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1 INTRODUCTION

We present the results of a computational study of the
formation of droplets in microscale jetting devices. These
devices are commonly used in applications where small size
and accurate flow volume control are essential. It is cur-
rently possible to produce drops of fluid with diameters of
25-100 pm and volumes of 10 picoliters to 0.5 nanoliters at
rates of up to 4,000 drops per second. In addition to ink-
jet printing, applications include dispensing solder in mi-
croelectronics manufacturing processes (Bernardini et al.,
1991), biomedical procedures and equipment (e.g., dye-
assisted laser surgery), medical diagnostics manufacturing
(e.g., printing DNA strands), micro-optics manufacturing,
macro flow control, IC thermal management, micro-mixing
and dispensing small amounts of chemicals in neuroscience
research (Hayes et al., 1993; Wallace et al., 1989).

One of the features which is common to virtually all mi-
croscale jetting devices is that under most operating condi-
tions the jet rarely consists of a single drop. Typically, the
lead drop exits the nozzle of the device with a tail, which
subsequently breaks off from the main drop. This tail then
undergoes a Rayleigh capillary instability, breaking up into
two or more “satellite droplets”. These satellite droplets
are typically smaller and have a lower velocity than the
lead drop. In some instances two or more satellites will co-
alesce to form a smaller number of satellites, resulting in
fewer satellite drops striking the target surface. Since it is
often the case that the satellites have a different trajectory
than the lead drop, their presence leads to quality control
problems, such as loss of image resolution in ink jet printing
applications.

We have developed a numerical method which is capa-
ble of modeling the entire jetting process; from the applica-

tion of a time dependent pressure or velocity pulse at the
inflow boundary of the nozzle, through the formation of the
lead and satellite droplets, to the eventual coalescence of
some or all of the satellite droplets. This numerical method
is based on modeling solutions of the Navier-Stokes equa-
tions for two phase flow in domains with complex geometry.
Our method is capable of accurately modeling flows which
are characterized by a high density ratio between the two
phases (e.g., 1000:1) and for which surface tension forces
are a dominant feature of the flow.

2 GOVERNING EQUATIONS
We solve the following equations for incompressible two-
phase flow:
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The above formulation is the level set formulation for
multi-fluid flow (Sussman et al., 1994; Chang et al., 1996).
It is shown (Chang et al., 1996) that weak solutions of (1)
satisfy the free surface jump conditions,
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where 77 is the outward normal drawn from the gas to the
liquid and & is the mean curvature.
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The provisional variable ¢ represents the signed dis-
tance to the free surface. The variable F represents the vol-
ume fraction of liquid contained in any one computational
cell. The density p(¢), viscosity u(¢), and Heaviside func-
tion H(¢) jump across the free surface (where ¢ changes
sign). 7 is the surface tension coefficient.

In order to solve (1), we use a variable density projec-
tion method (Bell and Marcus, 1992) which is a generaliza-
tion of the constant density projection method (Bell et al.,
1989). Firstly, one can rewrite (1) in the following form,

Wd +Vp/p= W (6)
where W, represents % and W represents,
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After taking the divergence of both sides of (6), we use
the continuity equation in order to set V - Wy = 0, thus
resulting in the equation for the pressure field:

V-%:V-W. (8)

. Once the pressure field p is determined from (8), one can
then update Wy as

Wy =W —Vp/p.

The procedure of decomposing W into the two parts Wy
and Vp/p is called a projection since the set of divergence
free vector fields and the set of gradient fields are orthogonal
complements of each other when using a density weighted
norm. We shall denote the projection operator as:

Wy = P,(W).

The resulting equations to be solved now, when written
in terms of the projection operator, are
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3 PROJECTION METHOD FOR GENERAL GEOMETRIES
In (8) we solve for the pressure with the condition that

Wd-n:o x € 0N

where 012 represents the boundary of some general geom-
etry such as an ink-jet nozzle. In other words, we specify
Neumann boundary conditions:

VP o= om
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Explicitly enforcing (9) can be very difficult computation-
ally; especially for complex geometries in three dimensions.
For example, in a finite element implementation, there is
the problem of remeshing if the geometry moves (e.g. a
piston). Instead of solving (8) just in  with the boundary
conditions specified by (9), we instead solve

Vp _
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where 1) is a second level set function which is negative
within solid bodies. The zero level set of 1 represents the
boundary 0. It can be shown that the weak solutions of
(10) satisfy (9). Thus, the computational domain can be
a rectangular domain, but the embedded boundary can be
very complex.

4 COUPLED LEVEL SET VOLUME OF FLUID ADVECTION
ALGORITHM

The location of the fluid interface is advanced in time
using a coupled level set volume of fluid algorithm (Suss-
man and Puckett, 1998). In this algorithm the flux of each
fluid across cell edges during a time step is computed from
a second-order accurate, piecewise linear approximation to
the interface. This representation of the interface is con-
structed from the volume fraction of each fluid in each cell
at the current time step and the unit normal to the interface
obtained from the level set function at that time step. The
volume fractions in each cell at the new time step are com-
puted using a conservative finite difference update, while a
provisional level set function at the new time step is ob-
tained by solving an advection equation for the level set
function. This information at the new time step is used to
obtain a piecewise linear approximation to the interface at
the new time, which in turn is used to construct a distance
function (i.e., the level set function) at the new time. This
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distance function is then used to compute the unit normal
and curvature of the interface. This information is used to
compute the surface tension forces and the volume fluxes at
the next time step.

4.1 Time Discretization

To advance the solution in time, we employ a variation
of the time discretization used by Bell, Colella, and Glaz
(Bell et al., 1989). It is a two-step algorithm. First we
create a temporary velocity @* by advancing the solution
using the governing equations but ignoring the divergence
constraint.
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where 7" is the stress tensor evaluated using velocity @™ and
T* is the stress tensor evaluated using velocity @*. Equa-
tion (11) therefore requires the solution of a linear system
whose form depends on the form of the stress tensor. We
then enforce the incompressibility constraint and update the

pressure gradient by using the discrete projection operator
Pdiscrete
s .

dvn+1 — ppdiscrete (ﬁ*) (12)

— (I _ Pgiscrete)(ﬁ*) +

5 RAYLEIGH CAPILLARY INSTABILITY

When a droplet is ejected from an ink-jet device, typ-
ically a long cylindrical tail follows behind (see Figure 2).
The number of satellite drops that appear behind the lead
drop depend on the length of the tail, it’s diameter, viscosity
of the fluid, surface tension, among many other factors. The
driving force that cause the tail to break-up into droplets is
due to surface tension driven Rayleigh Capillary instability
(Bechtel et al., 1995; Rayleigh, 1878; Wallace, 1993). In
order for a numerical method to effectively predict jetting
phenomena, it should converge to the exact solution under
grid refinement when applied to these class of problems.

We consider an initially perturbed cylindrical column
of water in air. The shape of the initial interface is,

r(z) =19 + €cos(2mz /).

Table 1. Convergence study using the CLS algorithm for the capillary insta-
bility problem. All data in terms of dimensionless parameters. ¢ = 80.0,

/g =64, pi/pg = 816.

grid E(interface) | Eu,z1 | Eu,max
16x32 N/A | N/A | N/A
32x64 36.88 | 268.7 0.064
64x128 21.13 | 167.5 0.050
128x256 8.14 94.2 0.034

We compute on an axisymmetric domain Q = {(r,2)|0 <
r < A/4and 0 < z < \/2}. Symmetric boundary conditions
are enforced at r = 0, z = 0 and z = A/2. Outflow boundary
conditions are enforced at r = A/4. The relevant parameters
for our test problem are ry = 6.52 microns, e = 1.3 microns,
A = 60 microns, g = 1.138 x 1072g/(cms), p, = 1.77 x
10~*g/(cms), pr = 1.0g/em3, p, = 0.001225g/cm?, and v =
72.8dynes/cm. In our computations we use dimensionless
parameters where the Reynolds number R = p,LU/u; is
7.5, the Weber number W = p;LU?/~ is 1, L = 1 micron,
U = 8.53m/s and the density and viscosity ratios are 816
and 64 respectively.

In Figure 1, we display the results of our computations
for the capillary jet as it breaks up. In Tables 1 and 2,
we measure the relative errors for the interface and velocity
field for grid resolutions ranging from 32x64 to 128x256. As
shown by the tables, we obtain about first order accuracy
before (t = 80) and after (¢ = 120) pinch off. We have only
first order accuracy for this problem because of the den-
sity and viscosity jump across the interface. For example,
when we recomputed the capillary jet problem with con-
stant density p; = p, = 1.0g/em?® and constant viscosity
w = pg = 1.138 x 107 2g/(cms) the relative errors for the
recomputed problem, shown in Tables 3 (before pinch-off)
and 4 (after pinch-off), clearly show second order conver-
gence.

6 AXISYMMETRIC JETTING CONVERGENCE STUDY

In this section, we present a numerical convergence
study for a micro-scale jetting problem. In Figure 2 we dis-
play results using adaptive mesh refinement (Sussman et al.,
1999) where the effective fine grid resolution is 64x1024.
The diameter of the nozzle is 32 microns and the length of
the nozzle is 70 microns. In Figure 3 we display the pressure
profile that is applied at the base of the nozzle. This par-
ticular pressure impulse models the effect of a piezo-electric
jetting device. In Table 5 we display the relative errors
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Table 2. Convergence study using the CLS algorithm for the capillary insta-
bility problem. All data in terms of dimensionless parameters. ¢ = 120.0,

mi/pg =64, pi/pg = 816.

grid E(interface) | Eu,z1 | Eu,max
16x32 N/A | N/A| N/A
32x64 318.9 | 936.2 0.90
64x128 182.9 | 599.3 1.32
128x256 76.8 | 150.6 0.53

Table 3. Convergence study using the CLS algorithm for the capillary insta-
bility problem. All data in terms of dimensionless parameters. ¢ = 120.0,

mi/mg =1, pi/pg = 1.

grid E(interface) | Eu,z1 | Eu,max
16x32 N/A | N/A| N/A
32x64 52.76 | 68.55 | 0.1535
64x128 11.23 | 16.17 | 0.0339
128x256 2.82 4.24 | 0.0091

Table 4. Convergence study using the CLS algorithm for the capillary insta-
bility problem. All data in terms of dimensionless parameters. t = 160.0,

mi/mg =1, pi/pg = 1.

grid E(interface) | Eu,z1 | Fu,max
16x32 N/A | N/A| N/A
32x64 78.3 | 125.3 0.143
64x128 15.3 47.6 0.177
128x256 3.0 12.9 0.090

between computations in which we successively add finer
resolved adaptive grids.

7 THREE DIMENSIONAL JETTING COMPUTATIONS

In this section, we display preliminary results of three-
dimensional, adaptive ink-jet computations. Three dimen-
sional computations are necessary for studying asymmet-
ric effects that the geometry of the nozzle can have on the
resultant ejected droplet(s). In figure 6, we display com-
putations from a nozzle with a square base. The pressure
impulse is applied at the base of the nozzle and is similar

Table 5. Convergence study using the CLS algorithm for the axisymmetric
jetting of ink. ¢ = 70 microseconds, /g = 64, pi/pg = 816.

grid E(interface) | Eu,r1
16x256 N/A | N/A
32x512 6.1E4 | 1.3E6
64x1024 2.7E4 | 5.5EH

to that displayed in figure 3. In figure 4, we display com-
putations where the pressure impulse is applied from the
side. The configuration here resembles the so called “side-
shooter” geometries used for thermal ink-jet devices. The
pressure impulse for a thermal ink-jet device models the
growth and collapse of a vapor bubble at the “heater” of
the nozzle. In figure 5 we plot the pressure impulse versus
time for the side shooter computation.

8 CONCLUSION

We have developed a high order accurate numerical
method for modeling jetting in micro-jet devices and have
demonstrated that the method is second order accurate on
problems with no jump and first order accurate on problems
in which there is a discontinuity in density and viscosity at
the interface.
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Figure 1. Capillary Instability. pw/pa = 816, pw/pre = 64. Grid resolu-

tion is 64x128.
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Figure 2. Axisymmetric jetting of ink. pw/pa = 816, pw/pe = 64.
Effective fine grid resolution is 64x1024.
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Figure 3. Pressure versus time applied to base of nozzle for modeling piezo-
electric device.
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Figure 4. 3d computation of jetting of ink for “side shooter” geometry.
Pw/pa = 816, pw /e = 64. Effective fine grid resolution is 16x16x256.
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Figure 5. Pressure versus time applied to side of nozzle for modeling thermal
ink-jet device.
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Figure 6. 3d computation of jetting of ink. pw/pa = 816, pw/pa = 64.
Effective fine grid resolution is 32x32x128.
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