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Abstract. Tatebe [17] introduced the multigrid preconditioned conjugate gradient method
(MGPCG) for solving the sparse matrix system that results from discretizing an elliptic equation
with discontinuous coefficients and source terms. Tatebe’s work was restricted to elliptic problems
on a single structured grid. We present a MGPCG algorithm for an adaptive hierarchy of grids, and
we show analytically that our method is guaranteed to converge. Using our new MGPCG algorithm
to solve the projection equation, we report results for incompressible two-phase flow problems, and
for incompressible flow in complex geometries. It is found that the new method is about twice as
fast as the MG method proposed in [13, 14], about three times as fast as the PCG method proposed
in [8] and that the new method scales well with increasing AMR levels.
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1. Introduction. The numerical simulation of incompressible fluid flows con-
sisting of multiple phases with large density variations (such as in liquid-gas scenar-
ios) can present significant challenges, particularly in the solution of the pressure
projection step. The phase density ρ is represented in liquid and gas phases by
ρ = ρLH(φ) + ρG(1 −H(φ)), where H(φ) is a Heaviside function equal to 1 in liquid
and 0 in gas. The rate of convergence of the iterative solution of the pressure Poisson
equation

∇ ·
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ρ
∇p = F(1.1)

is retarded if ρL

ρG
>> 1 because the resulting discretization matrix is poorly condi-

tioned. Consider the 1D discretization of eqn. 1.1
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where ρi+ 1
2

= 1 in a first phase and α in a second phase, then the condition number of
the corresponding discretization matrix becomes larger as the density ratio increases
as seen in table 1.1. Though we have seen that the condition number is sensitive to
the density ratio, we have found that the condition number is not necessarily sensitive
to the problem geometry as seen in figure 1.2, where all illustrated geometries produce
a discretization matrix whose condition number is of the same order of magnitude.

Significant steps in reducing the solution time of the pressure projection step for
these problems have come from separate sources. The development of adaptive mesh
refinement [4, 3, 15, 6] (AMR) has allowed for a reduction in the number of required
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Fig. 1.1. Example 1D discretization

Table 1.1

In multiphase flows, the condition number of the discretization matrix for eqn. 1.1 grows with
the density ratio. In this table, the condition number is calculated for the discretization matrix of a
1D two phase flow in the domain [0, 1] following eqn. 1.2, and with the phase interface occurring at
x = 0.25. The example flow has a density of 1 in the first phase on the interval [0, 0.25) and α in
a second phase on the interval (0.25, 1]. Values represent a discretization with 256 grid points and
were calculated in MATLAB using the built in condition number function cond().

α 1 10−1 10−2 10−3 10−4 10−5

Density Ratio 1 10 102 103 104 105

Condition # 205 1.2 x 103 1.2 x 104 1.2 x 105 1.2 x 106 1.2 x 107

computational grid points when used in conjunction with a method such as multi-
grid (MG). Unstructured grid coarsening strategies have been implemented to allow
for MG solutions of the Poisson equation in unstructured applications [18]. Alterna-
tively, on uniform grids, MG has been used to form the preconditioning matrix for
the preconditioned conjugate gradient (PCG) method. The multigrid preconditioned
conjugate gradient method (MGPCG) was first introduced by Tatebe [17] who showed
that poorly conditioned problems could be solved 12 times faster using MGPCG in-
stead of MG, and 5 times faster than incomplete LU preconditioned CG (ILU-PCG).
In our previous work [14] we developed a pressure solver on an adaptive hierarchy
of grids using a combination of MG and MGPCG. The MGPCG “smoother” was
applied a single level at a time. We have discovered though, that the performance of
the solver developed in [14] is sensitive to the number of smoothing steps of MGPCG.
In [14] a fixed number of pre-smoothing and post-smoothing MGPCG iterations were
done, but we have found that the convergence rate of the overall MG AMR method
was sensitive to the number of smoothing steps. If the number of smoothing steps
increases, the cpu time increases, but if the number of smoothing steps decreases, the
method may not converge at all. In [13] we had modified the algorithm in [14] by
taking a number of MGPCG steps necessary in order to insure that the residual on
a given level met a prescribed tolerance. The approach in [13] is more robust, but
less efficient. Moreover, the performance of the method in [14, 13] is sensitive to the
blocking factor.

1.1. Background and Related Work. Traditionally, the dominant methods
for solving large systems of linear equations have been MG and PCG, each possessing
its own benefits and drawbacks. Tatebe [17] united the two by using MG as the pre-
conditioner for PCG which proved to be superior to both for problems with poorly
conditioned matrices, noting that the strengths of each method complimented the
weaknesses of the other. Block structured adaptive techniques for solving compress-
ible hyperbolic problems emerged over twenty years ago [4, 3], and since have been
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Fig. 1.2. The condition number of the discretization matrix is not as sensitive to the problem
geometry as it is to the density ratio. The corresponding condition numbers for these figures are
6,132,300 (left), 1,861,000 (middle) and 2,548,900 (right) using a 2D version of discretization eqn.
1.2 on a 64 x 64 grid.

extended to incompressible multiphase flow problems using level set methods [15]. The
quad tree method for handling adaptive meshes was introduced in [20] and, along with
the octree method that followed, has been used in numerous works involving adaptive
meshes [2, 1, 11]. Popinet [11] described a technique for numerically solving the time
dependent incompressible Euler equations in complex geometries that differed from
the classical block structured AMR methods. Using a combination of a quad/octree
discretization first described in [2], an approximate projection method, a MG Poisson
solver and a VOF embedded description for solid boundaries, [11] showed that the
mesh adaptation procedure could be achieved with minimal overhead. Though in a
later paper [12] Popinet did perform two phase flow calculations with this method,
the MG solver could be considered non-optimal because Tatebe showed for a single
grid that MGPCG was much faster than MG. The MG solver will perform poorly for
many two phase flow problems, as pointed out by Tatebe [17], because the resulting
matrix system is poorly conditioned (see table 1.1). We note that MGPCG can not
be used in [11, 12] because their discretization matrix is not symmetric. [8, 9] con-
tinued the work of [11] by developing a symmetric discretization matrix allowing for
the use of PCG which is guaranteed to converge, but still, Tatebe demonstrated that
PCG is less efficient than MGPCG for even a uniform grid [17]. In [7], the method
described in [8, 9] was accelerated by only using coarse grids in the projection step,
but this technique can be avoided by instead using the faster MGPCG AMR method
as described here.

2. Mathematical Formulation. We will consider the following incompressible
Navier-Stokes equations for multiphase flow [16, 19]:

ρ(φ)(~ut + ~u · ∇~u) = −∇p+ ∇ · µ(φ)∇D − γκ(φ)∇H(φ) + ρ~g.

∇ · ~u = 0.

where ρ(φ) is the density, µ(φ) is the viscosity, ~u is the velocity, D is the rate of
deformation tensor, p is the pressure, κ(φ) is the curvature, ~g is the gravitational
force, and H(φ) is the Heaviside function.

In the level set approach, the set of points,

Γ = {(x, y, z)|φ(x, y, z, t) = 0},
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represents the air/water interface Γ at time t. The equation governing the level set
function is given by,

φt + ~u · ∇φ = 0.

In order to increase the efficiency for simulating multi-phase flows, we have devel-
oped adaptive mesh refinement (AMR) level set methodology in order to dynamically
place grid points in the vicinity of the air/water interface[15, 14, 5, 13].

The key component of this work considers the solution of the pressure projection
equation,

∇ ·
1

ρ
∇p = ∇ · ~u∗,(2.1)

where ~u∗ is an intermediate velocity field resulting from a standard “projection
method” splitting scheme, and the density ρ is represented by both liquid and gas
phases

ρ = ρLH(θ) + ρG(1 −H(θ)).

The discretization utilizes the level set function such that ρ is a function of φ and

ρi+1/2,j(φ) = ρLθi+1/2,j + ρG(1 − θi+1/2,j)

where θi+1/2,j is a height fraction,

θi+1/2,j =
φ+

i,j + φ+
i,j+1

|φi,j | + |φi,j+1|

and φ+ = max(φ, 0). The spatial discretization of eqn. 2.1 utilizes cell centered
values for p with corresponding values at the cell faces for ρ such as in the example
1D discretization 1.2. We note that the use of first order boundary conditions results
in a symmetric discretization matrix [9, 8]. The remainder of this section is devoted
to solving eqn. 2.1.

2.1. An Improved Projection Algorithm for Adaptive Meshes. The first
algorithm we will discuss here is the currently used MG algorithm for adaptive grids
[13, 14] in order to demonstrate why improvement is needed. For the solution of the
pressure projection step for incompressible flows in two phases, Tatebe’s [17] MGPCG
method is used as a smoother for each MG level, as described in either algorithm 1 [14]
or 2 [13]. The problem with algorithm 1 or 2 is that the MGPCG smoother requires
multiple levels of coarsening to occur in order to achieve optimal performance, but on
an adaptive mesh these levels may not be available as demonstrated by the 8x2 level
1 grids in figure 2.2. Here, only one coarsening level can be achieved. The MGPCG
smoother also requires one to compute on additional levels below the desired level as
seen in fig. 2.1. Also, algorithm 1 is sensitive to the number of MGPCG smoothing
steps as too many smoothing steps may lead to unnecessary increases in computation
time, and too few might lead the MG AMR algorithm diverging. We improved the
robustness of algorithm 1 [13] by selecting the number of smoothing steps to ensure
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the residual on a given level was less than a prescribed tolerance. Algorithm 2 is more
robust than algorithm 1, but less efficient. To improve either algorithm 1 or 2, we
replace the MG algorithm of [13, 14] with a MGPCG method, and use one of three
possible MG preconditioning methods; a) MG with block ILU smoother, b) MG with
Gauss-Seidel red black (GSRB) smoother, and c) MG with incomplete Cholesky red
black (ICRB) smoother. This results in algorithm 3.

We note that the symmetric GSRB smoother that we have employed is not typical.
The “GSRB” symmetric smoother employed by Tatebe used a red-black ordering down
the MG v-cycle, and a black-red ordering up the v-cycle. Our GSRB smoother differs
by using a red-black-black-red (RBBR) ordering at each step of the v-cycle. The ICRB
smoother is an adaptation of the parallel incomplete Cholesky factorization of Ortega
[10]. We remark that by choosing our smoother to be symmetric, it is unecessary for
us to solve the coarsest level exactly (although we recommend it).

Algorithm 1 MG Algorithm for AMR [14]

Given x0, r = b−Ax0, x = x0, δx = 0
Repeat until ||r|| < ǫ
1. Call relax(δx, r, ℓmax) on finest level
2. Let x = x+ δx, r = r −A(δx)

Recursive Routine relax(sol, rhs, ℓ)
if Coarsest Level then

Solve exactly using MGPCG
else

(a) Presmoothing Step
for i = 1 to presmooth do

Smooth using MGPCG on level ℓ
end for
(b) Restriction Step

(i) restrict(r) to covered level ℓ − 1 cells and exposed level ℓ − 1 cells
neighboring a covered cell.

(ii) cor = 0
(c) Relaxation on Next Coarser Level

Call relax(corcoarse, rhscoarse, ℓ− 1)
(d) Prolongate the Correction to the present level l cells covering coarse level
ℓ− 1 cells and one layer of “virtual” level ℓ cells.

sol = sol + I(cor)
(e) Postsmoothing Step
for i = 1 to postsmooth do

Smooth using MGPCG on level ℓ
end for

end if

2.2. Restriction and Prolongation Operators. Our newly developed MG-
PCG method, algorithm 3, uses the same restriction and prolongation operators that
were used in algorithms 1 and 2. We will define the restriction by operator R and the
prolongation by operator P . To clearly define these operators, we will use a number-
ing system based on the transition from a coarse grid to an adapted fine level grid
such as in figure 3.1. Let us assume that we have N coarse grid points at a given level
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Algorithm 2 MG Algorithm for AMR [13]

Given x0, r = b−Ax0, x = x0, δx = 0
Repeat until ||r|| < ǫ
1. Call relax(δx, r, ℓmax) on finest level
2. Let x = x+ δx, r = r −A(δx)

Recursive Routine relax(sol, rhs, ℓ)
if Coarsest Level then

Solve exactly using MGPCG
else

(a) Presmoothing Step
while ||r

ℓ
|| > ǫ

10 do
Smooth using MGPCG on level ℓ

end while
(b) Restriction Step

(i) restrict(r) to covered level ℓ − 1 cells and exposed level ℓ − 1 cells
neighboring a covered cell.

(ii) cor = 0
(c) Relaxation on Next Coarser Level

Call relax(corcoarse, rhscoarse, ℓ− 1)
(d) Prolongate the Correction to the present level l cells covering coarse level
ℓ− 1 cells and one layer of “virtual” level ℓ cells.

sol = sol + I(cor)
(e) Postsmoothing Step
while ||r

ℓ
|| > ǫ

10 do
Smooth using MGPCG on level ℓ

end while
end if

ℓ, xℓ
1, x

ℓ
2, · · · , x

ℓ
N , then we will append the subscript with a 1,2,3 or 4 to define it as

an adapted grid point at the next finest level. For example, if we adapted the second
grid point we would then have xℓ

1, x
ℓ+1
21 , xℓ+1

22 , xℓ+1
23 , xℓ+1

24 , · · · , xℓ
N , and could continue

on adding grid points in this fashion, but here we will just use two levels. Following
this numbering system, we find that the prolongation operator can be expressed by
the mapping P : xℓ

i → xℓ+1
ij for an adapted cell, and P : xℓ

i → xℓ+1
i for a non-adapted

cell. If one were to prolong the pressure on the coarse level ℓ, the matrix equation,
describing the prolongation operator, would resemble that of eqn. 2.2.
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level l+1

level l

level l−1

Fig. 2.1. Adaptive mesh hierarchy in 2D. To compute the solution at level l+1, the MG AMR
algorithm (alg. 1) requires calculations at levels l and l-1.

Irregular 8x2 Fine Meshes

Original Coarse Mesh

Fig. 2.2. An MGPCG smoother can only achieve a single coarsening step on the illustrated
fine level; then one must use PCG as a bottom solver on the “irregularly shaped” coarsest domain.
On the other hand, our new MG preconditioner coarsens only one level too, but the bottom solver is
MGPCG on the whole non-“irregularly shaped” domain. The bottom solver of our new method can
coarsen two more times.
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Algorithm 3 Improved MGPCG Algorithm for AMR

Given x0, r = b−Ax0, x = x0, δx = 0
z = 0
Call relaxAMR(z, r, ℓmax)
ρ = z · r
if n = 1 then
p = z

else
β = ρ

ρold

p = z + βp
end if
α = ρ

p·(Ap)
ρold = ρ
x = x+ αp
r = r − αAp

Recursive Routine relaxAMR(sol, rhs, ℓ)
if Coarsest Adaptive Level then

Solve exactly using MGPCG
else

(a) Presmoothing Step
for i = 1 to nsmooth do

Smooth using block ILU on level ℓ
end for
(b) Restriction Step

(i) restrict(r) to covered level ℓ − 1 cells and exposed level ℓ − 1 cells
neighboring a covered cell.

(ii) cor = 0
(c) Relaxation on Next Coarser Level

Call relaxAMR(corcoarse, rhscoarse, ℓ− 1)
(d) Prolongate the Correction to the present level ℓ cells covering coarse level
ℓ− 1 cells and one layer of “virtual” level ℓ cells.

sol = sol + I(cor)
(e) Postsmoothing Step
for i = 1 to nsmooth do

Smooth using block ILU on level ℓ
end for

end if

The restriction operator R can be expressed by the mapping

R : pℓ+1
i →

{
∑4

j=1 p
ℓ
ij adapted cells to coarse cell

pℓ
i coarse cell to coarse cell

This restriction yields a matrix equation like that of eqn. 2.3 when restricting
grid points xi1, xi2, xi3, xi4 on a fine level grid to grid point xi on a coarse level grid.
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Matrix eqns. 2.2 and 2.3 show that the restriction and prolongation operators
are transposes of each other. We prove this in theorem 2.2 using the corresponding
matrix representations of P and R given in definition 2.1.

Definition 2.1. The prolongation operator P and restriction operator R are

defined in matrix notation with a coarse index i and a fine index j such that

Pij =

{

1 if cell i is covered by cell j
0 otherwise

Rji =

{

1 if cell i is covered by cell j
0 otherwise

Theorem 2.2. The restriction operator R is the transpose of the prolongation

operator P .

Proof. following definition 2.1, it is straightforward to see that RT
ji = Rij , which

is then equivalent to Pij and hence the restriction operator is the transpose of the
prolongation operator.

2.3. Convergence. In order to show that algorithm 3 converges, it is sufficient
to show that it meets the criteria set forth by Tatebe [17] for convergence of the
MGPCG method, i.e. 1) the MG smoother is symmetric, 2) the restriction operator
is the transpose of the prolongation operator, and 3) the matrix A in the smoothing
step

xk+1 = xk +M(b−Axk) real cells

xk+1 = xk fictitious cells

is symmetric. Condition 2 is satisfied by theorem 2.2, and A will be symmetric as
long as first order coarse/fine boundary conditions are applied [9, 8], so it is sufficient
to show that the MG preconditioner produced by relaxAMR is symmetric. To show
that the MG preconditioner on an adaptive mesh is symmetric, we will assume that
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the ‘mesh’ on each level is a union of ‘real’ fine cells and ‘fictitious’ coarse cells such as
depicted in figure 3.1. On a given level ℓ, let M be the symmetric smoother produced
by block ILU on the ‘real’ level ℓ grids, and the Jacobi method (i.e. M = D−1) on the
fictitious coarser level cells.” We remark that our condition for a valid adaptive MG
preconditioner is stricter than that of Tatebe [17]. We require that M is symmetric
and do not allow a method that uses e.g. RBGS down the v-cycle and BRGS up. The
corresponding MG smoother on a given level ℓ, M̄ , is then defined as: M̄ = UMU
where U is a projection matrix that projects vectors to level ℓ. In other words,

M̄ =

{

M real cells on level ℓ
0 fictitious coarser level cells.

Our equivalent smoothing step on level ℓ is xk+1 = xk + M̄(b−Axk). Now, if one
were to order the cells in such a manner that the variables corresponding to real cells
were listed first, e.g.

[x1, x2, · · · , xN ] → [xreal
1 , xreal

2 , · · · , xreal
n , xfictitious

1 , xfictitious
2 , · · · , xfictitious

n ]

then we find that

M̄ =

[

M 0
0 0

]

and

U =

[

I 0
0 0

]

Since M is symmetric, then M̄ = UMU is also symmetric. Now M̄ is singular,
which means we cannot directly extend the theory developed by [17] (Theorem 2) to
our adaptive MGPCG algorithm. In [17], it is required that P , which corresponds to
the inverse of our smoother matrix M̄−1, be symmetric. We extend Tatebe’s theory
to our adaptive algorithm in theorem 2.3.

Theorem 2.3. The preconditioning step of algorithm 3, i.e. the solution of

relaxAMR, is symmetric.

Proof. We will consider a two level scheme with the c subscript representing the
coarse level, and follow the steps outlined in the relaxAMR routine of algorithm 3.
The generalization of our proof to multiple levels is analogous to Tatebe [17]. We
start with the equation z = M̄r = UMUr corresponding to step a), and note that
R = PT .



AN IMPROVED PROJECTION SOLVER FOR AMR 11

a) z = UMUr

b) rc = R(r −Az)
= R(r −AUMUr)

c) zc = McR(r −AUMUr)

d) z = UMUr + PMcR(r −AUMUr)

e) z = UMUr + PMcR(r −AUMUr)
+UMU(r − A(UMUr + PMcR(r −AUMUr)))

= (UMU + PMcP
T − PMcP

TAUMU + UMU
−UMUAUMU − UMUAPMcP

T + UMUAPMcP
TAUMU)r

= M̃r

Since A,U and M are symmetric, each of the terms in the matrix sum found in
the second equation of step e) are symmetric except for the third and sixth term,
which are transposes of each other, and so the resultant matrix M̃ is symmetric.

3. Results and Discussion. The benefits of using the MGPCG AMR algorithm
over MG AMR (or PCG AMR) are the same benefits as outlined in Tatebe’s paper
for using MGPCG on a uniform grid versus MG or PCG on a uniform grid. To test
the performance of the new method described here, we present timing results for the
new MGPCG AMR algorithm along with both the original MG AMR algorithm and
a PCG AMR algorithm. The problems tested are those of the simulation of a rising
gas bubble through a liquid phase in both 2 and 3 space dimensions. All tests were
run on a single core of an AMD Athlon X4 620 processor (2.6 GHz, 2 MB L2) with
4 GB of available DDR2 memory at 667 MHz.

To test the performance of the new method described here, we present timing
results for the new MGPCG AMR algorithm along with both the original MG AMR
algorithm and a PCG AMR algorithm similar to that of [9] that are implemented in
the coupled level set and volume-of-fluid AMR (CLSVOF-AMR) code. The problems
tested are those of the simulation of a rising gas bubble through a liquid phase in both
2 and 3 space dimensions, and flow past a whale. The overall algorithm for simulating
bubble and drop flow is presented in [13]. All tests were run on a single core of an
AMD Athlon X4 620 processor (2.6 GHz, 2 MB L2) with 4 GB of available DDR2
memory at 667 MHz.

3.1. 3D Axisymmetric Bubble. The first problem we will discuss is that of
a 3D axisymmetric gas bubble rising through a liquid phase in in an r-z coordinate
system. This problem uses µL/µG = 53305, ρL/ρG = 1000, Fr = 0.757, Re = 0.038
and We = 0.0025. Figure 3.2 displays representative discretization grids for this
problem with increasing numbers of adaptive levels. Timing data for this problem is
given in table 3.1 and a table giving the speedup factor of the new MGPCG AMR
algorithm over the original MG AMR algorithm is provided in table 3.2. On this
problem, the new MGPCG AMR algorithm is typically 2-3X faster than the original
MG AMR algorithm, and performs up to 4X faster than the original MG AMR
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Real Cell Fictitious Cell

Fig. 3.1. Coarse and fine grid levels depicting real and fictitious cells.

Table 3.1

Timing results for a single pressure solve for the new MGPCG AMR algorithm along with the
old MG-MGPCG AMR algorithm and the PCG algorithm for the 3D axisymmetric test bubble. The
new MGPCG algorithm is faster than the old MG AMR algorithm in nearly every scenario. Grid
sizes for a fixed blocking factor and number of adaptive levels are identical for each method.

Blocking Factor 2 4 8
Adaptive Levels 1 3 5 1 3 5 1 3 5
ILU Smoother
PCG 0.659 5.424 63.49 0.563 3.359 35.54 0.365 2.875 26.78
MG 0.270 2.181 13.93 0.252 1.349 10.05 0.098 0.751 6.060
MGPCG 0.142 0.636 4.109 0.127 0.439 2.493 0.096 0.382 2.156
ICRB Smoother
PCG 0.653 5.366 69.49 0.567 3.561 39.02 0.377 3.012 25.53
MG 0.281 2.177 16.54 0.278 1.435 10.96 0.112 0.885 6.634
MGPCG 0.157 0.655 4.511 0.152 0.498 2.732 0.123 0.415 2.402
GSRB Smoother
PCG 0.641 5.706 65.99 0.567 4.037 37.72 0.364 3.014 29.26
MG 0.284 2.165 13.91 0.266 1.367 10.38 0.108 0.845 5.957
MGPCG 0.153 0.678 4.426 0.145 0.464 2.743 0.118 0.408 2.176

algorithm when using a blocking factor of four along with five adaptive levels. The
only case when the new solver underperforms is with a blocking factor of eight and
only one adaptive level.

3.2. 3D Bubble. The second test problem is also a rising gas bubble through
a liquid phase but expanded to three spatial dimensions, µL/µG = 53305, ρL/ρG =
1000, Fr = 0.757, Re = 0.038 and We = 0.0025. Figure 3.3 shows the grid for this
problem with two adaptive levels and a blocking factor of four. Timing data for this
problem is given in table 3.3 and a table giving the speedup factor of the new MGPCG
AMR algorithm over the original MG AMR algorithm is provided in table 3.4. For
this test problem, the new MGPCG AMR algorithm shows improvement over the MG
AMR algorithm when more than one adaptive level is used and achieves a speedup of
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a. b.

c. d.

Fig. 3.2. AMR grids for a rising 3D axisymmetric bubble. The representative grids all use
a blocking factor of 2 and contain a) one adaptive level, b) two adaptive levels, c) three adaptive
levels, and d) four adaptive levels. µL/µG = 53305, ρL/ρG = 1000, Fr = 0.757, Re = 0.038 and
We = 0.0025.

Table 3.2

Speedup factor for the new MGPCG AMR method over the original MG-MGPCG AMR method
on the 3D axisymmetric test problem of simulating a gas bubble rising through a liquid phase. The
new algorithm outperforms the old by an increasing margin as both the blocking factor and the
number of adaptive levels are increased. It can be seen that the benefits of the new method are not
realized in the case of large blocking factors and a single adaptive level.

Blocking Factor 2 4 8
Adaptive Levels 1 3 6 1 3 6 1 3 6
ILU 1.91X 3.43X 3.39X 1.99X 3.07X 4.03X 1.01X 1.97X 2.81X
ICRB 1.79X 3.32X 3.67X 1.83X 2.88X 4.01X 0.91X 2.13X 2.76X
GSRB 1.86X 3.19X 3.14X 1.84X 2.95X 3.78X 0.92X 2.07X 2.74X

2X in the case of three adaptive levels and a blocking factor of two.

3.3. 3D Whale. The third problem tested here is simulated flow past a 3D
whale body. For flow around an embedded solid, we discretize the solid as a stair-
case/rasterized geometry and we assign the coefficient, 1

ρi+1/2,j
, to be
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Y

Z

X

Fig. 3.3. Mesh for a 3D rising bubble with 2 adaptive levels and a blocking factor of 4. µL/µG =
53305, ρL/ρG = 1000, Fr = 0.757, Re = 0.038 and We = 0.0025.

Table 3.3

Timing results for a single pressure solve for the new MGPCG AMR algorithm along with the
old MG-MGPCG AMR algorithm and the PCG algorithm for a 3D test bubble.

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3
ILU Smoother
PCG 3.839 18.45 71.11 3.326 14.24 49.79 4.154 22.22 69.70
MG 2.156 9.432 40.46 1.704 6.140 24.02 2.146 7.410 21.68
MGPCG 1.884 6.295 19.05 1.747 5.220 14.63 1.999 6.007 17.53
ICRB Smoother
PCG 4.158 19.67 75.61 3.682 15.28 56.82 4.770 27.19 84.94
MG 2.227 9.916 41.31 1.910 6.958 30.35 2.490 10.10 28.47
MGPCG 2.354 7.083 19.36 2.263 5.950 16.96 2.686 7.559 20.33
GSRB Smoother
PCG 4.023 19.99 78.66 3.735 15.43 58.33 4.801 26.19 86.51
MG 2.145 9.708 41.06 1.860 7.086 31.98 2.485 10.10 29.68
MGPCG 2.331 7.149 20.20 2.241 6.191 17.67 2.571 8.001 20.19
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Table 3.4

Speedup factor for the new MGPCG AMR method over the original MG-MGPCG AMR method
on the 3D test problem of simulating a gas bubble rising through a liquid phase.

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3
ILU 1.14X 1.50X 2.12X 0.98X 1.18X 1.64X 1.07X 1.23X 1.24X
ICRB 0.95X 1.40X 2.13X 0.84X 1.17X 1.79X 0.93X 1.34X 1.40X
GSRB 0.92X 1.36X 2.03X 0.83X 1.14X 1.81X 0.97X 1.26X 1.47X

X

Z

Y

Fig. 3.4. Mesh for a 3D whale with 2 adaptive levels.

1

ρi+1/2,j
=

{

0 ψi+1,j ≤ 0 or ψi,j ≤ 0
1

ρL otherwise

where ψ is a solid/fluid level set function. Figure 3.4 shows a grid with two adaptive
levels for this problem, along with the whale body. This test problem shows the best
overall speedup of the new method and is 2-4X faster than the old method, even when
only solving with one adaptive level as seen in table 3.6.

3.4. 3D Axisymmetric Bubble (zero level set not wholly contained on
finest grid level). The last test problem is similar to the first 3D axismmetric test
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Table 3.5

Timing results for a single pressure solve for the new MGPCG AMR algorithm along with the
old MG-MGPCG AMR algorithm and the PCG algorithm for flow past a 3D whale.

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3
ILU Smoother
PCG 32.33 126.5 468.1 33.69 122.0 528.6 47.32 198.3 759.9
MG 10.52 41.69 145.6 9.874 35.71 133.4 13.91 57.37 202.2
MGPCG 5.445 15.06 43.66 5.796 14.84 48.74 7.113 21.28 70.07
ICRB Smoother
PCG 40.15 171.9 636.1 42.80 160.6 705.6 68.93 269.2 1056
MG 14.93 64.01 226.1 14.61 61.08 226.1 24.02 102.5 371.9
MGPCG 7.606 19.93 56.83 8.794 19.45 62.45 10.49 28.93 94.08
GSRB Smoother
PCG 41.07 179.2 648.8 43.11 167.0 710.2 70.00 276.3 1078
MG 15.99 67.29 230.4 15.42 63.24 234.9 26.03 106.8 395.9
MGPCG 8.063 22.38 57.47 8.451 21.61 65.76 10.39 31.77 94.70

Table 3.6

Speedup factor for the new MGPCG AMR method over the original MG AMR method on the
3D test problem of flow past a 3D whale.

Blocking Factor 2 4 8
Adaptive Levels 1 2 3 1 2 3 1 2 3
ILU 1.93X 2.77X 3.33X 1.70X 2.41X 2.74X 1.96X 2.70X 2.89X
ICRB 1.96X 3.21X 3.98X 1.66X 3.14X 3.62X 2.29X 3.54X 3.95X
GSRB 1.98X 3.01X 4.01X 1.82X 2.93X 3.57X 2.51X 3.36X 4.18X

problem, but where the zero level set is not wholly contained on the finest level.
Only portions of the zero level set that have a curvature that exceed a threshold are
contained on the finest level. Figure 3.5 demonstrates the adaptive grid progression
through time as the bubble rises for a blocking factor of 8 and 4 adaptive levels.
This problem uses µL/µG = 53305, ρL/ρG = 1000, Fr = 0.757, Re = 0.038 and
We = 0.0025. Timing data for this problem is given in table 3.7.

4. Conclusions. We have developed an algorithm which allows for the use of
the MGPCG method on an adaptive hierarchy of grids. This algorithm preserves the
benefits and convergence properties of the original MGPCG algorithm while reducing
the number of computational grid points required by uniform grids. It is almost always
the case that our new algorithm outperforms our previous MG AMR algorithm for the
problems tested, pardon the limiting factor of a single adaptive level. Also, our new
method outperforms PCG on an adaptive grid by a comparable margin as reported by
Tatebe [17] on a single grid. The speedup factor of the new MGPCG AMR algorithm
over the original MG AMR method increases with increasing adaptive levels. We have
found that there is an optimum blocking factor, for a given number of levels, with
the MGPCG AMR algorithm: 4 in three dimensions and 8 in two dimensions. If we
fix the blocking factor to be the optimal blocking factor, and increase the number of
adaptive levels, then we find that the new MGPCG AMR method no longer consumes
the majority of CPU time in comparison to the level set reinitialization step, for
example.
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