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� ABSTRACT

In this paper� we will present a numerical method for
computing incompressible free�surface �ows in irregular ge�
ometries in three dimensions� The approach we are taking
is based on three ideas� The �rst is the second�order ac�
curate projection method of Bell� Colella� and Glaz �Bell
et al�� ����	 for computing �nite di
erence approximations
to the incompressible �ow equations on rectangular grids�
The second is the Cartesian grid embedded boundary al�
gorithms of Johansen and Colella �Johansen and Colella�
����	 for computing consistent discretizations of conserva�
tion laws in irregular geometries� The third is the use of a
second�order accurate volume�of��uid method for represent�
ing the free surface� including the use of a level�set method
for computing normals and surface tension�

� GOVERNING EQUATIONS

We are solving the incompressible Navier�Stokes equa�
tions with a given stress tensor ��	� Setting density to unity�
the momentum equation becomes

��u

�t
���u � r	�u � �rp�r � �� ��	

where �u is the velocity and p is the pressure� We are given an
initial condition of the form �u��x� t � 	� Because the density
is constant� conservation of mass reduces to constraint upon
the velocity �eld

r � �u � � ��	

We are interested in the projection formulation of the equa�
tions in which the Hodge decomposition is used to change
the problem from a constrained time�dependent system of
equations to a pure time�dependent system� The Hodge de�
composition states that the any vector �eld �W on a bounded
domain � which satis�es

Z
��

�W � �ndA �  ��	

can be described as the sum of a divergence free component
�eld � �Wd	 and a pure gradient �eld r� �Chorin� ����	�

�W � �Wd �r�
r �Wd �  on �

��	

where

Wd � �n �  on ��

r� � �n � �W � �n on ��
��	

Suppose we have a vector �eld �W on a domain � and we
want to solve for the divergence free component �Wd� If we
take the divergence of the equation �� we can solve

r�� � r � �W
��
�n � �W � �n on ��

��	
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and subtract the pure gradient component

�Wd � �W �r� ��	

to obtain the divergence�free component�
It is convenient to express this process in operator form�

We de�ne the projection operator P to be that operator
which extracts the divergence�free component �Wd of any
vector �eld W �

P �W � �Wd ��	

Using G to be the analytical gradient operator� I to be the
identity operator� and D to be the divergence operator� the
projection operator P is of the form�

P � �I � G�DG	��D	� ��	

The projection P of any pure gradient �eld therefore van�
ishes� We can also de�ne the projection operator Q to be
the projection which extracts the pure gradient component
�eld r� of any vector �eld W �

Q �W � r�
Q � I � P

��	

Partial di
erential equations whose solutions are con�
strained by a divergence�free condition can be reformulated
with a projection operator to eliminate the constraint� For
example� the Navier�Stokes equations �shown in equations
� and �	 are equivalent to

��u

�t
� P����u � r	�u�r � �	 ���	

with a divergence�free initial condition �i�e� P��u��� t � 		 �
�u��� t � 	 	� Because it is a purely spacial operator� the pro�
jection operator P commutes with the time derivative� The
pressure gradient is no longer necessary as the projection of
any pure gradient vanishes� We shall refer to equation ��
as the �projection formulation� of the Navier�Stokes equa�
tions�

� DISCRETIZATION

The problem domain is discretized as a uniform Carte�
sian grid with unit aspect ratio� with an irregular domain
boundary embedded in the grid� The grid cells and faces

that the boundary intersects are represented with irregular
geometry data� The cells and faces that do not intersect
the boundary have uniform geometric properties� For clar�
ity of exposition� this paper is written as if each grid cell or
face contains no more than one irregular cell or face� so that
the familiar ijk index notation is used throughout the grid�
Cells have integer indices and faces have one half�integer
index�

For this algorithm� the segment of the boundary inter�
nal to an irregular cell is modeled as a planar surface� As
shown in �gure �� the geometry of an irregular cell is com�
pletely de�ned by �� the fraction of its volume that is inside
the problem domain� and by �nb� the vector normal to the
boundary segment� The geometry of an irregular face is de�
�ned by �� the fraction of its area that is inside the problem
domain� From these data� other geometric properties can
be constructed� such as the centroid locations of irregular
cells or edges�

The solution is represented as a set of average values
within each cell� Geometrically� we consider the average
to be located at the center of the regular grid cell� even
in irregular cells where it might seem more natural for the
solution to be located at the centroid� Note that in cells
with volume fraction less than one�half� this results in the
data being located outside the problem domain�

This method requires the solution of several Poisson�
like problems� The discrete Laplacian operator is a com�
position of discrete gradient and divergence operators� The
gradient operator acts on cell�centered data and approxi�
mates the gradient at the centers of the regular grid faces�
There is no in�uence of the geometry� The divergence op�
erator acts on face�centered data and approximates the di�
vergence at the centroid of a cell� The divergence operator
includes a transformation of data at the centers of regular
grid faces into data at the centroids of irregular faces� This
is explained in detail in section ������

��� Discrete Laplacian operator

The discrete Laplacian operator L is the composition of
discrete gradient and divergence operators� In the irregular
cells� it is evaluated using a �nite volume discretization of
the divergence of an edge�centered �ux term that in this case
is equal to the gradient times the face area� On the regular
grid� the Laplacian reduces to the usual �ve� �or seven�	
point cross�shaped stencil� and is evaluated directly�

����� Discrete gradient operator� The gradient opera�
tor G takes cell�centered data and produces edge�centered
gradients� There is no in�uence of geometry� so the same
formula is used for every face that intersects the problem
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domain� The gradient normal to the face �i� ���� j� k	 is

gxi�����j�k � G
x��	ji�����j�k

�
�i���j�k � �ijk

h

and the gradient tangential to the face is formed from an
average of the other set of normal gradients�

gyi�����j�k � G
y��	ji�����j�k

�
gyi�j�����k � gyi���j�����k � gyi�j�����k � gyi���j�����k

�

�
�i�j���k � �i�j���k � �i���j���k � �i���j���k

�h

and similarly for the other combinations of gradient direc�
tion and face direction�

The gradient at faces outside the problem domain are
formed by extrapolation� For example�

gxi�����j�k � � gxi�����j�k � gxi�����j�k�

����� Discrete divergence operator� The �nite�volume
form of the divergence operator D is

Dijk �
�

�ijkh

�
�bijkF

b
ijk

�
�
�i�����j�kF

x
i�����j�k � �i�����j�kF

x
i�����j�k

�
�
�
�i�j�����kF

y
i�j�����k � �i�j�����kF

y
i�j�����k

�
�
�
�i�j�k����F

z
i�j�k���� � �i�j�k����F

z
i�j�k����

�o
���	

where F	x�y�z
 � �g	x�y�z
 are �uxes at the faces of the cell�

F b is the �ux normal to the irregular segment of the bound�
ary� �ijk is the fraction of the volume of the regular cell
taken up by the irregular cell� �i�����j�k etc� are the area

fractions of the irregular faces of the cell� and �b is the length
of the irregular segment of the boundary�

We de�ne the solution data in an irregular cell to be
located at the center of the appropriate regular grid grid
cell� not at the centroid of the irregular volume� Thus�
the �uxes computed at the centers of the grid faces are
second order� However� to compute a second order �ux
divergence in the irregular cells� the �uxes in equation ��
must be centered at the geometric centroids of the faces�
We therefore adopt the idea introduced by Johansen and

Colella �Johansen and Colella� ����	� to linearly interpolate
the second order �uxes to the centroids of the faces� In
�gure �� the regular grid spacing is h� and the centroids
of the faces are o
set from the centers of the grid faces
by ��ch� 	ch� 
ch	� If eF are the second order �uxes at the
centers of the grid faces and F are the �uxes at the centroids
of the irregular faces� then

Fi�����j �
�
�� 	ci�����j

� eFi�����j � 	ci�����j
eFi�����j��

in two dimensions and

Fi�����j�k �
�
�� 	ci�����j�k � 
ci�����j�k

� eFi�����j�k
� 	ci�����j�k

eFi�����j���k � 
ci�����j�k
eFi�����j�k��

in three dimensions�

��� Time Discretization

To advance the solution in time� we employ a variation
of the time discretization used by Bell� Colella� and Glaz
�Bell et al�� ����	� It is a two�step algorithm� First we
create a temporary velocity �u� by advancing the solution
using the governing equations but ignoring the divergence
constraint�

�u� � �un ��t���u � r�un�
�

� �rpn�
�

� �
�

�
D��n � ��		 ���	

where �n is the stress tensor evaluated using velocity �un and
�� is the stress tensor evaluated using velocity �u�� Equa�
tion �� therefore requires the solution of a linear system
whose form depends on the form of the stress tensor� We
then enforce the incompressibility constraint and update the
pressure gradient by using the discrete projection operators
P and Q�

�un�� � �un

�t
� P���u � r�un�

�

� �
�

�
D��n � ��		

rpn�
�

� � Q���u � r�un�
�

� �
�

�
D��n � ��		

��� Predictor

We compute the advective term ��u �r�u	n���� follow�
ing Almgren� Bell� Colella and Marthaler �Almgren et al��
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����	� We linearize the advective portion of the �ow equa�
tions� construct van Leer�limited slopes at the cells� and
extrapolate by a half time step and a half the grid spac�
ing to form values at the faces� We then perform an exact
discrete projection

P � I � GL��D

using G and D as described in section ����� and ������ The
Poisson problem has von Neumann boundary conditions�
which is implemented by setting the �ux Fb normal to the
embedded boundary segment in eqn� �� to zero� It is solved
using multigrid iteration� We construct the advective term
directly� not in conservative form�

��� Di�usion operator

In the case where � � �ru� equation �� can be rear�
ranged to form

�
I� �

�� �tr�
�
�u� �

�un ��t
h
��u�r�u	n���� � �

�r
��un �rpn����

i

where the face�centered advection term ��u�r�u	n���� is com�
puted as described in section ���� As with Poisson�s equa�
tion� we solve the di
usion equation using multigrid itera�
tion� The major complication is the no�slip boundary� which
introduces a Dirichlet boundary condition and a non�zero
�ux at the embedded boundary� We adopt the method
of Johansen and Colella �Johansen and Colella� ����	� to
quadratically reconstruct the solution along a ray normal
to the boundary segment to �nd the normal gradient at the
boundary�

��� Cell�centered projection

The solution at the new time level is given by the pro�
jection

�un�� � P
�
�u� ��t rpn����

�
�

Both the argument and the result of the projection are cell�
centered� In order to construct the right hand side of Pois�
son�s equation� and the correction to the velocity� we de�ne
the cell�centered gradient and divergence operators GCC

and DCC as the composition of the face�centered operators
D and G with the averaging operators AF�C and AC�F �
which� respectively� average face�centered data to cells� and

cell�centered data to edges�

GCC��	 � AF�C�G��		

DCC��u	 � D�AC�F ��u		

If we construct a Laplacian LCC � DCCGCC � we obtain a
decoupled stencil� Therefore� we perform an approximate
cell�centered projection using the Laplacian operator con�
structed from the edge�centered gradient and divergence op�
erators�

PCC � I � GCCL��DCC �

Because L �� DCCGCC � this projection is approximate�

� MODIFICATION OF CONSTANT DENSITY ALGO�

RITHM FOR MULTI�FLUID FLOW

We modify the equations for constant density �ow ��	
as follows�

��u

�t
���u � r	�u � �

rp

�
�
r � ��

�
�

��rH

�
���	

��

�t
���u � r	� �  ���	

�F

�t
���u � r	F � � ���	

The above formulation is the level set formulation for multi�
�uid �ow �Sussman et al�� ����� Chang et al�� ����	� The
provisional variable � represents the signed distance to the
free surface� The variable F represents the volume fraction
of liquid contained in any one computational cell� The den�
sity ���	� viscosity ��	� and Heaviside function H��	 jump
across the free surface �where � changes sign	� � is the sur�
face tension coe�cient� Since the density � is non�constant�
we implement a variable density projection method �Bell
and Marcus� ����	 which is a generalization of �� Given a

vector �eld �W � we decompose it into a divergence free part
�Wd and the gradient of a scalar divided by density rp���

The location of the �uid interface is advanced in time
using a coupled volume�of��uid � level set algorithm �Suss�
man and Puckett� ����	� In this algorithm the �ux of each
�uid across cell edges during a time step is computed from
a second�order accurate� piecewise linear approximation to
the interface� This representation of the interface is con�
structed from the volume fraction of each �uid in each cell
at the current time step and the unit normal to the interface
obtained from the level set function at that time step� The
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volume fractions in each cell at the new time step are com�
puted using a conservative �nite di
erence update� while a
provisional level set function at the new time step is ob�
tained by solving an advection equation for the level set
function� This information at the new time step is used to
obtain a piecewise linear approximation to the interface at
the new time� which in turn is used to construct a distance
function �i�e�� the level set function	 at the new time� This
distance function is then used to compute the unit normal
and curvature of the interface� This information is used to
compute the surface tension forces and the volume �uxes at
the next time step�

� EXAMPLES

We present two examples� The �rst� is a constant den�
sity �ow past a half�cylinder� The second� is a free surface
�ow through a nozzle�

The �ow past a half cylinder has been computed in
the work of �Almgren et al�� ����	 using a �nodal� projec�
tion formulation and also by �Almgren et al�� ����	 using a
�cell centered� projection formulation� As described above�
our numerical method is based on a �cell centered� projec�
tion� One di
erence between this work and previous work
by �Almgren et al�� ����	 is the incorporation of a second or�
der algorithm for computing the divergence of an edge based
velocity �eld at the embedded boundary� The resolution of
our calculation is ��� � ��� the domain is � � �� and the
diameter of the half cylinder is ���� At in�ow� we enforce
U � � and we have out�ow boundary conditions imposed
on the right edge of the domain� The initial conditions are
de�ned by the projection of a uniform inlet velocity and
quiescent �uid with a slight asymmetric perturbation up�
stream of the obstruction� In �gure � we display a snapshot
of vorticity being shed from the half cylinder�

For our second example� we compute the three dimen�
sional �ow of water jetting into air� The motion of the
free�surface separating the liquid from the gas is modeled
using the �coupled levelset and volume of �uid� algorithm
described in �Sussman and Puckett� ����	� In Figure � we
display preliminary results of liquid being ejected from a
nozzle� The liquid is accelerated out of the nozzle by ap�
plying a pressure boundary condition at the base of the
nozzle which mimics the e
ects of a thermal ink�jet device�
The diameter of the nozzle is �� microns and the length of
the nozzle is �� microns� The surface tension coe�cient is
��dynes�cm and the density ratio is � � ��
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