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Abstract

Adaptive solution techniques are presented for simulating underwater explo-
sions and implosions. The liquid is assumed to be an adiabatic fluid and the
solution in the gas is assumed to be uniform in space. The solution in the water is
integrated in time using a semi-implicit time discretization of the adiabatic Euler
equations. Results are presented either using a non-conservative semi-implicit algo-
rithm or a conservative semi-implicit algorithm. A semi-implicit algorithm allows
one to compute with relatively large time steps compared to an explicit method.
The interface solver is based on the coupled level set and volume-of-fluid method
(CLSVOF) [19, 20]. Several underwater explosion and implosion test cases are
presented to show the performances of our proposed techniques.

Key Words: AMR; Semi-implicit; CLSVOF; Multi-phase; Under-water explo-
sions and implosions

1 Introduction

In this paper, we present adaptive solution techniques for simulating underwater ex-
plosion and implosion problems. These are multi-phase flow problems in which we solve
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a liquid component (water obeying Tait equation of state) and a gas component (gas as-
sume spatially uniform, and adiabatic). A Multi-phase flow calculation can be based on
either solving a two-fluid system, i.e, both gas and liquid (compressible or incompressible)
equations are solved, or based on solving a single fluid system, i.e, only liquid (compress-
ible or incompressible) equations are solved, and the gas contents are treated as spatially
uniform. For instance Fedkiw et al [10, 7] used compressible(gas)-compressible(water) and
compressible(gas)-incompressible (water) models. Compressible(gas)-compressible(water)
models are also used by [22, 25, 13]. Our method solves the compressible liquid equations
together with a compressible, spatially uniform, gas model. Multi-phase flow methods, in
which the liquid is treated as compressible, are often formulated as an explicit method(i,e
[22, 10, 25, 13]). The time step for an explicit method is constrained by both the mag-
nitude of the underlying velocity field and the magnitude of the sound speed of water.
Alternatively, the time step for a semi-implicit method is not constrained by the sound
speed of water. The following semi-implicit approaches have been developed for treating
water as a compressible fluid [28, 27, 9, 29]. In the context of a multi-phase flow prob-
lem, very little attention has been given to semi-implicit approaches for discretizing the
equations for the compressible flow of water [30].

Here we use semi-implicit discretizations to solve underwater explosion and implosion
problems. The semi-implicit discretization approach enables us to solve many problems
involving underwater explosions/implosions with a much larger time step than using
an explicit discretization approach. An efficiency comparison between our semi-implicit
methods and an explicit method due to Wardlaw [25] is made in the results section.

Adaptive Mesh Refinement (AMR) is another core feature of our algorithms. Adding
adaptivity to our calculations makes our semi-implicit methods even more efficient. The
need for the employment of the AMR technology in our computations is as follows. When
solving underwater explosion and implosion problems, it is important to resolve the flow
only around the high gradient regions such as shocks or material discontinuities in order
to obtain efficient and accurate solution representations and save CPU time. Automating
dynamic Adaptive Mesh Refinement techniques are customized to serve these purposes.
The idea behind the Adaptive Mesh Refinement technique [5, 4] is to overlay successively
finer resolution grid patches on top of underlying coarse grids, and to introduce a recursive
time integration algorithm, then to synchronize the data between different grid levels.
The time integration algorithm can be applied in two ways. One way is that all grid levels
are advanced with the finest grid level time step. This is called the no-time-subcycling
procedure. Another way is that a coarser grid level is advanced with a coarse time step
and a finer grid level is advanced with multiple fine time steps until the finer level time
reaches to the coarser level time. This is called the time-subcycling procedure.

Early Adaptive Mesh Refinement (AMR) techniques [5, 4, 3] are developed for solving
hyperbolic conservation laws. Later, they are extended to solve the compressible Navier-
Stokes equations [17, 16]. There have been significant efforts to solve incompressible or
weakly compressible flows adaptively [1, 14, 11, 12, 2, 8, 18].

Our method shares some common features with [1] in the sense that we both subcycle
in time and we both provide velocity continuity across the coarse/fine grids. Almgren’s et
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al [1] method includes a synchronization projection step to provide velocity and pressure
continuity across the coarse/fine grids. In [1], firstly, the velocity field is advanced on
each level separately allowing velocity mismatch across the coarse/fine levels, then a
multi-level composite projection step is applied at the end of each coarse level to correct
the velocity differences. As a result their correction procedure modifies the solution
on both coarse and fine levels. On the other hand, during our time advancing step,
we solve the pressure equation on the current level and all levels above simultaneously.
This produces accurate pressure boundary conditions for the next finer level. Also,
since we solve on all levels l

′ ≥ l simultaneously, the velocity mismatch error, that
gets corrected at the end of the ensuing fine time level integration steps, is significantly
reduced. During the synchronization step, we solve the synchronization equations in the
underlying coarse regions with Neumann boundary conditions. In this way, we maintain
the velocity continuity without modifying the solution at the fine levels, i.e, we assume
that the fine level velocity is correct and should not be changed.

The contents of the present paper is as follows. In Section 2, we describe the gov-
erning dynamics equations. In Section 3, we review the AMR grid hierarchy and define
the components of our adaptive semi-implicit algorithms. In Section 4, we present the
numerical results from the computations of underwater explosion/implosion test cases .
Section 5 includes some concluding remarks.

2 Governing equations

Here we are interested in studying non-linear bubble dynamics by simulating under-
water explosions and implosions. An underwater explosion can be modeled as a high
pressure gas bubble which generates a shock wave. An underwater implosion can be
modeled as a collapse of a low pressure gas bubble. We make the following assumptions
when modeling the flow in water: the bubble growth and collapse are assumed to be
axisymmetric. The system is assumed to be adiabatic, i.e, we ignore the heat convection
in water. We assume that surface tension and viscous effects are negligible. Finally we
assume that water is compressible and obeys the Tait equation of state (see equation
(32) in Section 4), which is independent of internal energy [25].

With the above assumptions, the governing fluid dynamics equations for water become
the inviscid compressible Euler equations,

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (1)

where

U =

 ρ
ρu
ρv

 ,
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F =

 ρu
ρu2 + p

ρuv

 ,

and

G =

 ρu
ρuv

ρv2 + p

 ,

where ρ,u = (u, v), and p denote density, velocity, and pressure per unit volume, the
momentum field is defined as m = ρu. We enforce Dirichlet type moving boundary
conditions for the water pressure, i.e, we specify the water pressure as the bubble pressure
at the bubble wall. We treat the gas as uniform in space, but varies in time. In other
words, we don’t solve the gas dynamics equations inside the bubble. Instead, we compute
the time dependent bubble pressure by the JWL (Jones-Wilkins-Lee) gas relation,

pbubble(t) = Ae
−R1(

V (t)
VI

)
+ Be

−R2(
V (t)
VI

)
+ C(

V (t)

VI

)−(ω+1), (2)

where VI is the volume of the bubble at the radius RI , and A, B, R1, R2,RI , and ω are
standard constants for explosive material, and finally C is an arbitrary constant which can
be determined from initial pressure and volume by letting V (t) = V0, pbubble(t) = pbubble0

at t = 0.
The material surface (bubble interface) is tracked by the following level set equation,

∂φ

∂t
+ u · ∇φ = 0, (3)

where φ is the level set function and u = (u, v) is the external velocity field (water
velocity). The level set equation (3) states that φ is constant along the particle paths.
This means that if the zero level set of φ is initialized as the material surface (bubble
interface) between water and gas, then the zero level set will always be a material surface
at later times [19]. We take φ < 0 in the gas region and φ > 0 in water region (Figure
1). Hence, we have

φ(x, t)


> 0 if x ∈ water
= 0 if x ∈ Γ
< 0 if x ∈ gas,

(4)

where Γ represents the material surface (bubble interface), and it is defined as the zero
level set of φ,

Γ = {x | φ(x, t) = 0}. (5)

The the material surface (bubble interface) is reconstructed through the coupled level
set and volume-of-fluid method (CLSVOF)[19, 20] which requires that we have to solve
the following volume fraction equation in addition to solving the level set equation (3),
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∂F

∂t
+ u · ∇F = 0, (6)

where F represents the volume-of-fluid function (volume fraction) and u is water velocity.
We identify water and gas region via the volume-of-fluid function (volume fraction). For
instance, let Ω be a computational cell, then according to the value of the volume-of-fluid
function (volume fraction) we will decide that either Ω contains water, gas, or both. In
other words, if F (Ω, t) = 1, then the region Ω is all water. If F (Ω, t) = 0, then the
region Ω is all gas. If 0 < F (Ω, t) < 1, then Ω contains both water and gas (Figure 1).
Incorporating with the definition of the level set function and making use of the Heaviside
function, F can be written as

F (Ω, t) =
1

| Ω |

∫
Ω

H(φ)dx, (7)

where H is the Heaviside function,

H(φ) =

{
1 if φ ≥ 0
0 otherwise.

(8)

3 Components of the new adaptive solution tech-

niques

In this section, we will describe the components of the new Adaptive Mesh Refinement
(AMR) techniques. In the first subsection, we will describe the basic structure of the
multi-level grids and give detail information about the grid management. In the second
subsection, we will describe the time integration algorithms and point out some algorith-
mic facts. The third subsection will be dedicated to the synchronization procedure.

3.1 Multi-level grid refinement and management

The AMR methods are based on solving partial differential equations on a sequence
of locally refined rectangular grids. Therefore, the grid refinement plays an important
role in an AMR algorithm. There are different levels of grid refinement ranging from the
coarsest to the finest. Each level is a finite union of rectangular grid patches. In other
words, a level Gl for l = 0, 1, ..., lmax is defined as

Gl = ∪kGl,k, (9)

where Gl,k’s are the rectangular grids. In the grid hierarchy, grids at different levels must
be properly nested. This means that the union of level l + 1 grids is contained in the
union of level l grids for l = 0, 1, ..., lmax. Moreover, there must be (except at the physical
boundaries) at least one level l cell wide border surrounding each level l + 1 grid [1] . At
the physical boundaries, the proper nesting is not so strict, i.e, grids from all levels can
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extend to the physical boundaries. When a fine grid has more than one parent grid, the
fine grid can cross a coarser grid boundary and still be properly nested. We refer Figure
2 for a clear illustration of a properly nested grid.

The grids are generated and refined depending on evolving flow conditions. In other
words, a user specified error procedure is employed in order to identify the regions where
additional refinement is required, and delete the formerly fine grids which are not needed
anymore. In our case, grids are needed to be refined around the bubble interface and the
shock front. Our error procedure is as follows. We make use of the level set function when
refining the grids around the bubble interface. For instance, we tag a cell if |φi,j| < ∆x.
Figure 3 illustrates the tagging procedure. The refinement around the shock region is
done by the following criteria,

σ =
√

(pi+1,j − pi−1,j)2 + (pi,j+1 − pi,j−1)2, (10)

where pi,j represents water pressure at (i, j)th cell. Here we tag the cells in which σ is
greater than some cutoff value. In addition to the tagged cells according to the above
given criteria, we tag more cells in the vicinity of the tagged cells. These additionally
tagged cells are called the ”buffer cells”. Adding buffer cells insures that the discontinu-
ities do not propagate out from a fine grid into coarser regions before the next regridding
time. After the tagging process is done, rectangular grid patches are created by using
the clustering algorithm which is defined in [6]. The grid patches do not contain only
tagged cells. They will contain also untagged cells. We don’t want to include too many
untagged cells, thus we define the grid efficiency as the ratio of the tagged cells to the
untagged cells that would appear on a level. A typical grid efficiency is taken about 60
%. After the rectangular grid patches are created, they are refined to generate the next
level of grids by obeying the proper nesting requirement. The refinement ratio that we
use is r = 2, i.e, in x-coordinate direction,

∆xl+1 =
1

r
∆xl. (11)

The initial grid generation at all levels (from the coarsest to the finest) uses the initial
data at t = 0. Because of the changing flow conditions, grids except the coarsest one
are redefined at every user specified number of time steps. For instance, level l + 1 grids
are modified at the end of every kl level l time steps. Since we subcycle in time, e.g,
∆tl+1 = 1

r
∆tl with r = 2, grids at l + 2 can be created or modified in the middle of a

level l time step if kl+1 < r. When the new grids are created at level l + 1, we check if
these new level l + 1 grids overlap with the previous level l + 1 grids. If the overlapping
occurs, then the information from the overlapping previous l + 1 grids is simply copied
into the newly created l +1 grids. For the non-overlapping regions, the information from
the level l grids is interpolated into the new l + 1 grids.

The boundary conditions for a given grid is provided either by physical boundary
conditions or by ghost cells which are seeded in a narrow band around the grid. In our
case we use a band consisting of three ghost cells as in [1]. The ghost values around a
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fine grid are defined as time and space interpolation of the data from the previous coarse
grid.

3.2 Multilevel time integration algorithm

Here, first we will outline the basic structure of our recursive AMR algorithm. Then we
will define the semi-implicit time integration algorithms. Lastly, we will briefly describe
our interface evolution procedure.

Basic structure of the AMR algorithm:

Define all levels from l = 0 to l = lmax with the initial data at t = 0.
Recursive procedure Advance (level l)

if time to regrid at level l + 1
Estimate errors at level l + 1
Generate new grids at level l + 1
if l + 1 < lmax then regrid l + 2

endif
if l = 0 obtain boundary data from physical boundaries
else obtain boundary data from coarser grids and physical boundaries.
Integrate level l in time with the semi-implicit algorithm.
if l < lmax

for kl = 1, ..., rtimecycle

Advance (level l + 1)
end

endif
Synchronize the data between levels l and l + 1.

End recursive procedure Advance

Our recursive adaptive procedure is the same as described by [15, 1] except that our
integration and synchronization steps are different (see section 3.3).

3.2.1 The semi-implicit algorithms

In this section, we present two versions of the semi-implicit techniques. The first
version is a non-conservative semi-implicit technique and is similar to [31] except that
we don’t use CIP procedure(refer to [31]) to solve the advective quantities. The second
version is a conservative one, and it is based on the work by Wesseling et al [23, 26].

3.2.2 Outline of semi-implicit algorithms

The general outline of our semi-implicit algorithms on a single level is as follows:
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1. Calculate provisional values for velocity, density and pressure by computing the non-
linear advective force terms.

2. Calculate the new pressure via an implicit procedure in which one solves a Helmholtz
equation for pn+1.

3. Update the new velocity and density, extrapolate the velocity and density from liquid
regions into gas regions.

4. Update the location of the gas-liquid interface.

3.2.3 Non-conservative semi-implicit algorithm

The non-conservative semi-implicit algorithm consists of two separate phases, advec-
tion and non-advection phases. During the advection phase, provisional advective quan-
tities for density and velocity are calculated by solving the following equation,

∂S

∂t
+ u · ∇S = 0,

for some quantity S. The advective pressure is computed by the Tait equation of state
(32), i.e, padvect = pTait(ρ

advect). After the advection phase, an implicit algorithm for
calculating the updated pressure is applied.

In our discretization, advective velocities, u, are face-centered and the other fluid
variables (i.e. the advective quantities S) are cell-centered.

Advection phase:

ρadvect − ρn

∆t
+ [u · ∇ρ]n = 0, (12)

uadvect − un

∆t
+ [u · ∇u]n = 0. (13)

Here advective flux terms are evaluated by a second order van Leer [24] slope limiting
procedure.

Non-advection phase:

un+1 − uadvect
edge

∆t
= − 1

ρadvect
∇pn+1, (14)

pn+1 − padvect

∆t
= −ρadvectc2(ρadvect)∇ · un+1, (15)

ρn+1 = ρadvecte−∇·u
n+1∆t. (16)
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Taking the divergence of equation (14) and replacing ∇·un+1 terms in equation (15),
we obtain the following elliptic system for the pressure,

∇ · ( 1

ρadvect
∇pn+1)− 1

∆t2ρadvectc2(ρadvect)
pn+1 =

1

∆t
∇ · uadvect

edge − (17)

1

∆t2ρadvectc2(ρadvect)
padvect,

where uadvect
edge = un

edge + Iedge
cell (uadvect − un) with Iedge

cell denoting interpolation from cell-
centered to edge-centered (or face-centered in 3D) velocity. For each time step, ∆t, the
new pressure field is computed by solving the implicit system (18), then the new velocity
and density fields are explicitly computed via (14) and (16). We note that at a given
level, (18) is solved at all levels above simultaneously to ensure the pressure continuity
across the coarse/fine grids. The simultaneous solution of (18) requires the calculation of
the divergence of the advective velocities at all levels above a given level. The advective
velocities on finer levels are calculated by interpolating the advective velocities from the
current level.

3.2.4 Conservative semi-implicit algorithm

Below, we describe the conservative semi-implicit method. As reported in [23, 26],
this method can handle both compressible or weakly compressible flows. Its conserva-
tive form implies correct shock solutions when the flow is compressible, and its implicit
pressure treatment ensures stable solutions for weakly compressible flows or flows at the
incompressible limits. The method consists of two steps. In the first step, the prediction
step, intermediate momentum values are predicted. In the second step, the correction
step, a pressure correction is postulated. Solving the pressure correction equation, the
new pressure field is calculated. Then the other field variables are updated accordingly.

Prediction step:
m∗

α −mn
α

∆t
+ (m∗

αun
β),β = −pn

,α, (18)

where α and β denote the values and derivatives in x, y, or z space directions. For
instance, if the α = x, then mα represents the x-momentum, and p,α represents the x-
derivative of the pressure field.

Correction step:
mn+1

α −m∗
α

∆t
= −δp,α (19)

where δp = pn+1 − pn. This postulate is substituted in to the continuity equation

ρn+1 − ρn

∆t
+ (m∗

α −∆tδp,α),α = 0. (20)
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Making use of the implicit form of the equation of the state, i.e, ρt = 1
c2

pt and
ρn+1−ρn

∆t
= 1

c2
pn+1−pn

∆t
, we obtain

(δp,α),α −
1

c2∆t2
pn+1 =

1

∆t
(m∗

α),α −
1

c2∆t2
pn. (21)

Solving the equation (21) for δp, we update the pressure immediately with pn+1 =
δp + pn. Then the new momentums are calculated by mn+1

α = m∗
α −∆tδp,α.

3.2.5 Evolution of the material surface (bubble interface)

The level set equation (3) and the volume fraction equation (6) are solved in a narrow
band about the zero level set. The narrow band velocity is formed by extending the water
velocity into the gas region. The extension procedure is described in [21] in detail. The
interface equations, the level set equation (3) and the volume fraction equation (6), are
solved by the second order coupled level set volume-of-fluid method (CLSVOF))[20, 19].
The CLSVOF uses second order operator split (Strang-Splitting) advection algorithms
for both the level set function and the volume fractions [20, 19]. The discrete level set
function φn

i,j and the discrete volume fraction function F n
i,j are located at cell centers.

The motion of the material surface is determined by face-centered velocities. At every
time steps, the level set function has to be reinitialized as a signed distance function in
order to preserve volumes. In the CLSVOF method, the volume fractions are used to
construct a volume preserving distance function, and the level set function is used to
truncate the volume fractions, i.e, the truncation step removes spurious volumes. For
more algorithmic details about CLSVOF method, we refer to [20, 19].

3.2.6 Calculation of ∆t

We use two different time steps in our calculations and refer to them as ∆texplicit

(explicit time step) and ∆tsemi−implicit (semi-implicit time step). The explicit time step
is defined by

∆texplicit =
∆x

|u|+ c
, (22)

where c denotes the sound speed. We define c as

c2 =

{ ∂p
∂ρ

if ρ > ρc

c2
ε if ρ < ρc ,

(23)

where ρc is the critical density below which water cavitates, and c2
ε is set to zero in

most of the calculations except c2
ε = ∂p

∂ρ
|ρ=ρc when we do subcycling calculations. The

Semi-implicit time step is defined by

∆tsemi−implicit =
∆x

|u|
. (24)
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The explicit time step, ∆texplicit, will be used when we are interested in calculating
highly resolved socks. The semi-implicit time step, ∆tsemi−implicit, will be used when
simulating the evolution of the material interface. We remark that at the very first time
step regardless of whether we are using ∆texplicit or ∆tsemi−implicit, we always use ∆texplicit.
Detailed discussion about the employment of both time steps is given in Sections 4.1 and
4.2.

3.3 Synchronization procedure

The synchronization procedure is performed at the end of a level l time integration
step, i.e, all finer levels above have been updated. We execute the synchronization step
in a way that first we average down the cell/face centered level l + 1 data to the level l
grids;

U l ←− 1

r2

∑ ∑
U l+1 (25)

where U l+1 represents a computed flow variable from level l + 1, and r is the mesh
refinement ratio. Then we solve the following synchronization equations in the underlying
coarse regions by supplying Neumann pressure boundary data from the next fine level
(Figure 4).

We consider,

un+1 = un+1,old −∆t
1

ρadvect
∇δp, (26)

pn+1 = padvect −∆tρadvect(cadvect)2∇ · un+1, (27)

ρn+1 = ρadvect −∆tρadvect∇.un+1, (28)

where the superscript (n + 1, old) represents the values computed on level l grids at the
end of level l time steps, and δp = pn+1−pn+1,old. Substituting the divergence of the new
velocity from the equation (26) into the equation (27), we obtain the following equation
for the pressure correction,

δp

∆t2(ρc2)advect
−∇ · (α ∇δp

ρadvect
) = −∇ · u

n+1,old

∆t
+

padvect − pn+1,old

∆t2(ρc2)advect
, (29)

where α is defined as, e.g., in the x-direction,

αi+ 1
2
,j =

{
10−3 if xi+1,j and xi,j in fine grids
1 otherwise.

(30)

We note that the right hand side of the equation (29) is identically zero, for a uniform
mesh (versus an adaptive hierarchy of levels) since the right hand side of (29) is identical
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to (15). We also remark that we must specify a cutoff for α for otherwise (incompress-
ible flow case) the resulting linear system for δp might violate the solvability condition.
The coefficient α effectively induces a Neumann boundary condition, ∇δp · n = 0, at
coarse/fine grid borders. This way the velocity covered by finer levels is not modified.

4 Numerical results

4.1 Spherical explosion-bubble growth and collapse

A region of high-pressure JWL gas, with a radius of 16 cm, fills a small bubble at the
lower left corner of a two dimensional domain as shown in Figure 5. The initial material
states for this problem are

JWL: ρ = 1.63g/cm3, p = 7.8039E + 10d/cm2

Water: ρ = 1.00037984g/cm3, p = 1.0E + 7d/cm2, u = 0.0.
The high pressure bubble initiates a spherically propagating shock wave. While the

shock front rapidly leaves the region, the bubble continues to grow. Figure 6, produced by
using our non-conservative semi-implicit method, depicts the physics of the principal flow
variables. Figure 6 is created at t = 1msec using 128× 128 base grid with two levels of
refinement. The computational domain size is taken as 256.0×256.0. And the adaptivity
cutoff value for the equation (10) is set to 4.0E + 6d/cm2. From the contour plots of
density, pressure, x-velocity, and y-velocity in Figure 6, we observe that the propagation
of the shock front and the motion of the bubble interface are solved without excessive
oscillations. This is also evident by Figure 7 (which is the x-slice of the perssure field).
In Figure 7, we compare water pressure obtained by the non-conservative semi-implicit,
conservative semi-implicit, and an explicit two phase method due to Wardlaw [25]. Figure
7 indicates that both the non-conservative and the conservative semi-implicit methods
are comparable to the two phase explicit method. We note that the shock amplitude
is higher with the two phase explicit method. We attribute this difference to the fact
that we don’t solve the gas dynamics inside the bubble whereas the two phase explicit
method does. One key observation about our non-conservative semi-implicit technique is
that it computes the evolution of the shock wave as good as its conservative semi-implicit
counterpart. In other words, the non-conservative semi-implicit method gives comparable
results for shock amplitude and shock speed as the conservative semi-implicit method.
We remark that if we modeled the water with a non-adiabatic equation of state, then the
non-conservative approach would give the incorrect shock speed. We have observed for
gas dynamics, that the non-conservative approach overpredicts the shock speed by 25%
for a non-adiabatic equation of state.

Figure 8 compares the bubble radii when calculated using the non-conservative and
conservative semi-implicit approaches respectively. It is clear from this figure that the
both methods capture the bubble interface identically. In Figure 9, we provide a conver-
gence study. We compare 128×128 single grid calculations to the one level of refinement
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and two levels of refinement results. Here we notice that the shock representations get
sharper for both methods when the grids are refined; we also observe that the rela-
tive error between successive grid resolutions is decreasing which indicates our method
converges as the grid is refined.

We computed the problem illustrated in Figure 8 beyond t = 1msec. This time we
set the computational domain size to 6000.0×6000.0 and the adaptivity cutoff parameter
to 4.0E + 7d/cm2. The bubble ultimately reaches its maximum radius and then starts
collapsing. Figure 10 represents one collapse cycle. The bubble reaches its maximum
radius around t = 66msec and bounces back to a minimum radius before expanding
again at around t = 132msec. In Figure 10, we compare the bubble radii obtained by
the non-conservative semi-implicit method, conservative semi-implicit method, and an
explicit method due to Wardlaw [25]. Our adaptive calculations are done on a 64 × 64
base grid with six levels of refinement. Figure 10 indicates that both non-conservative
and conservative semi-implicit methods approximate the bubble radius comparable to the
explicit method. For the calculations indicated in Figure 10, the time step is significantly
larger than what would be used by an explicit method. The time step used for computing
bubble growth and collapse was determined only by the maximum velocity; the time
step did not depend on the speed of sound waves. We remark that if shock resolution is
important, then we must use time steps determined by an “explicit” time step constraint
(taking sound speed into account when calculating ∆t). Our method remains stable for
large time steps, but shock waves are severely diffused. Shock waves are characterized
by significantly faster time scales than the time-scale associated with bubble growth and
collapse. For measuring the dynamics of bubble growth and collapse, we find that a time
step determined only by the underlying velocity field is sufficient to accurately predict
the bubble radius.

In section 4.2, we show that the results for the bubble radius using an “explicit”
∆t (sound speed taken into account) are comparable to the results when using a “semi-
implicit” ∆t.

Below we make an efficiency comparison for our adaptive techniques. In order to
produce the radii in Figure 10, it took 1930 time steps with the non-conservative semi-
implicit method, 2028 time steps with the conservative semi-implicit method, and 97540
time steps when using a time step determined by an “explicit” criterion. It is clear that
a semi-implicit technique for measuring bubble-growth and collapse are far more efficient
than an explicit method.

In Figure 11, we provide a convergence study. Taking 64 × 64 as a base grid, we
perform two calculations with six and seven levels of refinement, respectively. Figure
11 shows that our approximations using either semi-implicit method get better with the
refined mesh.

4.2 Bubble jetting

In this section, we present the computational results of the underwater explosion taking
place under a flat plate. The problem description is as follows. An explosive device
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weighing 17.08grams and located below a flat plate is detonated at a depth of 98.5meters.
A diagram of this problem is shown in Figure 12. The plate is circular with a radius of
88.9cm and has a thickness of 10.0cm. The initial material states for this problem are:

The initial water density is taken to be 1.00039080 g/cm3.
The initial water pressure is 1.026E + 07d/cm2

Note that the water initial state corresponds to a depth of 98.5meters. As a conse-
quence of gravity, the water density decreases linearly to 1 at the surface. Water density
as a function of depth is calculated by

ρ(y) = 1 + (ρdep − 1)(h + k − y)/h, (31)

where ρdep is water density at the depth where the explosive is located, i.e, ρdep =
1.00039080g/cm3, h is the distance between the bottom and the surface of the sea,
specifically h = 200meters, k is the distance between the bottom of the sea and the
location of the explosive.

The water pressure is calculated by the Tait equation of state [25], i.e,

p =

{
pc if ρ < ρc

B[(ρ/ρ)γ − 1] + A o.t
(32)

where B = 3.31E + 09d/cm2, A = 1.0E + 06d/cm2, ρ = 1.0g/cm3, and γ = 7.15. The
cavitation pressure and density for water are pc = 220.2726d/cm2 and ρc = 1.0−4.225E−
5g/cm3.

The initial water velocity is taken to be 0.0.
The initial bubble pressure is taken as P0 = 8.3837E + 10 d/cm2. The initial bubble

radius is 1.36 cm. The JWL constants (refer to equation 2) applicable to this problem are
A = 3.71E +12, B = 0.03231E +12, ω = 0.3, R1 = 4.15,R2 = 0.95, and ρ0 = 1.63g/cm3.
This problem is cast in 2-D cylindrical coordinates and uses a gravitational constant of
981 cm/s2.

At the boundaries of the computational domain, we specify outflow conditions for
the velocity, and we specify hydrostatic pressure conditions for the pressure. Here, the
computational domain is 400.0 × 400.0, and the adaptivity cutoff parameter is 4.0E +
6d/cm2.

After the initial explosion, the shock wave quickly propagates towards the plate in a
spherical fashion. The shock front, hits the plate and reflects back. In Figures 13 and
14, we show the time history of the pressure profile. Notice that around t = 0.1msec,
the shock front has already hit the plate and reflected back. Figures 15 and 16 give the
time history of the solution for the bubble interface. The bubble interface first grows in
a spherical fashion, after interacting with the reflected shocks and after interacting with
the plate, the explosive bubble transitions into a toroidal shape.

In Figure 17, we compare the effective bubble radius generated by our adaptive non-
conservative and conservative semi-implicit techniques at t = 15msec. The effective
radius is the radius of the sphere which corresponds to the volume of the distorted
bubble. Figure 17 also shows mesh refinement study for both methods. Wardlaw with
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his explicit calculations[25] reported that the maximum effective radius for this problem is
approximately 18cm. From figure 17, we see that our semi-implicit methods also predict
the maximum effective bubble radius close to 18cm. Figure 18 show the results which
are calculated with our non-conservative semi-implicit technique by using the explicit
time steps. As can be seen from Figures 17 and 18 that the effective bubble radius are
almost identical indicating once again that one can choose not to use the explicit time
steps when calculating the evolution of the material interface.

We note that all the calculations above are performed without including the subcy-
cling procedure. In the next test, we turn the subcycling procedure on and compare the
efficiency of this procedure to the no-subcycling one. We compute the bubble jetting
(bubble-plate test) problem on a 320 × 320 base grid plus two levels of adaptivity. The
physical domain size is 400.0× 4000.0, and the final time is 15msec. Figure 19 compares
the bubble radii calculated with both procedures. The left figure compares the results
of subcycling versus no-subcycling procedures from the non-conservative semi-implicit
calculations using ∆texplicit. The right figure compares the results of subcycling ver-
sus no-subcycling procedures from the non-conservative semi-implicit calculations using
∆tsemi−implicit. As can been seen from the figures that the subcycling results are fairly
comparable to the no-subcycling ones. As far as the efficiency is concerned, we have the
following findings. To produce the left figure, it took 3942 time steps and 126789 seconds
of run time for the subcycling calculations, and 15846 time steps and 190866 seconds run
time for the no-subcycling calculations. To produce the right figure, it took 270 time
steps and 9164 seconds of run time for the subcycling calculations, and 948 time steps
and 11962 seconds run time for the no-subcycling calculations. Thus it is evident that
that the subcycling procedure improves the run-time of the computations.

5 Conclusions

We presented adaptive solution techniques for simulating underwater explosions and
implosions. We solved several test problems to show the performance of our methods. We
validated our results by performing grid refinement studies in which we added additional
levels of adaptivity. Also we validated our results by comparing shock speed, shock am-
plitude, and material interface speed, with benchmark results produced by Wardlaw[25].
Also, we compared our two semi-implicit formulations (conservative vs. non-conservative)
against each other with good agreement. Finally, we showed that for some specific cases,
e.g. investigating bubble growth and collapse dynamics, that the semi-implicit approach
is significantly more efficient than an explicit approach. Our semi-implicit approach af-
fords one the flexibility of predicting early time shock dynamics (albeit with a time-step
comparable to an explicit method), and at the same time, also predicting ensuing late
time bubble dynamics with a much larger time step than an explicit counterpart.
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Figure 1: Representing the bubble interface by the level set function and defining the
corresponding volume fractions.
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Figure 2: A properly nested grid around a front.
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Figure 3: Tagging cells around the bubble interface using the level set function.
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Figure 4: The synchronization step from the level l+1 to the level l. The synchronization
equations are solved in underlying level l region with the specified boundary data.
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Figure 5: Sketch of the spherical explosion bubble growth problem.
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Figure 6: Axisymmetric underwater explosion test results using the non-conservative
semi-implicit method at t = 1. The upper left figure represents the density, the upper
right figure represents the pressure, the lower left figure represents the x-velocity, and the
lower right figure represents y-velocity.
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Figure 7: Comparison of the liquid pressure for the bubble growth problem. Solid line
represents the result from an explicit method due to Wardlaw et al. Dashed line represents
the result from the conservative semi-implicit method. Dashed and dotted line represents
the result from the non-conservative semi-implicit method. t = 1.
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Figure 8: Comparison of the results of the non-conservative semi-implicit and the con-
servative semi-implicit methods for the bubble radius. t = 1.
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Figure 9: A grid refinement study for the bubble pressure when solving the bubble growth
problem. Left figure corresponds the results from non-conservative semi-implicit method.
Right figure corresponds the results from conservative semi-implicit method. t = 1.
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Figure 10: Comparison of the bubble radius for the bubble growth and collapse problem.
Solid line represents the result from an explicit method due to Wardlaw et al. Dashed
line represents the result from the conservative semi-implicit method. Dashed and dotted
line represents the result from the non-conservative semi-implicit method. t = 150msec.
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Figure 11: A grid refinement study for the bubble growth and collapse problem. Left
figure corresponds the results from non-conservative semi-implicit method versus the
explicit method. Right figure corresponds the results from conservative semi-implicit
method versus the explicit method. Base grid for the both refinements is 64 × 64. t =
150msec.
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Figure 12: Sketch of the underwater explosion test problem
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Figure 13: The time history of the liquid pressure profile generated by using the non-
conservative semi-implicit method. 320×320 base grid with two levels of grid refinement
is used for these computations. Time for the upper left figure is 0.05msec. Time for the
upper right figure is 0.1msec. Time for the middle left figure is 0.2msec. Time for the
middle right figure is 0.3msec. Time for the lower left figure is 0.4msec. Time for the
lower right figure is 0.5msec.
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Figure 14: The time history of the liquid pressure profile generated by using the non-
conservative semi-implicit method. 320×320 base grid with two levels of grid refinement
is used for these computations. Time for the upper left figure is 0.6msec. Time for the
upper right figure is 0.7msec. Time for the middle left figure is 0.8msec. Time for the
middle right figure is 0.9msec. Time for the lower left figure is 1.0msec. Time for the
lower right figure is 1.1msec.
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Figure 15: The time history of the bubble interface profile generated by using the non-
conservative semi-implicit method. 320×320 base grid with two levels of grid refinement
is used for these computations. Time for the upper left figure is 1.0msec. Time for the
upper right figure is 2.0msec. Time for the middle left figure is 4.0msec. Time for the
middle right figure is 6.0msec. Time for the lower left figure is 8.0msec. Time for the
lower right figure is 9.0msec.
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Figure 16: The time history of the bubble interface profile generated by using the non-
conservative semi-implicit method. 320×320 base grid with two levels of grid refinement
is used for these computations. Time for the upper left figure is 10.0msec. Time for the
upper right figure is 11.0msec. Time for the middle left figure is 12.0msec. Time for the
middle right figure is 13.0msec. Time for the lower left figure is 14.0msec. Time for the
lower right figure is 15.0msec.
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Figure 17: A grid refinement study for the effective bubble radius when solving the bubble
jetting problem. Left figure corresponds the results from non-conservative semi-implicit
method using ∆tsemi−implicit. Right figure corresponds the results from conservative semi-
implicit method using ∆tsemi−implicit. Base grid for the both refinements is 320 × 320.
t = 15msec.
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Figure 18: A grid refinement study for the effective bubble radius when using the non-
conservative semi-implicit method using ∆texplicit. Base grid for the both refinements is
320× 320. t = 15msec.
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Figure 19: Comparison of the bubble radii for the bubble jetting problem. The left
figure compares the results of subcycling versus no-subcycling procedures from the non-
conservative semi-implicit calculations using ∆texplicit. The right figure compares the
results of subcycling versus no-subcycling procedures from the non-conservative semi-
implicit calculations using ∆tsemi−implicit. Base grid for all calculations is 320× 320 with
two levels of refinement. t = 15msec.
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