

3.2 The Modified Flux Method

For the linear problem u; + au, = 0, one can show that the highest order of accuracy
for a three point scheme is two, and that the Lax-Wendroff scheme is the only scheme,
which has this optimal property. This scheme is not TVD. We show below how it is
possible to modify the viscosity of the Lax-Wendroff scheme so that it becomes a TVD
viscosity wherever necessary, i.e. in the neighborhood of shocks.

The method is sometimes named the modified flux method, due to the following
interpretation. If hij1 /5 is the numerical flux of a first order TVD scheme then

u?+1 B u? + ?+1/2 B h?—l/z — uy + f(u) + O(Al‘)
At Az - v '
If hﬂ_/‘{ /2 1s the numerical flux of the Lax-Wendroff scheme then
(z+1 _on hnLW _ hnLW
u U —
J I Jj+1/2 Jj—1/2 :ut‘l‘f(u)x +O(A:1;2),

At Az

and therefore

ntl_yn ok

U Uy ?+1/2 B h?—l/Z _
x + A = u¢ + flu)y+
h?ﬂ/z - h?—flm//z - (hn — ot )

j=1/2 j=1/2 _I_O(sz)'

Az
From this formula we immediately obtain

Lemma 3.3. If
h]‘_|_1/2 — hf—il—/‘{/Z == O(A(Ez)

and if the leading error term in the O(Ax?) is smooth, then the method using the flux
jy1/2 is second order accurate.

Proof: The assumption of smooth error term give

Ashjos _AhiGp | ALOA?)  AchiG, O(A)
Az - Az Az - Az

Thus one power of Az is lost from dividing by Az and one power gained by taking
the difference.

We will apply a first order TVD method to a problem with the modified flux
function

1
9; =1+ b

where b; is some quantity resembling the difference

1 n
/\(h]L-F{/Z o h]+1/2) = §(Qj—|—1/2 - Q]L_F{/Z)A+u]



Thus we let er{/z denote the numerical viscosity of the Lax-Wendroff method, and
Q412 the viscosity of the first order TVD method.

Apply now a first order TVD scheme to the problem with flux function g¢;, the
modified numerical flux becomes

1

M
2/\(

Jt1/2 = (f]+1 + fi) = 55 (Q(9)j11/28+u] — (bjp1 +b5)) (3.5)

where we write Q(g);41/2 to stress that the viscosity is evaluated using the flux g;.

Theorem 2.13. is used to find the condition for TVD

b —
Aaji1je + ——" bin = bj | < Q(g)j41/2 <1 (3.6)
Uj+1 — Uj
By comparison with the Lax-Wendroff flux we get the following condition for second
order accuracy
bjt1 +9b;

Uj+1 — UJ

Q(Q)j—i—l/Z - ]-1-1/2 + O(Ax) (37)

We have two problems here, the first is how to determine the flux modification b; so

that (3.6) and (3.7) can be satisfied. A second problem arises if b; is only known at the

grid points, but our TVD scheme requires flux values intermediate between grid points

when @Q(¢) is to be evaluated, such as e.g. the Godunov or the Engquist-Osher schemes.
Introduce the notation

1
dit1/2 = §(Qj—|—1/2 — Q1Y ) A ud

Define
_J0 if AjuiA_uf <0 58
J sign(Ayu?)min(|d;y1 /2], [dj—1/2]) otherwise (3.8)

Note that b; = 0 at extrema, and thus that no modification will be made there. The
accuracy at extrema is first order in accordance with theorem 3.1. Note also that
because of theorem 2.13 Q41 /2 — Q]_H/z > 0, and thus that d; 1/, and Aju} have the
same sign.

Theorem 3.4. If b; is given by (3.8) then the scheme with numerical flux (3.5) is
second order accurate away from extrema if the viscosity coefficient, Q(g);41/2 satisfies

|Q(9)j+1/2 - Qj+1/2| = O(Az) (3.9)

Proof: Assume that the solution is a smooth function. Away from extrema b; =
djy1/2 or dj_y o and similarly for b4, but

dj_|_1/2 = dj—l/Z —|— O(Al’z)
so that

b]‘_|_1 + b] . 2dj—i—l/Z + O(sz)
A_|_u§‘ N A_i_u’?

J




and thus, by the definition of d;, ,,

bjy1 +b;
Q9)j+1/2 — % Q9)jx1/2 — Qjg1/2 + Q]+1/2 + O(Ax)
J

The condition for second order accuracy (3.7) is satisfied if
Q(9)j+1/2 — Qjt172 = O(Ax)

This theorem had been very easy to prove if we had defined b; = d;;/, always, the
more complicated definition of b; is made to make it possible to prove the TVD property
of the method, which we now proceed to do. First we define the modified viscosity as
bjt1 —b;
Q9)j+172 = Qjrzz + || (3.10)
Ui — Y
Thus we use an upwind approximation to the modified part of the flux. With this
viscosity we prove

Theorem 3.5. The scheme defined by the numerical flux (3.5) and with b; given by
(3.8) and Q(g)j41/2 by (3.10) is TVD and second order accurate away from extrerma
under the cfl condition Q13 < 3

Proof: The lower part of the TVD inequality (3.6) is immediate from the triangle

inequality

\ bjt1 —b; < bjtr —bj ‘

A jp1/2 + 7| Qjy1/2 + |7n| = Q(9)j41/2

REAR Y1 =Y
and where we use that (), is the viscosity of a TVD scheme. The upper limit
bjt1 — by
Qjy1/2 + |7n| <1

Ujpr — Uy

is shown using the fact that b; and b;4; always have the same sign and thus that

b‘_|_1—b‘ maX|b<|,|b<+1| 1
2o =y o Bk el < 20,000 - Q1Y)

Ujpr T U [Atu]
so that
_ 1
+1
Qg )]+1/2 = Q]+1/2 + |$| = 2Q1+1/2 LK/z = 2Q1+1/"
J J

The upper inequality is satisfied under the cfl condition Q4,2 < % Second order

accuracy follows directly from theorem 3.4 by the observation that

bisi — b,
|H| = O(Az)
J+1 J



And the theorem has been proved. Note that in the special case of an upwind approxi-
mation Q412 = Al@j4q/2| the cfl condition can be relaxed, because then QY = Q?,
and the upper TVD inequality becomes

3 1 1 1

S @ir12 =3 e = §(Qj+1/2 +1) - 5(1 — Qjy12)’ <

which is < 1if Majqq /5] < 1.

(Qjt1/2 +1)

N =

Instead of defining Q(g);j11/2 through (3.10) we could have extended b; (defined by
(3.8)) to be defined for all u by a piecewise linear interpolation. It is then possible to
prove that any first order three point TVD scheme applied to the flux function f + %b
will lead to a Q(¢);4+1/2 which satisfies the requirements above for second order accuracy
away from extrema and TVD, under a cfl condition similar to the one above.

The scheme using (3.8), (3.10) can be rewritten as

uj+1 =u; — 5( j+1 = j—1) + §A+( j—1/2A_uj)_
A_b;

1 1
5 (bjr1 —bj1) + §A+(|A_u§‘

4

Aul)

i.e. to convert a first order TVD scheme to a second order one, we can add the extra
terms

1 1 A_b;
—§(bj+1 —bj—1)+ _AJF('A_u?;

. A—ur)
without changing the original scheme. This makes the modification easy to implement
into a computer program where the first order method is available. The correction term
is sometimes called antidiffusive flux, since it is consistent with the equation u; = —cu .
with ¢ > 0.

It is easy to see that the method has a five point stencil, and that it is a non linear
method when applied to the linear equation uy 4+ au, = 0.



3.3 The Weighted Upwind-Lax-Wendroff Method

We next described another class of methods, based on the same idea of switching to
the Lax-Wendroff method whenever possible due to the TVD constraint. This second
class of methods have all numerical flux functions which can be written as a weighted
average of the upwind method and the Lax-Wendroff method,

hjtipz =(1— wj+1/z)h§ﬁ?% + wj+1/2hfrf/2'

Any first order TVD method can be used instead of the upwind flux, h?jﬁ%. The idea
is to have w;, /9 &~ 1, when the solution is smooth, and w;, /, & 0 near discontinuities.
Note that the methods in the previous section can not be written in this way, due to
the non-linear dependence of Q(g);41/2 on the modified flux.

For this class of methods, the known results about TVD have mainly been worked

out for the linear problem u; 4+ au, = 0. For this problem we obtain the numerical flux
1 1
hjtiye = a(ujpr +uy)/2 = SAlalApuj + 5 (Ala] = (Aa)? w1 /oAy (3.11)

Example of weight functions are

45(7“]‘) ifa>0

Wit1/2 = { 6(1/ri41) ifa<0 (3.12)
or
Wipi2 = ¢(rj) + é(1/rjp1) — 1 (3.13)
Where we define A
By
r] N A_|_u]

as a measure of the smoothness of u;. When u; is smooth, and does not have an extreme
point, r; = 1 + O(Ax).
The function ¢(r) is called limiter. We require that ¢(1) = 1, which implies that

¢(rj) =1+ O0(Az) ¢(1/rj) =1+ O(Az)
and consequently

hiprye = Dy + (1= wip o) (RIS = RPN ) = RN 1, + O(Az)O(Ax)

at smooth non-extreme points for the weight functions (3.12), (3,13). According to
lemma 3.3, ¢(1) = 1 thus guarantees second order of accuracy. The TVD property is
investigated in the next theorem.

Theorem 3.6. The method with numerical flux (3.11), and limiter (3.12), approxi-
mating uy + auy, = 0 is TVD if ¢(r) satisfies

0<o(r)<2 0<o(r)/r <2



Proof: Assume that a > 0. The proof for a < 0 is similar. We will apply theorem
2.12, and begin therefore by writing the method using (3.11), (3.12) as
Aa — (Aa)?

ntl u;‘ — /\aA_u;‘ —

Uj

(63081 — () Au)
With the definitions

Cjt1/2 =0
20— 0 L0~ bry0)

T

Dj—1/2 = ACL —|—

we can write the method as

+1
uy = U;L —|— C]+1/2A+U;L — Dj_l/zA_U?.

Assuming the cfl condition Aa < 1, we see that the TVD condition 0 < D 12 <1

1s satisfied if .

—2< —¢(rj) — ¢(rj—1) < 2.

Ty

This condition is true if e.g.

0<¢(r)<2 0= 4(r)/r<2
Example of a function satisfying the conditions on ¢(r) in theorem 3.6 is

qﬁ(T):{ﬁl}ﬂl Hr>0

0 otherwise

There is a special terminology for this class of methods. The scheme with limiter (3.12) is
called an upwind TVD scheme, and the scheme with the limiter (3.13) a symmetric TVD
scheme, thus indicating whether the upwind direction is required in the computation
of the weight function. Note that in both cases the upwind direction is required when

computing the flux h?jﬁ%. The symmetric TVD scheme is simpler than the upwind

TVD scheme, but we pay for the simlicity because the TVD analysis for the case (3.13)
( exercise 3 ) will give more restrictive conditions on ¢.



3.4 The Flux Corrected Transport Method
The methods described in sections 3.2 and 3.3 can abstractly be written

ut = L(u") + M(u™)

where L is the first order TVD scheme, and M is the modification such that the resulting
scheme is TVD and such that L + M is the Lax-Wendroff scheme whenever possible
due to the TVD constraint.

We now turn to another method based on the same idea of modifying the Lax-
Wendroff scheme, but instead on the form

3.14
un—l—l — u* —I—M(u*) ( )

where L is a first order TVD scheme and M is a modification such that L(u™)+M(L(u™))
1s TVD and the Lax-Wendroff scheme whenever possible. We thus implement the second
order modification as a corrector step to the TVD predictor. This method is known as
the flux corrected transport method (FCT). We thus use the predictor step

Wi =l = AA B,

where h” is the numerical flux of a first order TVD method. The corrector step is

J+1/2
u}H—l = u;‘ — (b]+1/2 — bj—l/Z) (315)
where
0 if AjujA_uj <0 or Ajuj (A_ujy, <0
byar2 = (3.16)

s m1n(§|A_uj s djy1 2| Aguil, §|A+uj+1 |) otherwise

Here s =sign(Aju}) and djyy/y = %(Qj—i—l/z — Qﬁ_/‘{/z), where @11/, is the numerical
viscosity of the first order predictor, and er{/z is the numerical viscosity of the Lax-
Wendroff method.

Again we can see that no change is made at extrema, and thus that the accuracy
is only first order there. The easiest way to understand the formula above is through
the proof of the following theorem.

Theorem 3.7. The FCT method (3.14) where L is a first order TVD scheme and M
is given by (3.15), (3.16) is TVD and second order accurate away from extrema.

Proof: To prove TVD define
f = {0 if AjujA_uj <0

smin(3|Ajuf], 3]A_u¥]) otherwise
with s =sign(Aju}). Write the corrector as

+1 _
U;L = u;‘ —|— C]_|_1/2A+u;“ — D]‘_l/zA_uj;



with
—bjt12 + [
A_|_u;f

—bi_12+ f;
A_u;f

and then use theorem 2.12 to show that TV (u"*!) < TV(u*). TVD of the total
method follows since the predictor assures that TV(u*) < TV(u™). At extrema
bjt1/2 = 0 and C, D are obviously non negative. Assume that AyujA_ui > 0. We
then have

Cit1j2 = Dj1y =

Sign(A-i-u*) .1 * 1 *
Citiy2 ZW(mln(§|A+U1|a §|A—Uj|)—
mln(§|A+uj+1|7dj+1/2|A+uj|7 §|A—Uj|)) >0
since 0 < d;yq/, <1/2. Similarly for D;1;/, we have

sign(Ayu’)

. 1 *k 1 *k
A_i_u;f (m1n(§|A+uj+1|,§|A+uj|)—

Dijyi2 =
mln(§|A+uj+1|7dj+1/2|A+uj|7 §|A—uj|)) >0

Finally we have to prove that C';1 /2 + D412 < 1. This follows from

fitr + 15 =2bjaps _ 38wl 4 A ut] = 2]bj4 o]

At = Au] =1
+Uj +Uj

Citrj2 + Djyrjz =

Next we prove second order accuracy. Assume that u; is smooth, and that there are
no local extrema. Then

bjp1/2 = smin(5Auf + O(AL®)], djg1 ol Al 51 A+uf + O(A?))

and, since u} = uj + O(Axz),

bjvis2 = %(Qj+1/2 — QMY Al + O(AR?) =
(@2 — QU ) Al + O(AR) + O(A2?) =
%(QJH/? — Q7Y ) Avul + O(Ae?)
Thus for the total flux of the FCT method we have

ji2 T+ ij—i—l/z = §(f]‘+1 + fj ) — 5Q1+1/2A+u1‘+

1 n
ﬁ(@jﬂ/z - QfK/Z)A+uj + O(Az?) =

Rty s + O(Az?)



The scheme is Lax-Wendroff up to truncation error, and thus second order accurate
( see lemma 3.3).

Remark: The method of artificial compression (ACM) is a method on the form (3.14),
(3.15), but with

by 0 if AyujA_uj <0 or Ajui A ujyy <0
an sign(Aju]) min([A_uj], [Apuf], [Ajui,|) otherwise
this correction sharpens discontinuities and can be made TVD with some changes, but
is not in general second order accurate (not even away from extrema).
Originally, FCT was defined using the scheme in exercise 2.2 as predictor. This gives

djy1/2 = é, a constant, and the computation of the antidiffusive flux in the corrector
step becomes very simple. Furthermore, FCT was defined using the corrector flux

0 if AyulA_u? <0 or Aju? A_ul, ;<0
biy1/2 = { ’ ’ a o (3.17)

smin(|A_uj|, djy1 /2] Auf], [Apujy]) otherwise '

which in general does not lead to a TVD method.

We have here modified the flux (3.17) with factors % in some places, to make the

total method TVD for arbitrary TVD predictors. Alternatively a more restrictive CFL
condition could have been imposed on the corrector step, e.g. A < 1/2.

Example 3.1 An example to show that (3.17) can increase the variation. Take
the monotone function

ui=0ui=1u;=2u; =21 u;=3 ug=4
Using (3.14) with d = ¢ gives
biyija =1/8 baprys = 1/10 byiyjo =1/80 byyyjo = 1/10 bsyyy = 1/8
and finally
ufTh =0 T =1.025 uftt =2.0875 ufT =2.0125 wlt =2.975 Wit =0

A maximum and a minimum have been introduced, which leads to an increase in vari-
ation.



3.5 Semi Discrete Inner TVD Schemes

The semi-discrete methods are divided into two different groups, the inner schemes
which are the analogue of

du (1) 1 1
# =~ 1o A5 (e + uj))
and the outer schemes which are the analogue of
du (1) 1 1
ét =~ 18- (Fluje) + fluj))

Before starting the description, we state the semi discrete version of theorem 2.12. A
semi discrete method 1s TVD if

TV (u(ty)) < TV(u(ty)) all t, >t

and the theorem is

Theorem 3.8. The method
du ;
d—t] — C]+1/2A+u] — Dj—l/ZA—uj
is TVD if
Cit17220 Djyi/2 20

Proof: Is left to the reader.

In addition to this TVD condition, we will also require

where A is a constant. This because if the problem is discretized in time with an explicit
method one gets the third condition in theorem 2.12 (or a similar condition if another
method than forward Euler is used in time )

At(Cip12+ Djyiy) <1
which can be satisfied for a cfl condition A < 1/(2A4) if (3.18) hold.

We start with a description of the inner TVD schemes. Assume
hjtijz = h(ujpr, uj)

is a numerical flux of a three point first order TVD scheme. This is an approximation
to the flux in the intermediate point x;, /5. As a more accurate approximation of this
flux we instead take

hjprp2 = h(uﬁ—l/zvufﬂ/z) (3.19)

and use du () )
U




where uﬁ_l/z and u]L_H/z are approximations from the right and from the left to the
value of u at the point ;4.
One way to interpret this is that a piecewise linear interpolation of the values u;
is made
u=uj;+sj(x—x;)/Ax xj_1/3 <T < Tjq1)

we then take "
u]‘—l/z:uj_sj/2 (3.21)

L — /9 '
Uihqyg = Uj+ s/

The slopes have to be constructed so that they meet the requirements for second order

accuracy and TVD. We will here follow a more general outline, and allow « and

R
j+1/2
L b 1 ily obtained f i ise li i lati
Ui )2 to be any values, not necessarily obtained from piecewise linear interpolation.
Remark: The inner scheme with piecewise linear interpolation is sometimes referred

to as “the MUSCL scheme”.

The condition for second order accuracy can be seen from

Theorem 3.9. If & )
Uitz — Uj1/2 = O(Az7)
u]L_H/Z — Uj+1/2 == O(sz)
where ujiq/ = (ujt1 + u;)/2 and the numerical flux function is Lipschitz continuous

then the approximation (3.20) is second order accurate in space.

Proof: The numerical flux f( %(Uj_|_1 +u;)) leads to a second order accurate method.
We prove the theorem by showing

1
hjyij2 — f(§(uj+1 +uj)) = O(Az?)
Begin by using the consistency f(u) = h(u,u), then use the Lipschitz condition

Wl ety ) = Fluggage) =

h(uﬁ-l/%ufﬂ/z) - h(uj+1/27uj+1/2) <

L(uR —u; )—l—L(uL — U )
NY541/2 Jj+1/2 20Uy /9 412

We can see that hjiq/0 — f(ujy1/2) = O(Az?) and thus the order is two. In the same
way as in lemma 3.3, it is necessary that the leading term in the O(Ax?) is smooth.
This will not always be the case near extreme points in the methods described below.

We give two sets of conditions for TVD, the first is



Theorem 3.10. If the scheme with numerica] flux h(ujq1,u;) is TVD, then the ap-

proximation using the numerical flux h(uf i1/ ]—1—1/2) is TVD if
R L
Y1z " iz o
Uj1 = Uj
R L
ut — ut
j—1/2 J+1/2 < 0 (322)
Uj1 = Uj
R L
U172 = Y5412 <0
Uy —uj-1

Proof: Write —A h(u?

ul
j—1/20 Y- 1/2) as

- (h(uﬁ—lﬂ? ]-1-1/2) f(u]L+1/2)) + (h(u fh 1/2 ]L-|-1/2) f(u]L+1/2))
= (hlufy oy ufy o) = Flugy o))+ (g gy ugy ) — flugt

From the theory of first order schemes, we know that

o M g) = )
172 Ujt1 = Uj B
(3.23)
p  _ yhlupuio) = fuy)
e uj = Ui N

which can be used by writing

—A+h( j—1/2,U ]Ll/Z) Cj+1/2A+uj_Dj—1/2A—uj

with R L L R L
c B h(uj—|—1/27uj—|—1/2)_f(uj—|—1/2)uj—|—1/2_uj—|—1/2
j+1/2 = — R _ . L Uit 1 — s +
Uit1/2 — U412 j+1 j
R L L R L
Ty oo uiinye) = FUih o) Uiia e = Wik o
R L .
Yi—172 7 Y412 Uit =ty
R L R R L
M) e
J=1/2 = wB b U — U N
j=1/2 J+1/2 J i-t
R L R R L
h(uj—1/27uj—1/2) - f(uj—l/Z) U172 — %512

T e
thus by using (3.23), we find that Cj1/, > 0, D44/ > 0 if (3.22) holds.

We can obtain less restrictive TVD conditions if we add assumptions about the first
order numerical flux. One example of this is



Theorem 3.11. If the scheme with numerical flux h(u;i1,u;) is monotone, then the

ult is TVD if

approximation using the numerical flux h( it1/20 u]L_H/Z)

R _ R
Uit1/2 ~ Yy-1/2 >0

AR (3.24)

L L
us — U=
1/2 —1/2
J+1/ J / ZO
Uy —Uyj—1

Proof: Write —A+h(u?_1/2,uf_1/2) as

_(h(uﬁ—l/%uf—l—lﬂ) - h(u?—l/Zv UJL+1/2))_

(h(u?—lﬂ’ UJL+1/2) - h(u?—l/Zv u]L—l/Z)) =
1
_/0 hl(u?—l/Z + 9A+u§{—1/27Uf+1/2)d9A+u?—1/2_

1
/0 h2(u§{_1/27uf_1/2 —I_ 9A+uf_1/2)d9A+uf_l/2

where hy and ho are the derivatives of h with respect to its first and second argument

respectively. Since the scheme

U;H—l = u;‘ - A(h(u?+17 u;‘) - h(uya u?—l))

is assumed to be monotone, h; < 0 and he > 0. Thus by taking

R _ R
Yit1/2 ~ Yj-1/2

Ujt1 — Uj

J

1
Ciyi2 = —/0 hl(u?_l/z + 9A+uf‘_1/2,uf+1/2)d9

1 UL+1/2 — uL—l/Z
Dj—1/2 — / h2(uﬁ_1/27 u]L_l/z —I_ 9A+uf_1/2) de J — ‘]
0 u] u]_l

TVD follows from theorem 2.12 if (3.24) holds.

We are now ready to describe how to do the piecewise linear interpolation. Apply
theorem 3.10 to the right and left values (3.21). The resulting inequalities are

Lsjtit+s;

1— >0
2 A_|_u] o
5y
>0
A+u]‘ o
Sj >0

A_uj



If AjujA_u; <0, it is necessary that s; = 0, i.e. the usual degeneracy to first order
accuracy at extrema. Condition for second order accuracy is obtained from theorem 3.9

Si41 1
wjpr = =5 = (e Fug) + O(Az?)

1
= U1 +uj) + O(Az?)

Sj
T2
which is equivalent to

s;=Aqu; + O(Al‘z)
Since A_u; = Ayuj + O(Az?), the choice

~_Jo if Aqju;A_u; <0
J sign(Ayu;)min(|Ajuj|, |[A_u,;|) otherwise

leads to a second order TVD scheme. The function above is called the minmod function,
and we write
s; = minmod(Ajuj;, A_uj)

This is the only example we give of a choice of slopes satisfying the requirements in
theorem 3.10. Instead we now turn to theorem 3.11. The TVD requirements there gives
more freedom of choice.

Apply theorem 3.11 to the right and left values (3.21). The resulting inequalities
are

ujt1 = s+ /2 —uj+55/2
A+u]‘ -
ujF8i/2—uj1 = sj-1/2

>0
A_u]‘ o

which simplifies to
Sj+1 — 5j
11— T >0
2A+u] -

Sj+1 — 5j
1+ 2 >

1.e.
|sj+1 = 55| < 2[Aqu) (3.25)
By taking
] Aqu;A_u; <0
5= B(Ajuj,A_uj;) otherwise

where B is a function which has the same sign as its arguments, s; and s;4; will always
have the same sign. (3.25) is then satisfied if

max(|s; |, |sj+1]) < 2|A4u;]
which holds if B(x,y) is such that

B(a,y)| < 2min(e], ly)). (3.26)



This follows because (3.26) implies that
max([s;], |sj41]) < 2max(min(|Au;], [A_uj]), min([Apwjpa ], [Apus]) < 2|A4u;]

We now give some examples of functions, B, that are sometimes used in computations.
The condition for second order accuracy

s; = Aquj + O(Az?)
1s translated into
B(Aguj, Ayuj+ O(Az?)) = Ay, + O(Az?)
This is satisfied if
Blz,z) ==z

and B is Lipschitz continuous, which can easily be checked to hold for the examples
below.
Example 3.2 minmod slope limiter. Take

B(xvy) = Sign(x)min(|x|7 |y|)

(3.26) is clearly satisfied. This is the slope limiter already encountered in connection
with theorem 3.10.

Example 3.3 van Leer’s slope limiter. This is the function

2xy
T +vy

B(x,y) =
An advantage is that this is a smooth function of its arguments. (3.26) follows from

2|z|
B(z,y)| < ——— < 2|z| |z| <y
|B(z,y)| 15 [y/7] lz| | <yl
2]y
B(z,y)| < ——— <2|y| |y| <=
|B(z,y)| 15 2/ lyl |yl < |z]

Example 3.4 Superbee slope limiter. This is the function

Bla,y) = {sign(x)ma?c(|x|, ly|) %f /2 <y <2
2sign(a)min(|z|,|y|) if ©/2 >y or y > 2«
This is a slope limiter which gives high compression, (3.26) is easy to verify.
Example 3.5 van Albada’s slope limniter.
:1;2y + y2:1;

B(,y) = —3 —y



another smooth function which satisfies the requirements for second order TVD. The
reader is asked to verify (3.26). This limiter is not set equal to zero if zy < 0. In
computer programs we use the modification

(2 + )y +(y* + )
262 —|—$2 _I_y2

B(xvy) =

with € a small constant, to avoid difficulties when = =y = 0.

Note also that the function B(z,y) = (@ + y)/2 leads to a centered difference
method, which does not satisfy the TVD conditions.

These were all examples of slope limiters. We now generalize these limiters into
limiter functions, which in general can not be interpreted as piecewise linear interpola-

tion. Instead the values uf can be considered as interpolated from the right

L
: j—1/2> %412
and the left respectively. We take

1 1

u?—l/z =uy; = §¢(r_j)A+uj
1

“]L+1/2 = uj + §¢(T1)A—uy‘

(3.27)

where r; is defined as
. A_|_u]
A_uj

T

The function ¢(r) is called a limster. If b = 1, the interpolation interpretation becomes
clear. This is a generalization of the piecewise linear interpolation, assume that

p(r) =rip(1/r) (3.28)
Compare with (3.21), and it is clear that (3.27) corresponds to taking

sj = (rj)A_u;

We will now consider (3.27), without requiring (3.28). In this way a wider class of TVD

methods can be treated.
Apply theorem 3.11 to (3.27)

it — g0 ) A g — (v — 3¥()Agu;)

Ti+1

>0
A+u]‘ -
uj + 39(rp)A-uy — (wj-1 + 3(ri-1)A-uj—1) o
A_u]‘ -
which simplifies to
L= Srpnd(——) () 2 0
2r]+1 T]‘_|_1 2 7“]‘ -
1 1
L+ 5o(rje) = ijﬁb(rj) >0



Thus if v is such that

1 1
14+ §¢(3) — 5;/}(7“) >0 all r,s

the method is TVD. By inspecting the I-form in the proof of theorem 3.11, we see that
the boundedness (3.18) means that the this expression is bounded from above by a
constant, 1.e.

0<1+ %;/}(3) — %;/}(r) <A all r, s (3.29)

Theorem 3.12. If the limiter function 1 is Lipschitz continuous and the following
holds for all r
P(1) =1

m < (r) <M
P(r)

7

M+2-24< <24m

for some constants m > —1, M, A, then the second order semi discrete method, obtained
by putting (3.27) into a first order numerical flux function is second order accurate and
TVD if the first order flux corresponds to a monotone scheme.

Proof: We have seen above that (3.29) implies TVD. Estimate the expression in
(3.29) using the given bounds,

1 1 1 1
- - >14=m— = _
L S(s) — o) 2 14 om - (24 m) =0
We obtain the upper bound similarly,
1+1¢() i;z;()<1+1M l(M+2 24)=A
g\ T = ST T -

(3.29) holds and the method is TVD. Second order accuracy follows if (1) = 1
and 1 is Lipschitz in a neighborhood of 1. If u, # 0, then r; = 1 + O(Az) and
Y(r;) =14 O(Az), thus

1

1 1
Uiy = g = (A = uj = 5 A u; 4 O(A?) =
J

1 1 1
S i) = ALA L+ O(A) = S(uj + 1) + O(A?)

and similarly for u]L_H/z. Theorem 3.9 gives second order accuracy. The condition
m > —1 means that the point (1,¢(1)) is inside the TVD region. Since (r) is
bounded, we have in general lim,_ 4. ¢(r)/r = 0, which means that zero must be

an allowed value for ¢ (r)/r. This is no problem since A can be chosen large enough
so that the lower bound is negative.

The TVD domain is outlined in the figure 3.3. together with a shaded curve indicating
a limiter function inside the TVD domain.
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We now give some examples of commonly used limiter functions. The reader is
asked to verify that the functions satisfy the conditions for TVD and second order

accuracy given in theorem 3.12.

Psi

i=(2+m)r

(M+2-2A)r

}si

TvD
TVD ’

Fig.3.3. TVD region.

Example 3.6 The slope limiters given previously can be converted to limiter functions
with the following results. The minmod limiter becomes

Ao ifr <0

min(1,7) otherwise

P(r) =
van Leer’s limiter becomes

ﬁ\u r) = 2 .
(r) ID otherwise

Ao ifr <0

The superbee limiter becomes

Ao ifr <0

max(min(2r, 1), min(r,2)) otherwise

o(r) =

and finally the van Albada’s limiter becomes

ﬁmn_'ﬁ

v =

which one usually does not put equal to zero for r negative. It is inside the TVD region,
also for r < 0.

Now we give some limiters for which (r)/r # 1»(1/r), and thus which can not be
interpreted as piecewise linear interpolation.
Example 3.7 A generalization of the minmod limiter is

@SHAO if r <0

min(c,r) otherwise

where ¢ is a constant, 1 < ¢ < 2.



Example 3.8 2/5-limiters. These are limiters with the additional property
Y1) =2/3

In this case one can show that the scheme is third order accurate away from extrema.
Note that ¢(r)/r = ¢(1/r) implies that ¢'(1) = 1/2, so that it is impossible to interpret
these limiters as piecewise linear reconstruction. Some examples of limiters in this class
are

4r? 4 2
R
or ,
2re +r
hlr) = 22 —r 42

Of course, these 2/3-limiters satisfy ¢(1) = 1 and are inside the TVD region in figure
3.3.

We finally show in figures 3.4 — 3.7 some of the functions in the examples above.

2 T T T T T 2

151 1 15

1k

0.5r

0

-0.5F 1 -0.5[

1 L L L L L 1 L L L L L
-1 -0.5 0 0.5 1 15 2 -1 -0.5 0 05 1 15 2

Fig.3.4. Minmod limiter function Fig.3.5. van Leer limiter function

2 T T T T T 2

151 1 15F

1F

0.5

0

-0.5r 1 -0.51

El 05 0 05 1 15 2 E 05 0 05 1 15 2

Fig.3.6. van Albada limiter function Fig.3.7. 2/3-limiter function



3.6 Semi Discrete Outer TVD Schemes
The last part of this chapter is devoted to the outer TVD semi discrete schemes. Begin
with the centered difference approximation

du; 1 1
d—t] = _EA+§(]C(U]) + f(uj—l))

introduce the numerical flux %1/ from a first order TVD scheme and rewrite the
centered approximation as

du 1 1 1

d—t] = —EAJr(hj—lﬂ + §(f(uj) —hj_12) + §(f(uj—1) —hj-1/2))
we can interpret the numerical flux of this method as a first order one, with two cor-
rection terms. To make the approximation TVD it is necessary to sometimes switch off
the correction terms. We do this using a limiter function ( flux limiter ) similar to what
was done for the inner scheme. The numerical flux for the outer second order TVD
schemes is

1 1
B = hivge + 50 ujen) = i) + 590700 (w) = hypay)  (3:30)

where we use

v S =i o FO4) = Ry
Fujpr) =hjprpe 7 fluja) = hjoay
these quantities and the way the limiter functions ¢» depend on them are defined in such

a way that a reasonably simple condition on )(r) is obtained from the TVD requirement.
The formulas above are easiest understood through the proof of the following theorem.

Theorem 3.13. If the limiter function (r) satisfies
1 1
0<1-— §¢(T) + 2—¢(3) <A all rs (3.31)
s
for a constant A, then the outer semi discrete method is TVD.

Proof: We write the method with the numerical flux (3.30) on I-form

1
—A+h§2_)1/2 = —(hjy12 — fj + §(fj+1 — i) )+
1 _
S(f5 — hj+1/2)77b(rj+1) - hj—1/2 + fi—

2
L (fj—l - h]‘—l/z)@/}(r,j_))

§(fj - hj—l/z)%/’(r;r_ﬂ

Thus it is possible to define

1
2

lijyie — f; . 1 _
Citi2 = —m(l - 5@/’(7“]‘“) + fﬁ/}(ﬁ )
hj_isa—f 1
Djmpp = === o)+ 5 el )



from which we see that if the inequality

1 1
1— §¢(T) + %;/)(3) >0 all r, s
is true, then Cy,/5, Dji1/2 are non negative, and TVD follows from theorem 3.8.
Finally, the boundedness (3.18) gives the upper bound.

Finally we further investigate condition (3.31) to obtain a theorem similar to the-
orem 3.12.

Theorem 3.14. If the limiter function 1 is Lipschitz continuous and the following
holds for all r
P(1) =1

m < (r) <M
M—2§¢£T) <24—-24m

for some constants m,M < 2, A, then the second order outer semi discrete method,
using the flux (3.30), where h;y,, corresponds to a first order TVD scheme is second
order accurate and TVD.

Proof: We verify the condition (3.31). Use the given bounds to obtain the lower
limit
L Sh(r) 4 op(s) 21— 2 M 4 (M~ 2) 20
2\ T = R T Ty =

and the upper limit

1 1 1 1
_ - - <1—Zm4 (24— <
L= 50(r) + ot(s) S1—gm+ 5(24 -2+ m) < 4
and TVD follows from theorem 3.13. Second order accuracy follows if (1) = 1
and 1 is Lipschitz in a neighborhood of 1. If f, # 0, then r; = 1 4+ O(Az) and
Y(r;) =14 O(Az), thus the numerical flux of the method becomes

1 1

hjrie + 51+ OA)(Flujpr) = hjprje) + 51+ OA2))(f(uj) = hjtrye) =
1
5 (flujn) + f(uj) + O(Az?)
where we use that the flux difference f(uj11) —hjy1/2 = O(Ax) and similar for the
other flux difference. Thus the numerical flux is equal to the flux of a second order
scheme up to truncation error. The condition M < 2 means that zero is included in
the interval, which is necessary by the same argument as was given in the proof of
theorem 3.12. Since A can be chosen large enough, the point (1,4 (1)) can be included
into the TVD region.

The TVD region for the outer limiters is thus similar to the TVD region for the inner
limiters, shown in figure 3.3.

In fact most of the examples of limiter functions given in this chapter satisfy both
the requirements in theorem 3.12 and 3.14. The condition such a limiter has to satisfy
is obtained if we combine the two TVD regions.



[8]e)

Theorem 3.15. If¢(r) satisfies

$(1) =1

m < (r) < M
(r)

7

—
~—

=

M-2<

<24m

with M < 2,m > —1, then ¢(r) will give a second order TVD scheme if it is used either
as an inner or an outer limiter.

Remark: By choosing the constant A = 2, the TVD conditions for inner and outer
limiters coincide.

Let us finally compare the formula (3.30) with a simpler weighted upwind-centered
method, which we define in analogy with the methods in section 3.3, as having the
following numerical flux function

hﬁ)nz = (L —wjyiy2)hjp1y2 +wipiyphiy ),
The centered flux is h§+1/2 = (fj+1 + f;)/2, and hjyq/5 is the numerical flux of a first
order TVD method. With this method we can retain the simplicity of the weighted
TVD methods, and at the same time avoid the difficulties at steady state and multi
dimensional computations associated with the Lax-Wendroff method.

If we write out the formula above, we obtain

hgi)l/z = hjpayz +wiprp((Flujrn) + f()/2 = hjgay2)

and we see that this is a simplification of formula (3.30) where we lump together the
two correction terms, so that they are multiplied with the same weight. We could e.g.

define
wit12 = P(rj) +(1/rjpa) — 1
with
I Qj—1/2D-u; _ (fi + fi-1)/2— hj-1/2
! Qit120-u;  (fix1 +1i)/2—hjti/0
It is possible to show TVD for this method, under conditions on ¢, similar to the
previous analysis in this chapter.

Time discretization will be discussed in section 4. For the moment, we recommend
the Runge-Kutta method
ul = u™ — NALA"

j—1/2
u? = ut — /\A+h1_1/2

J
un—l—l — (un _I_ u2)/2

to be used for second order accuracy in time. It can be proved that if the semi discrete
problem is TVD, the fully discretized problem is TVD too, if the method above is used.



Exercises

1. Give conditions on s; such that the piecewise linear interpolation
u(e) =uj + sj(e —a;)/ Az i1y <@ < Xjpq0
does not increase the variation, i.e.

;4 5;/2 <ujyr —sj41/2 if u increasing

Uj+5;/2 > ujqr — 5j41/2 if u decreasing
2. The 2/3-limiters in example 3.8 can be viewed as a modification of the difference
scheme (the k-scheme)

1+& 1—=x
(wjpr —uj)+ 2 (uj —uj-1))

u?""l = u;‘ —aAtD_(u; +

for a certain value of x. Here it is applied to the problem u; + au, = 0, a > 0.
Investigate how the spatial accuracy depends on the parameter .

3. Give conditions on ¢(r) such that the method with numerical flux (3.11) and limiter
(3.13) is TVD when applied to the problem u; + auy = 0, a > 0.
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the method described in this section can be applied separately in the - and - directions
to approximate and respectively (see section 2.6). There are no extra com-
plications. For the cell centered scheme, the two dimensional generalization of formula
(4.1) gives an integral around the cell boundary. This integral is required to  th order
accuracy, which can be done by a numerical quadrature formula. If e.g., = 4 this
means using two values on each cell side. Thus for each cell, we need a two dimensional
reconstruction, which is a non trivial problem in its own right, and then we have 8 flux
evaluations to make, two on each side. The cell centered scheme quickly becomes more
computationally expensive than the point centered scheme.

The easiest way to obtain a high order time discretization is to use a Runge-Kutta
method. However it has been observed that e.g., the classical fourth order Runge-
Kutta method can cause large amount of oscillations in the solution although the space
discretization is made TVD. Therefore, we have to be extra careful about how to design
Runge-Kutta schemes.

We consider the semi discrete approximation

—= ()

to the problem
= ()
where we know that the forward Euler approximation
= A ()

leads to a TVD or ENO method. The semi discrete TVD methods treated previously
can all be written

— = A AL
with non negative . From theorem 2.12 it follows that the forward Euler
time discretization is TVD under the CFL constraint A ( + ) 1, all

Thus it is not too restrictive to assume TVD for the forward Euler time discretization.
The idea of TVD Runge-Kutta methods is to write the scheme as a convex combination
of forward Euler steps. One general form for explicit  stage Runge-Kutta methods is

= 4A () =12 (45)
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(4

where we will choose 0. To get the accuracy, take an exact solutionto = (),
and insert it into the method. The truncation error in time is (dropping all terms of

(A )
= (+4A) (. +A ()+  (+A ( )+
A ( +4 ()

where we use  to denote the exact solution ( ). Taylor expansion gives

=(1 ) +( A+
A
— A
g () O
The observation =( () = () = () ()gives the conditions for second
order accuracy
+ =1
1
-1
2
1
2
The factors
1

comes into the CFL condition. If they all can be made 1, this Runge-Kutta scheme
will be non oscillatory under the same CFL condition as the forward Euler scheme is
non oscillatory. If furthermore we can choose all non negative, we can avoid the

operator A( ). We first try = 1, which gives =1 2 and then to keep the next
CFL factor =1, we take = 1 2. This leads to =1 2 and = 0. We have
obtained the method
= +a ()
1
=50+ +A ()

which is the same as the method given on page 58. This method gives second order in
time and retains the non oscillatory features from the semi discrete approximation. It
does not require A( ), which saves programming effort.

In a similar way we can derive the third order TVD Runge-Kutta method

= +A ()

3 1 A
1tz tp O
1 2 2A
=3tz U
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()

therefore it is not reasonable to use a TVD scheme componentwise in (). A TVD
method has to be applied in the characteristic variables ().
In general we consider linear systems

+ —
where is a diagonalizable matrix. Then we can perform the transformation
_I_ =

where  is the matrix of eigenvectors of . Introducing the characteristic variable

we obtain the decoupled system

+A = (5 4)

where A is the diagonal matrix consisting of the eigenvalues of . We thus have a set of
independent scalar equations, () + () = 0 which have solutions  ( )
for given initial data ().
We use the decoupling of the linear system to solve the problem

+ =
if 0
0) = i
(0 if 0
where and are two constant states. A hyperbolic partial differential equation

with the initial data consisting of two constant states is called a
According to the discussion above, the solution can be written

where now all the functions () are step functions with a jump at = 0. are the

eigenvectors of  1.e., the columns of . We assume that the eigenvalues are enumerated
in increasing order . Let us denote
0
()= X

The solution is thus piecewise constant, with changes when changes sign for

some . From this observation the solution formula
()= ¥ = 4 )

follows easily. The solution is thus constant on wedges in the plane, as seen in

Fig. 5.3.
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We will here discuss three types of solutions.
1. Shocks.
Rarefaction waves.
3. Contact discontinuities.

o

In section 5.3 we will show how these three types of solutions can be pieced together
to form a solution of the Riemann problem for the non linear system. For the scalar
equation we have seen a shock solution in example 1.5 and an expansion wave solution
in  in example 1.4.

We first describe shock solutions. These satisfy the Rankine-Hugoniot condition,

( )= ) () (53)

which is derived in the same way as for the scalar problem. We also require an entropy
condition. Since we are dealing with the generalization of the convex conservation law,
we will look for an entropy condition which generalizes the condition (1.9) i.e., the
characteristics should point into the shock.

) )
- ) )

The meaning of this definition is first that the shock is in the th characteristic
variable, and second that the number of undetermined quantities at the shock (i.e.,
the number of characteristics pointing out from the shock) is equal to the number of
equations given by (5.5). If we consider the shock as a boundary we see that definition

5.3 means that the characteristics 1 1 are inflow quantities into the region on
the left of the shock. The characteristics + 1 are inflow quantities into the
region on the right of the shock. Thus there are 1 inflow variables which we must
specify. Eliminating from (5.5) gives 1 equations, thus the number of equations
and unknown are equal.
Assume that is given, we investigate which states can be connected to

through a shock wave. (5.5) is a system of  equations for the  + 1 unknowns,

We expect to find a one parameter family of solutions . Furthermore, it is natural to

have one such family of solutions for each eigenvalue, corresponding in the linear case
to placing the discontinuity in any of the  characteristic variables =1

These intuitive ideas are stated in the following theorem. The proof is not given here.
See e.g., [18] for a proof.

= () 0 (0)=

Formally we could use (5.5) to obtain a shock solution for 0 as well, but it turns
out that the entropy condition is not satisfied for  positive. The situation is similar
to the scalar equation, where the entropy condition imposes the restriction that shocks
only can jump downwards ( see examples 1.4 and 1.5 ).






(), p p P

k p 0 k p 0 (p)
The differentiability is proved by expanding the function (p) around p = 0, and

can be found in e.g., [18]. For the example m = 2, the situation is displayed in Fig. 5.5.
The curves show where it is possible to place

in order to connect it to the given
state through a shock or a rarefaction wave.
uZ
2
u 1-S
1-R
2\R

Uy

Fig. 5.5. Phase plane. 2-S = 2-shock. 1-R = 1-rarefaction.

Next we define the Riemann invariants. They are quantities which are constant on
rarefaction waves, and can be

k w(u ,...,u )
w=20
i.e., the gradient of w is perpendicular to the kth eigenvector of A.
m 1k

The vector field

can by a coordinate transformation =

() be written
9
ov

and we choose



The -Riemann invariants are constant on a -rarefaction wave.

Assume that the th field is linearly degenerate. The states on the
curve (5.8) can all be connected to through a discontinuity moving with speed



contact discontinuities



5.3. The Riemann problem for non linear hyperbolic systems
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3. Choose a point ( () =( + ( )) where is a random number
in [0 1]. The same random number is used for all cells.
4. Define the new value, , as the value of the solution of the Riemann problem

at this random point.

The same procedure is then repeated to get from ete.
In Fig. 5.9, we give a picture of the local Riemann problems in the plane as
obtained by this algorithm.

NEEAVAVAV

X1 X X

Fig. 5.9. Riemann problems are solved locally at cell interfaces.

The main advantage of the random choice method is that all grid values are obtained
as solutions of local Riemann problems. Thus no new intermediate values are introduced
in shocks, which in some applications can be of value. Because of the local Riemann
problems, control of the variation can be achieved by using estimates for the solutions of
the Riemann problem. We do not give the proof of theorem 5.10 here. It is technically
complicated, but does not rely on any advanced mathematical concepts.



We will consider the generalization of the first order schemes in chapter 2 to systems of
equations. For the special case of the gas dynamics equations

0
+ + = 0 (61)
(+) 0
specific formulas will be given. In (6.1) = is the momentum, the density,
the velocity, the pressure and the total energy of an inviscid fluid. An additional
relation to link  to the other variables is obtained by assuming the perfect gas
law
= D5 )
( 2
where 1is a constant specific for the fluid in question. For air one usually takes =1 4.

Since there is not sufficient theory available to derive a systematic treatment, the
ideas for systems are based on the TVD ideas for scalar equations. The methods for
systems are derived in a heuristic way. Thus this chapter can only describe “how to”
derive methods for system and not “if” or “why” the methods will give correct answers.

We will give first order accurate methods. Similar to the scalar case second order
methods can be derived from the first order ones by piecewise linear interpolation.

In the random choice method and the Godunov method, we have to solve a Riemann
problem exactly. In section 6.2 we show how to do this for (6.1) through an iterative
procedure. We begin by giving some formulas for simple wave solutions of (6.1) i.e.,
shocks, rarefaction waves, and contact discontinuities. We noted in chapter 5 that the
eigenvalues and eigenvectors are important for the wave structure. Thus we begin by
finding these quantites for (6.1).

Straightforward calculations, not given here.












6.2. The Riemann problem in gas dynamics
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where =1 2. If there is still convergence problems, we reduce further.
After  is found, we compute

- - - )

Theorem 6.2. gives complete information about the wave configuration. If 1 the
1-wave is a rarefaction, otherwise a shock and if 1 the 3-wave is a rarefaction,
otherwise a shock. The contact discontinuity lies between the 1 wave and the 3 wave,
and propagates with velocity

For each point () in which we want to compute the solution, we make tests to
decide whether the point is
To the left of the 1- wave.
Inside the 1-wave if it is a rarefaction.
To the right of the 1 wave but to the left of the contact discontinuity.
To the right of the contact discontinuity but to the left of the 3-wave.
Inside the 3-wave, if it is a rarefaction.
To the right of the 3 wave.
The jump condition, or the invariance of the Riemann invariants over the rarefaction

a

b

@ ]

(ol

)

waves, gives formulas for the intermediate quantities. Because we know the intermediate
pressure it turns out that there is no need to solve any equations, but all required
quantities are found from direct formulas. A fortran program which solves the Riemann
problem in gas dynamics is supplied in the appendix.

The formulas to determine () will be different in each of the different cases. The
computer program will thus contain a certain amount of formulas, but the execution time
will be reasonable, since only one branch of the alternatives is actually executed. On a
vector computer the situation becomes more troublesome, since there are difficulties in
making  statements vectorize.

We have now constructed a solution of the Riemann problem. By further analysis
of the solution procedure it is possible to prove

- —C + ) (69)

When (6.9) is not satisfied, there will be a vacuum present in the solution and the
intermediate state will therefore not be well defined.



In this section we give a description of three of the best shock capturing methods for
systems of conservation laws. First the Godunov scheme is described, since its main
feature is the solution of a Riemann problem, most of the description has already been
made in section 6.2. This scheme is important since other methods are often thought
of as its simplification. However, it is not necessary to make this interpretation.
Second we give the generalization of the upwind scheme to system, known as Roe’s
method. Finally the Engquist-Osher scheme for systems is described, it is usually called
Osher’s method.
Godunov’s method has many features in common
with the random choice method. The following algorithm describes the method.
1. We start from given the numerical solution at time . The solution is defined
for all by piecewise constant interpolation

(): 12 +1 2

2. We then solve the Riemann problems at all break points 4y 5. The next time
level 43 is made small enough such that no waves from two different Riemann
problems interact. This gives a CFL condition A A const. Let

(( +12) () +1)

denote the solution of the Riemann problem at ( ;4 o ).
3. The new solution is defined as the average over cell of the solution of the Riemann
problems in 2 i.e.,

M a0 ) )

+ (( v12) (4 ) +1) )

We write this algorithm on conservative form,
+1 _
= At 1y

by, taking a contour integral around one cell in the plane. Since the solution in
+1 satisfies the PDE exactly the integral is zero, and we get

(6 10)
(41 ) + ( (0 1)) =0

Since we have defined ' as the cell average of the solution, and since the integrals

in time have time independent integrands, we can rewrite (6.10) as a difference approx-
imation on conservative form with

412 = ( (0 +1 ))
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A l-rarefaction wave is travelling to the left. Travelling to the right, a 3-shock is
followed by a contact discontinuity. Note that the pressure does not change across the
contact discontinuity. The intermediate states are

0 345 1 304
= 0528 = 1995
6571 7693

and the wave speeds

= 2 480 for the shock
= = 05290 for the contact discontinuity
= 26326 = 16365 across the rarefaction wave

Problem number two is the following

1
0 0
25
0 )= 0195 (6 22)
0 0
025

for which the solution is displayed in Fig. 6.4.

Density Pressure Velocity

L L L L L L L L L L L L L L L L L L L L
-0.6 -0.4 -0.2 0 0.2 04 0.6 08 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 08 1 -1 -0.8 -0.6 -

Fig. 6.4. Solution of Riemann problem (6.22).

It has similar structure to the previous problem, with a 1-rarefaction followed by a
contact discontinuity and a 3-shock. The intermediate states are

042632 0 26557
= 039539 = 024631
094118 0 87204




1l

and the wave speeds

= 175222 for the shock
= = 092745 for the contact discontinuity
= 1183216 = 007027 across the rarefaction wave

The second problem contains a rarefaction wave which is close to being transonic, and
is a good test for the entropy condition.

These two problems can usually be solved without difficulties, although the quality
of the solution of course differs from different methods. A more difficult problem is the
following

1
2 0
3
0 )= 1 (6 23)
2 0
3

Density Pressure

L L L L L L K L L L L L L L L
-0.8 -0.6 -0.4 -0.2 [ 0.2 0.4 0.6 0.8 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Fig. 6.5. Solution of Riemann problem (6.23).

The intermediate state is

0 02185
0
0 004735

The state of low density and pressure will sometimes lead to difficulties with negative
pressure. Of the schemes described in this chapter only Godunov and the P-version of
the Osher scheme can solve this problem, without crashing because of negative pressure.

Another common test problem is the so called blast wave problem. This problem

1s defined on 0 1 with solid walls at =0 and = 1. The initial data is
(1 0 2500) 01
(0 )= (10002) 01 09 (6 24)

(10250) 09
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