Proceedings of FEDSM99
3rd ASME/JSME Joint Fluids Engineering Conference
July 18-23, 1999, San Francisco, California, USA

FEDSM99-7108

AN EMBEDDED BOUNDARY / VOLUME OF FLUID METHOD FOR FREE
SURFACE FLOWS IN IRREGULAR GEOMETRIES

P. Colella, D. T. Graves D. Modiano
Applied Numerical Algorithms Group
Lawrence Berkeley National Laboratory
Berkeley, CA 94720

1 ABSTRACT

In this paper, we will present a numerical method for
computing incompressible free-surface flows in irregular ge-
ometries in three dimensions. The approach we are taking
is based on three ideas. The first is the second-order ac-
curate projection method of Bell, Colella, and Glaz (Bell
et al., 1989) for computing finite difference approximations
to the incompressible flow equations on rectangular grids.
The second is the Cartesian grid embedded boundary al-
gorithms of Johansen and Colella (Johansen and Colella,
1998) for computing consistent discretizations of conserva-
tion laws in irregular geometries. The third is the use of a
second-order accurate volume-of-fluid method for represent-
ing the free surface, including the use of a level-set method
for computing normals and surface tension.

2 GOVERNING EQUATIONS

We are solving the incompressible Navier-Stokes equa-
tions with a given stress tensor (7). Setting density to unity,
the momentum equation becomes

%+(ﬁ.vm:—vp+v-¢, (1)

where @ is the velocity and p is the pressure. We are given an
initial condition of the form @(#, ¢ = 0). Because the density
is constant, conservation of mass reduces to constraint upon
the velocity field

Vi =0. 2)
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We are interested in the projection formulation of the equa-
tions in which the Hodge decomposition is used to change
the problem from a constrained time-dependent system of
equations to a pure time-dependent system. The Hodge de-
composition states that the any vector field W on a bounded
domain 2 which satisfies

/W-ﬁdAzO 3)
o0

can be described as the sum of a divergence free component
field (W4) and a pure gradient field V¢ (Chorin, 1969).

= #d+v¢
V-Wg=0 on (4)

where

Vé-a=W-n on 0Q (5)

Suppose we have a vector field W on a domain Q and we
want to solve for the divergence free component Wy. If we
take the divergence of the equation 4, we can solve

V=V -W
%:W-ﬁ on Of)

(6)
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and subtract the pure gradient component
Wi=W —V¢ (7)

to obtain the divergence-free component.

It is convenient to express this process in operator form.
We define the projection operator P to be that operator
which extracts the divergence-free component V_[}'d of any
vector field W.

PW =Wy (8)

Using G to be the analytical gradient operator, Z to be the
identity operator, and D to be the divergence operator, the
projection operator P is of the form:

P = (T -G(DG)'D). (9)

The projection P of any pure gradient field therefore van-
ishes. We can also define the projection operator Q to be
the projection which extracts the pure gradient component
field V¢ of any vector field W.

Vo

a0

n =

Q
Q

Partial differential equations whose solutions are con-
strained by a divergence-free condition can be reformulated
with a projection operator to eliminate the constraint. For
example, the Navier-Stokes equations (shown in equations
1 and 2) are equivalent to

% =P(—(@-V)T+V-1) (11)
with a divergence-free initial condition (i.e. P(@(-,t = 0)) =
@(-,t = 0) ). Because it is a purely spacial operator, the pro-
jection operator P commutes with the time derivative. The
pressure gradient is no longer necessary as the projection of
any pure gradient vanishes. We shall refer to equation 11

as the “projection formulation” of the Navier-Stokes equa-
tions.

3 DISCRETIZATION

The problem domain is discretized as a uniform Carte-
sian grid with unit aspect ratio, with an irregular domain
boundary embedded in the grid. The grid cells and faces

that the boundary intersects are represented with irregular
geometry data. The cells and faces that do not intersect
the boundary have uniform geometric properties. For clar-
ity of exposition, this paper is written as if each grid cell or
face contains no more than one irregular cell or face, so that
the familiar ijk index notation is used throughout the grid.
Cells have integer indices and faces have one half-integer
index.

For this algorithm, the segment of the boundary inter-
nal to an irregular cell is modeled as a planar surface. As
shown in figure 1, the geometry of an irregular cell is com-
pletely defined by A, the fraction of its volume that is inside
the problem domain, and by 7, the vector normal to the
boundary segment. The geometry of an irregular face is de-
fined by ¢, the fraction of its area that is inside the problem
domain. From these data, other geometric properties can
be constructed, such as the centroid locations of irregular
cells or edges.

The solution is represented as a set of average values
within each cell. Geometrically, we consider the average
to be located at the center of the regular grid cell, even
in irregular cells where it might seem more natural for the
solution to be located at the centroid. Note that in cells
with volume fraction less than one-half, this results in the
data being located outside the problem domain.

This method requires the solution of several Poisson-
like problems. The discrete Laplacian operator is a com-
position of discrete gradient and divergence operators. The
gradient operator acts on cell-centered data and approxi-
mates the gradient at the centers of the regular grid faces.
There is no influence of the geometry. The divergence op-
erator acts on face-centered data and approximates the di-
vergence at the centroid of a cell. The divergence operator
includes a transformation of data at the centers of regular
grid faces into data at the centroids of irregular faces. This
is explained in detail in section 3.1.2.

3.1 Discrete Laplacian operator

The discrete Laplacian operator L is the composition of
discrete gradient and divergence operators. In the irregular
cells, it is evaluated using a finite volume discretization of
the divergence of an edge-centered flux term that in this case
is equal to the gradient times the face area. On the regular
grid, the Laplacian reduces to the usual five- (or seven-)
point cross-shaped stencil, and is evaluated directly.

3.1.1 Discrete gradient operator. The gradient opera-
tor G takes cell-centered data and produces edge-centered
gradients. There is no influence of geometry, so the same
formula is used for every face that intersects the problem
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domain. The gradient normal to the face (i +1/2,7,k) is

gfﬂ/z,j,k = Gm(¢)|i+1/2,j,k
_ Dtk = Pijk
h

and the gradient tangential to the face is formed from an
average of the other set of normal gradients:

g7:;y+1/27j7k = Gy(¢)|i+1/2,j,k

y y y y
_ Gij+1/2.k t Gipr 120 T ig—1/2k T 9it1j-1/2k

4
itk — Gij1k t+ Pirt ik — Gitl,i-1k
o 4h

and similarly for the other combinations of gradient direc-
tion and face direction.

The gradient at faces outside the problem domain are
formed by extrapolation. For example,

x _ x x
9iv1/2,5k = 29i—1/2,j,k — 9i-3/2,5,k

3.1.2 Discrete divergence operator. The finite-volume

form of the divergence operator D is

1 b b
D, = m {6 Fiy,

X T
- (€i+1/2,j,kFi+1/z,j,k - 4i—1/2,j,kFi—1/2,j,k)
—(v. . v — /. . v
(él7j+1/27kFi,j+1/2,k €l7]—1/27kFi,j—1/2,k)

- (éi,j,k+1/2Fiz,j,k+1/2 - Zi,j,kfl/ZFiZ:j7k—1/2)} (12)

where F, , .) = £g(=¥:%) are fluxes at the faces of the cell,
F* is the flux normal to the irregular segment of the bound-
ary, A;jx is the fraction of the volume of the regular cell
taken up by the irregular cell, ;11,5 ;1 etc. are the area
fractions of the irregular faces of the cell, and £° is the length
of the irregular segment of the boundary.

We define the solution data in an irregular cell to be
located at the center of the appropriate regular grid grid
cell, not at the centroid of the irregular volume. Thus,
the fluxes computed at the centers of the grid faces are
second order. However, to compute a second order flux
divergence in the irregular cells, the fluxes in equation 12
must be centered at the geometric centroids of the faces.
We therefore adopt the idea introduced by Johansen and

Colella (Johansen and Colella, 1998), to linearly interpolate
the second order fluxes to the centroids of the faces. In
figure 2, the regular grid spacing is h, and the centroids
of the faces are offset from the centers of the grid faces
by (£¢h,n¢h,(¢h). If F are the second order fluxes at the
centers of the grid faces and F' are the fluxes at the centroids
of the irregular faces, then

Fiii05 = (1 - 775“/2,3') Fivi2.5 + MivayojFiv1/2,41

in two dimensions and

c ~

— C
Fi+1/2,j,k = (1 ~Miv1/2,4k — Cz+1/2,j,k) Fi+1/27j,k

c I c A
+ iy e Fivi2ge1k T Gy jnFivi2,641
in three dimensions.

3.2 Time Discretization

To advance the solution in time, we employ a variation
of the time discretization used by Bell, Colella, and Glaz
(Bell et al., 1989). It is a two-step algorithm. First we
create a temporary velocity @* by advancing the solution
using the governing equations but ignoring the divergence
constraint.

T = A"+ At(—T- V@ — Vp"TE — ZD(r" + 7)) (13)

where 7" is the stress tensor evaluated using velocity @™ and
T* is the stress tensor evaluated using velocity @*. Equa-
tion 13 therefore requires the solution of a linear system
whose form depends on the form of the stress tensor. We
then enforce the incompressibility constraint and update the
pressure gradient by using the discrete projection operators

P and Q.

3.3 Predictor
We compute the advective term (- Vi)"+/? follow-
ing Almgren, Bell, Colella and Marthaler (Almgren et al.,
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1997). We linearize the advective portion of the flow equa-
tions, construct van Leer-limited slopes at the cells, and
extrapolate by a half time step and a half the grid spac-
ing to form values at the faces. We then perform an exact
discrete projection

P=1- GL'D

using G and D as described in section 3.1.1 and 3.1.2. The
Poisson problem has von Neumann boundary conditions,
which is implemented by setting the flux F} normal to the
embedded boundary segment in eqn. 12 to zero. It is solved
using multigrid iteration. We construct the advective term
directly, not in conservative form.

3.4 Diffusion operator
In the case where 7 = vVu, equation 13 can be rear-
ranged to form

(I-3v AtV?) i =
ar — At [(ﬁ-Vﬁ)"+1/2 _ %V%—[n + vpn71/2]

where the face-centered advection term (@-Vi)"+1/? is com-
puted as described in section 3.3. As with Poisson’s equa-
tion, we solve the diffusion equation using multigrid itera-
tion. The major complication is the no-slip boundary, which
introduces a Dirichlet boundary condition and a non-zero
flux at the embedded boundary. We adopt the method
of Johansen and Colella (Johansen and Colella, 1998), to
quadratically reconstruct the solution along a ray normal
to the boundary segment to find the normal gradient at the
boundary.

3.5 Cell-centered projection
The solution at the new time level is given by the pro-
jection

@t =p (a’* + At vpn—1/2) .

Both the argument and the result of the projection are cell-
centered. In order to construct the right hand side of Pois-
son’s equation, and the correction to the velocity, we define
the cell-centered gradient and divergence operators G
and DY as the composition of the face-centered operators
D and G with the averaging operators A" ~7¢ and A¢—F
which, respectively, average face-centered data to cells, and

cell-centered data to edges.

G(p) = ATY(G(9)
D (@) = D(A~" ()

If we construct a Laplacian L¢C = DY“GYC| we obtain a
decoupled stencil. Therefore, we perform an approximate
cell-centered projection using the Laplacian operator con-
structed from the edge-centered gradient and divergence op-

erators,
PCC —1 — GCCLleCC

Because L # DYCGYC| this projection is approximate.

4 MODIFICATION OF CONSTANT DENSITY ALGO-
RITHM FOR MULTI-FLUID FLOW

We modify the equations for constant density flow (1)
as follows:

7 2 H
08 (i Vyg = -2 4 YT _OKV

14
ot p p p 1)

0 .
OF B

The above formulation is the level set formulation for multi-
fluid flow (Sussman et al., 1994; Chang et al., 1996). The
provisional variable ¢ represents the signed distance to the
free surface. The variable F' represents the volume fraction
of liquid contained in any one computational cell. The den-
sity p(¢), viscosity u(¢), and Heaviside function H(¢) jump
across the free surface (where ¢ changes sign). «y is the sur-
face tension coefficient. Since the density p is non-constant,
we implement a variable density projection method (Bell
and Marcus, 1992) which is a generalization of 4. Given a
vector field V_V, we decompose it into a divergence free part
Wd and the gradient of a scalar divided by density Vp/p.
The location of the fluid interface is advanced in time
using a coupled volume-of-fluid / level set algorithm (Suss-
man and Puckett, 1998). In this algorithm the flux of each
fluid across cell edges during a time step is computed from
a second-order accurate, piecewise linear approximation to
the interface. This representation of the interface is con-
structed from the volume fraction of each fluid in each cell
at the current time step and the unit normal to the interface
obtained from the level set function at that time step. The
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volume fractions in each cell at the new time step are com-
puted using a conservative finite difference update, while a
provisional level set function at the new time step is ob-
tained by solving an advection equation for the level set
function. This information at the new time step is used to
obtain a piecewise linear approximation to the interface at
the new time, which in turn is used to construct a distance
function (i.e., the level set function) at the new time. This
distance function is then used to compute the unit normal
and curvature of the interface. This information is used to
compute the surface tension forces and the volume fluxes at
the next time step.

5 EXAMPLES

We present two examples. The first, is a constant den-
sity flow past a half-cylinder. The second, is a free surface
flow through a nozzle.

The flow past a half cylinder has been computed in
the work of (Almgren et al., 1997) using a “nodal” projec-
tion formulation and also by (Almgren et al., 1995) using a
“cell centered” projection formulation. As described above,
our numerical method is based on a “cell centered” projec-
tion. One difference between this work and previous work
by (Almgren et al., 1995) is the incorporation of a second or-
der algorithm for computing the divergence of an edge based
velocity field at the embedded boundary. The resolution of
our calculation is 256 x 64, the domain is 4 x 1, and the
diameter of the half cylinder is 0.25. At inflow, we enforce
U =1 and we have outflow boundary conditions imposed
on the right edge of the domain. The initial conditions are
defined by the projection of a uniform inlet velocity and
quiescent fluid with a slight asymmetric perturbation up-
stream of the obstruction. In figure 3 we display a snapshot
of vorticity being shed from the half cylinder.

For our second example, we compute the three dimen-
sional flow of water jetting into air. The motion of the
free-surface separating the liquid from the gas is modeled
using the “coupled levelset and volume of fluid” algorithm
described in (Sussman and Puckett, 1998). In Figure 4 we
display preliminary results of liquid being ejected from a
nozzle. The liquid is accelerated out of the nozzle by ap-
plying a pressure boundary condition at the base of the
nozzle which mimics the effects of a thermal ink-jet device.
The diameter of the nozzle is 12 microns and the length of
the nozzle is 36 microns. The surface tension coefficient is
37dynes/em and the density ratio is 100 : 1.
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Figure 4. 2-d slice in y-z plane of a 3d jetting computation. The density ratio
at the free surface is 100:1 and the surface tension coefficient is 37 dynes/cm.
Viscous effects are ignored in this computation.
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